本文整理汇总了Python中numpy.ix_函数的典型用法代码示例。如果您正苦于以下问题:Python ix_函数的具体用法?Python ix_怎么用?Python ix_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ix_函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: Barabasi_Albert
def Barabasi_Albert(m0, m, N):
# if m > m0:
# raise ValueError('m must be smaller than or equal to m0')
# # initial graph
# Graph = [Node() for _ in range(m0)]
# for (ix, node) in enumerate(Graph):
# node.connect(Graph[ix + 1:])
# degrees = np.array([node.degree for node in Graph])
# cum_degrees = np.float(np.cumsum(degrees)) / np.sum(degrees)
K = np.eye(N, dtype=np.bool)
K[np.ix_(np.arange(m0), np.arange(m0))] = True
for ix in np.arange(m0, N):
selected = np.zeros((ix,), dtype=np.bool)
for conn in np.arange(m):
free = np.logical_not(selected)
p = np.array(np.sum(K[..., free], axis=0), dtype=np.float)
cdf = np.cumsum(p) / np.sum(p)
r = np.random.uniform()
link = np.where(np.logical_and(r < cdf,
np.logical_not(r >= cdf)))
K[ix, free[link]] = True
K[free[link], ix] = True
selected[free[link]] = True
rp = np.random.permutation(N)
return K[np.ix_(rp, rp)]
开发者ID:rphlypo,项目名称:connectivity,代码行数:25,代码来源:graph_models.py
示例2: test_chol_add_remove
def test_chol_add_remove():
N = 5
X = np.random.randn(10,N)
A = X.T.dot(X)
L = np.linalg.cholesky(A)
Am = A[:-1,:-1]
bm = A[:-1,-1]
cm = A[-1,-1]
Lm = np.linalg.cholesky(Am)
# Get chol by adding row
assert np.allclose(L, chol_add_row(Lm, bm, cm))
# Now get chol by removing a row
def to_range(start, stop):
return np.setdiff1d(np.arange(N), np.arange(start,stop))
assert np.allclose(
np.linalg.cholesky(A[np.ix_(to_range(4,5),
to_range(4,5))]),
chol_remove_row(L,4,5))
assert np.allclose(
np.linalg.cholesky(A[np.ix_(to_range(1,3),
to_range(1,3))]),
chol_remove_row(L,1,3))
开发者ID:sheqi,项目名称:pyglm,代码行数:26,代码来源:test_linalg.py
示例3: subset
def subset(self, variables=None, samples=None):
"""Returns a subset of the dataset (and metadata).
Specify the variables and samples for creating a subset of the data.
variables and samples should be a list of ids. If not specified, it is
assumed to be all variables or samples.
Some examples:
- d.subset([3], [4])
- d.subset([3,1,2])
- d.subset(samples=[5,2,7,1])
Note: order matters! d.subset([3,1,2]) != d.subset([1,2,3])
"""
variables = variables if variables is not None else range(self.variables.size)
samples = samples if samples is not None else range(self.samples.size)
skip_stats = not (self.has_interventions or self.has_missing)
d = Dataset(
self.observations[N.ix_(samples,variables)],
self.missing[N.ix_(samples,variables)],
self.interventions[N.ix_(samples,variables)],
self.variables[variables],
self.samples[samples],
skip_stats = skip_stats
)
# if self does not have interventions or missing, the subset can't.
if skip_stats:
d._has_interventions = False
d._has_missing = False
return d
开发者ID:Alwnikrotikz,项目名称:pebl-project,代码行数:35,代码来源:data.py
示例4: _safe_split
def _safe_split(estimator, X, y, indices, train_indices=None):
"""Create subset of dataset and properly handle kernels."""
from ..gaussian_process.kernels import Kernel as GPKernel
if (hasattr(estimator, 'kernel') and callable(estimator.kernel) and
not isinstance(estimator.kernel, GPKernel)):
# cannot compute the kernel values with custom function
raise ValueError("Cannot use a custom kernel function. "
"Precompute the kernel matrix instead.")
if not hasattr(X, "shape"):
if getattr(estimator, "_pairwise", False):
raise ValueError("Precomputed kernels or affinity matrices have "
"to be passed as arrays or sparse matrices.")
X_subset = [X[index] for index in indices]
else:
if getattr(estimator, "_pairwise", False):
# X is a precomputed square kernel matrix
if X.shape[0] != X.shape[1]:
raise ValueError("X should be a square kernel matrix")
if train_indices is None:
X_subset = X[np.ix_(indices, indices)]
else:
X_subset = X[np.ix_(indices, train_indices)]
else:
X_subset = safe_indexing(X, indices)
if y is not None:
y_subset = safe_indexing(y, indices)
else:
y_subset = None
return X_subset, y_subset
开发者ID:IsaacHaze,项目名称:scikit-learn,代码行数:33,代码来源:metaestimators.py
示例5: _split
def _split(estimator, X, y, indices, train_indices=None):
"""Create subset of dataset."""
if hasattr(estimator, 'kernel') and callable(estimator.kernel):
# cannot compute the kernel values with custom function
raise ValueError("Cannot use a custom kernel function. "
"Precompute the kernel matrix instead.")
if not hasattr(X, "shape"):
if getattr(estimator, "_pairwise", False):
raise ValueError("Precomputed kernels or affinity matrices have "
"to be passed as arrays or sparse matrices.")
X_subset = [X[idx] for idx in indices]
else:
if getattr(estimator, "_pairwise", False):
# X is a precomputed square kernel matrix
if X.shape[0] != X.shape[1]:
raise ValueError("X should be a square kernel matrix")
if train_indices is None:
X_subset = X[np.ix_(indices, indices)]
else:
X_subset = X[np.ix_(indices, train_indices)]
else:
X_subset = X[safe_mask(X, indices)]
if y is not None:
y_subset = y[safe_mask(y, indices)]
else:
y_subset = None
return X_subset, y_subset
开发者ID:Idan-M,项目名称:scikit-learn,代码行数:30,代码来源:grid_search.py
示例6: runTest
def runTest(self):
F=lambda x,y: 100.0*((x>=0.4)&(x<=0.6)&(y>=0.4)&(y<=0.6))
G=lambda x,y: (y==0)*1.0+(y==1)*(-1.0)
a=fasm.AssemblerElement(self.mesh,felem.ElementTriP1())
dudv=lambda du,dv: du[0]*dv[0]+du[1]*dv[1]
K=a.iasm(dudv)
uv=lambda u,v: u*v
B=a.fasm(uv)
fv=lambda v,x: F(x[0],x[1])*v
f=a.iasm(fv)
gv=lambda v,x: G(x[0],x[1])*v
g=a.fasm(gv)
D=np.nonzero(self.mesh.p[0,:]==0)[0]
I=np.setdiff1d(np.arange(0,self.mesh.p.shape[1]),D)
x=np.zeros(K.shape[0])
x[I]=scipy.sparse.linalg.spsolve(K[np.ix_(I,I)]+B[np.ix_(I,I)],
f[I]+g[I])
self.assertAlmostEqual(np.max(x),1.89635971369,places=2)
开发者ID:kinnala,项目名称:sp.fem,代码行数:26,代码来源:test_asm.py
示例7: penalty_function
def penalty_function(vocab_indices, summary_indices, sentence_similarity, config):
"""
This is the penalty function that is described in the paper
Graph-Based Submodular selection for extractive Summarization
Args:
vocab_indices: list
summary_indices: list
sentence_similarity: ndarray
config: dictionary
Some of the methods require some hyper parameters
to be set
This penalises redundancy
Returns: The value of the graph cut function
"""
penalty_lambda = config["penalty_lambda"]
sentence_similartiy_ = np.copy(sentence_similarity)
np.fill_diagonal(sentence_similartiy_, 0.0)
if len(summary_indices) == 0:
fn_value = 0.0
else:
v_not_in_s = list(set(vocab_indices) - set(summary_indices))
rows = v_not_in_s
cols = summary_indices
# USING THE ADVANCED INDEXING OF THE NUMPY ARRAY
fn_value = np.sum(sentence_similarity[np.ix_(rows, cols)]) - \
penalty_lambda * np.sum(sentence_similartiy_[np.ix_(summary_indices, summary_indices)])
return fn_value
开发者ID:abhinavkashyap92,项目名称:extractive_summarisation,代码行数:30,代码来源:sub_modular_functions.py
示例8: load_weight_files
def load_weight_files(weights_files, genes, patients, typeToGeneIndex, typeToPatientIndex, masterGeneToIndex, masterPatientToIndex):
# Master matrix of all weights
P = np.zeros((len(genes), len(patients)))
for i, weights_file in enumerate(weights_files):
# Load the weights matrix for this cancer type and update the entries appropriately.
# Note that since genes/patients can be measured in multiple types, we need to map
# each patient to the "master" index.
type_P = np.load(weights_file)
ty_genes = set(typeToGeneIndex[i].keys()) & genes
ty_gene_indices = [ typeToGeneIndex[i][g] for g in ty_genes ]
master_gene_indices = [ masterGeneToIndex[g] for g in ty_genes ]
ty_patients = set(typeToPatientIndex[i].keys()) & patients
ty_patient_indices = [ typeToPatientIndex[i][p] for p in ty_patients ]
master_patient_indices = [ masterPatientToIndex[p] for p in ty_patients ]
master_mesh = np.ix_(master_gene_indices, master_patient_indices)
ty_mesh = np.ix_(ty_gene_indices, ty_patient_indices)
if np.any( P[master_mesh] > 0 ):
raise ValueError("Different weights for same gene-patient pair")
else:
P[ master_mesh ] = type_P[ ty_mesh ]
# Set any zero entries to the minimum (pseudocount). The only reason for zeros is if
# a gene wasn't mutated at all in a particular dataset.
P[P == 0] = np.min(P[P > 0])
return dict( (g, P[masterGeneToIndex[g]]) for g in genes )
开发者ID:raphael-group,项目名称:wext,代码行数:30,代码来源:find_sets.py
示例9: normal_eq_comb
def normal_eq_comb(AtA, AtB, PassSet = None):
num_cholesky = 0
num_eq = 0
if AtB.size == 0:
Z = np.zeros([])
elif (PassSet is None) or np.all(PassSet):
Z = nla.solve(AtA, AtB)
num_cholesky = 1
num_eq = AtB.shape[1]
else:
Z = np.zeros(AtB.shape) #(n, k)
if PassSet.shape[1] == 1:
if np.any(PassSet):
cols = np.nonzero(PassSet)[0]
Z[cols] = nla.solve(AtA[np.ix_(cols, cols)], AtB[cols])
num_cholesky = 1
num_eq = 1
else:
groups = column_group(PassSet)
for g in groups:
cols = np.nonzero(PassSet[:, g[0]])[0]
if cols.size > 0:
ix1 = np.ix_(cols, g)
ix2 = np.ix_(cols, cols)
Z[ix1] = nla.solve(AtA[ix2], AtB[ix1])
num_cholesky += 1
num_eq += len(g)
num_eq += len(g)
return Z, num_cholesky, num_eq
开发者ID:crcrpar,项目名称:DataAnalysis,代码行数:34,代码来源:function.py
示例10: classify_binomial
def classify_binomial(x, data, counts, y):
classes, y = np.unique(y, return_inverse=True)
max_label = None
max = None
for class_label in np.nditer(classes):
class_examples = data[np.ix_(y == class_label)]
class_counts = counts[np.ix_(y == class_label)]
total_class_counts = sum(class_counts)
alfas = (class_examples.sum(axis=0) + 0.01)/(total_class_counts + 0.01)
prior = len(class_examples) / len(data)
membership = getMembershipBinomial(x,alfas, prior, class_counts, total_class_counts)
if(max_label is None):
max_label = class_label
max = membership
else:
if(class_label == 0):
if membership>max:
max = membership
max_label = class_label
else:
if membership>(max+8.5):
max = membership
max_label = class_label
return max_label
开发者ID:marrosenfeld,项目名称:Machine-Learning,代码行数:25,代码来源:naive_bayes.py
示例11: conditional
def conditional(self, in_dims, out_dims):
conditionals = []
for k, (weight_k, mean_k, covar_k) in enumerate(self):
conditionals.append(conditional(mean_k, covar_k,
in_dims, out_dims,
self.covariance_type))
cond_weights = lambda v: [(weight_k * Gaussian(mean_k[in_dims].reshape(-1,),
covar_k[ix_(in_dims, in_dims)]).normal(v.reshape(-1,)))
for k, (weight_k, mean_k, covar_k) in enumerate(self)]
def res(v):
gmm = GMM(n_components=self.n_components,
covariance_type=self.covariance_type,
random_state=self.random_state, thresh=self.thresh,
min_covar=self.min_covar, n_iter=self.n_iter, n_init=self.n_init,
params=self.params, init_params=self.init_params)
gmm.weights_ = cond_weights(v)
means_covars = [f(v) for f in conditionals]
gmm.means_ = array([mc[0] for mc in means_covars]).reshape(self.n_components,
-1)
gmm._set_covars(array([mc[1] for mc in means_covars]))
return gmm
return res
self.in_dims = array(in_dims)
self.out_dims = array(out_dims)
means = zeros((self.n_components, len(out_dims)))
covars = zeros((self.n_components, len(out_dims), len(out_dims)))
weights = zeros((self.n_components,))
sig_in = []
inin_inv = []
out_in = []
mu_in = []
for k, (weight_k, mean_k, covar_k) in enumerate(self):
sig_in.append(covar_k[ix_(in_dims, in_dims)])
inin_inv.append(matrix(sig_in).I)
out_in.append(covar_k[ix_(out_dims, in_dims)])
mu_in.append(mean_k[in_dims].reshape(-1, 1))
means[k, :] = (mean_k[out_dims] +
(out_in *
inin_inv *
(value - mu_in)).T)
covars[k, :, :] = (covar_k[ix_(out_dims, out_dims)] -
out_in *
inin_inv *
covar_k[ix_(in_dims, out_dims)])
weights[k] = weight_k * Gaussian(mu_in.reshape(-1,),
sig_in).normal(value.reshape(-1,))
weights /= sum(weights)
def p(value):
# hard copy of useful matrices local to the function
pass
return p
开发者ID:flowersteam,项目名称:explauto,代码行数:60,代码来源:gmminf.py
示例12: dctt1
def dctt1(a):
""" dct Discrete cosine transform.
y = dct(a) returns the discrete cosine transform of a.
The vector y is the same size as `a` and contains the
discrete cosine transform coefficients.
"""
if len(a.shape)==1:
a = a.reshape(a.size,1)
n,m = a.shape
aa = a[:,:]
#Compute weights to multiply DFT coefficients
ww = arrayexp(n)
if n%2 == 1:
y = np.zeros([2*n,m])
y[:n,:] = aa
y[n:2*n,:] = np.flipud(aa)
# Compute the FFT and keep the appropriate portion:
yy = np.fft.fft(y,axis=0)
yy = yy[:n,:]
else:
# Re-order the elements of the columns of x
y = np.concatenate((aa[np.ix_(range(0,n,2))],\
aa[np.ix_(range(1,n,2)[::-1])]), axis=0)
yy = np.fft.fft(y,axis=0)
ww = 2*ww # Double the weights for even-length case
wy = np.empty([n,m], complex)
for j in range(m):
wy[:,j] = ww
# Multiply FFT by weights:
b = np.multiply(wy,yy)
return b[:n,:m].real
开发者ID:modeha,项目名称:lsq_solver,代码行数:33,代码来源:dctt.py
示例13: comp
def comp(self,mean,var,covar,resp):
# Store the indices to the missing and observed responses.
miss=numpy.isnan(resp)
obs=numpy.logical_not(miss)
if miss.all():
return mean,var,covar
# Store the size of the model.
numresp,numpred=numpy.size(self.gain)
kalmgain=numpy.eye(numresp)
josgain=numpy.eye(numresp)
# Fill in the Kalman and Joseph gain matrices.
ind=numpy.ix_(miss,obs)
kalmgain[ind]=linalg.solve(self.noise[numpy.ix_(obs,obs)],
self.noise[ind].transpose()).transpose()
josgain[:,obs]=josgain[:,obs]-kalmgain[:,obs]
# Compute the predictor/response co-variance.
covar=covar.dot(josgain.transpose())
# Condition the response mean/variance on the observations.
mean=josgain.dot(mean)+numpy.dot(kalmgain[:,obs],resp[obs])
var=numpy.dot(josgain,numpy.dot(var,josgain.transpose()))
return mean,var,covar
开发者ID:gabrieag,项目名称:glds,代码行数:29,代码来源:glds.py
示例14: consgpattern
def consgpattern():
"""
binary pattern of the sparse nonlinear constraint gradient
"""
vfdxpat = ( self.vfielddxpattern
if self.vfielddxpattern is not None
else np.ones( (self.Nstates,self.Nstates) ) )
vfdupat = ( self.vfielddupattern
if self.vfielddupattern is not None
else np.ones( (self.Nstates,self.Ninputs) ) )
if( self.Ncons > 0 ):
consdxpat = ( self.consdxpattern
if self.consdxpattern is not None
else np.ones( (self.Ncons,self.Ninputs) ) )
out = np.zeros( ( feuler.Ncons, feuler.N ), dtype=np.int )
for k in range( Nsamples ):
out[ np.ix_( dconsidx[:,k+1], stidx[:,k] ) ] = vfdxpat
out[ np.ix_( dconsidx[:,k+1], uidx[:,k] ) ] = vfdupat
if( self.Ncons > 0 ):
out[ np.ix_( iconsidx[:,k], stidx[:,k+1] ) ] = consdxpat
return out
开发者ID:hgonzale,项目名称:optwrapper,代码行数:27,代码来源:ocp.py
示例15: get_corr_pred
def get_corr_pred( self, sctx, u, du, tn, tn1 ):
n_ip_arr, ip_coords_arr, ip_weights_arr = self.ip_scheme
self.F_int[:] = 0.0
self.k_arr[...] = 0.0
B_mtx_grid = None
J_det_grid = None
ip_offset = 0
k_list = []
for e_id, ( elem, n_ip ) in enumerate( zip( self.sdomain.elements, n_ip_arr ) ):
ip_coords = ip_coords_arr[ ip_offset : ip_offset + n_ip ]
ip_weights = ip_weights_arr[ ip_offset : ip_offset + n_ip ]
ix = elem.get_dof_map()
sctx.elem = elem
sctx.elem_state_array = self.state_array[ ip_offset : ip_offset + n_ip ].flatten()
sctx.X = elem.get_X_mtx()
if self.cache_geo_matrices:
B_mtx_grid = self.B_mtx_grid[ e_id, ... ]
J_det_grid = self.J_det_grid[ e_id, ... ]
f, k = self.fets_eval.get_corr_pred( sctx, u[ix_( ix )], du[ix_( ix )],
tn, tn1,
B_mtx_grid = B_mtx_grid,
J_det_grid = J_det_grid,
ip_coords = ip_coords,
ip_weights = ip_weights )
self.k_arr[ e_id ] = k
self.F_int[ ix_( ix ) ] += f
ip_offset += n_ip
return self.F_int, SysMtxArray( mtx_arr = self.k_arr, dof_map_arr = self.sdomain.elem_dof_map )
开发者ID:simvisage,项目名称:simvisage,代码行数:34,代码来源:dots_unstructured_eval.py
示例16: multiClassSVM
def multiClassSVM(distances, trainingIndice, testingIndice, semanticLabels, kernelType):
distances = distances ** 2
trainDistance = distances[np.ix_(trainingIndice, trainingIndice)]
gamma = 1.0 / np.mean(trainDistance)
kernelParam = []
kernelParam.append(gamma)
tempList = []
tempList.append(kernelType)
baseKernel = constructBaseKernels(tempList, kernelParam, distances)
trainGramMatrix = baseKernel[0][np.ix_(trainingIndice, trainingIndice)]
testGramMatrix = baseKernel[0][np.ix_(testingIndice, trainingIndice)]
trainLabels = [semanticLabels[i] for i in trainingIndice]
testLabels = [semanticLabels[i] for i in testingIndice]
clf = SVC(kernel = "precomputed")
clf.fit(trainGramMatrix, trainLabels)
SVMResults = clf.predict(testGramMatrix)
correct = sum(1.0 * (SVMResults == testLabels))
accuracy = correct / len(testLabels)
return accuracy
开发者ID:esokullu,项目名称:Image-Recognition,代码行数:28,代码来源:classification.py
示例17: nd_bootstrap
def nd_bootstrap(data, iterations, axis=None, strip_tuple_if_one=True):
"""
Bootstrap iterator for several n-dimensional data arrays.
:param data: Iterable containing the data arrays
:param iterations: Number of bootstrap iterations.
:param axis: Bootstrapping is performed along this axis.
"""
shape0 = data[0].shape
if axis is None:
axis = 0
data = [d.ravel() for d in data]
n = len(data[0].shape)
K = len(data)
data0 = []
if axis is not None:
m = data[0].shape[axis]
to = tuple([axis]) + tuple(range(axis)) + tuple(range(axis + 1, n))
fro = tuple(range(1, axis + 1)) + (0,) + tuple(range(axis + 1, n))
for i in range(K):
data0.append(data[i].transpose(to))
for i in range(iterations):
idx = np.random.randint(m, size=(m,))
if len(data) == 1 and strip_tuple_if_one:
yield (data0[0][np.ix_(idx), ...].squeeze().
transpose(fro).reshape(shape0))
else:
yield tuple(a[np.ix_(idx), ...].squeeze().
transpose(fro).reshape(shape0) for a in data0)
开发者ID:philippberens,项目名称:PyCircStat,代码行数:32,代码来源:iterators.py
示例18: _steadystate_direct_sparse
def _steadystate_direct_sparse(L, use_rcm=True, use_umfpack=False):
"""
Direct solver that uses scipy sparse matrices
"""
if settings.debug:
print('Starting direct solver...')
dims=L.dims[0]
weight=np.abs(L.data.max())
n = prod(L.dims[0][0])
b = np.zeros((n ** 2, 1), dtype=complex)
b[0,0] = weight
L = L.data + sp.csr_matrix((weight*np.ones(n), (np.zeros(n), [nn * (n + 1) for nn in range(n)])),
shape=(n ** 2, n ** 2))
L.sort_indices()
use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
if use_rcm:
perm = symrcm(L)
L = sparse_permute(L,perm,perm)
b = b[np.ix_(perm,)]
v = spsolve(L, b)
if use_rcm:
rev_perm = np.argsort(perm)
v = v[np.ix_(rev_perm,)]
data = vec2mat(v)
data = 0.5 * (data + data.conj().T)
return Qobj(data, dims=dims, isherm=True)
开发者ID:i2000s,项目名称:qutip,代码行数:28,代码来源:steadystate.py
示例19: patch
def patch(data, rows, cols = None):
"""
data = data matrix, 1D or 2D array (matrix)
rows = iterator of rows (list) to select, None means selecting all rows
cols = iterator of cols (list) to select, None means selecting all cols
return np.array (of the patch shape), but the DIM of return should be
the same as data (1D or 2D)
if data is a sparse matrix, the return the matrix will be dense np.array
"""
if not sparse.issparse(data):
data = np.asarray(data)
dim = get_dim(data)
if dim == 1:
## ignore cols
return data[rows] if rows is not None else data
elif dim == 2:
nrows, ncols = data.shape
rows = rows if rows is not None else xrange(nrows)
cols = cols if cols is not None else xrange(ncols)
if sparse.issparse(data):
return data.toarray()[np.ix_(rows, cols)]
else:
return data[np.ix_(rows, cols)]
else:
raise RuntimeError('only supports 1D or 2D array')
开发者ID:EricChanBD,项目名称:tutorials,代码行数:25,代码来源:features.py
示例20: _steadystate_lu
def _steadystate_lu(L, use_rcm=True, use_umfpack=False):
"""
Find the steady state(s) of an open quantum system by computing the
LU decomposition of the underlying matrix.
"""
if settings.debug:
print('Starting LU solver...')
dims=L.dims[0]
weight=np.abs(L.data.max())
n = prod(L.dims[0][0])
b = np.zeros(n ** 2, dtype=complex)
b[0] = weight
L = L.data.tocsc() + sp.csc_matrix((weight*np.ones(n),
(np.zeros(n), [nn * (n + 1) for nn in range(n)])),
shape=(n ** 2, n ** 2))
L.sort_indices()
use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
if use_rcm:
perm = symrcm(L)
L = sparse_permute(L,perm,perm)
b = b[np.ix_(perm,)]
solve = factorized(L)
v = solve(b)
if use_rcm:
rev_perm = np.argsort(perm)
v = v[np.ix_(rev_perm,)]
data = vec2mat(v)
data = 0.5 * (data + data.conj().T)
return Qobj(data, dims=dims, isherm=True)
开发者ID:i2000s,项目名称:qutip,代码行数:32,代码来源:steadystate.py
注:本文中的numpy.ix_函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论