• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.logaddexp函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.logaddexp函数的典型用法代码示例。如果您正苦于以下问题:Python logaddexp函数的具体用法?Python logaddexp怎么用?Python logaddexp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了logaddexp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: messages_backwards

    def messages_backwards(self):
        'approximates duration tails at indices > trunc with geometric tails'
        aDl, aDsl, Al = self.aDl, self.aDsl, np.log(self.trans_matrix)
        trunc = self.trunc if self.trunc is not None else self.T
        T,state_dim = aDl.shape

        assert trunc > 1

        aBl = self.aBl/self.temp if self.temp is not None else self.aBl
        hmm_betal = HMMStatesEigen._messages_backwards(self._get_hmm_transition_matrix(),aBl)
        assert not np.isnan(hmm_betal).any()

        betal = np.zeros((T,state_dim),dtype=np.float64)
        betastarl = np.zeros_like(betal)

        for t in xrange(T-1,-1,-1):
            np.logaddexp.reduce(betal[t:t+trunc] + self.cumulative_likelihoods(t,t+trunc)
                    + aDl[:min(trunc,T-t)],axis=0, out=betastarl[t])
            if t+trunc < T:
                np.logaddexp(betastarl[t], self.likelihood_block(t,t+trunc+1) + aDsl[trunc -1]
                        + hmm_betal[t+trunc], out=betastarl[t])
            if T-t < trunc and self.right_censoring:
                np.logaddexp(betastarl[t], self.likelihood_block(t,None) + aDsl[T-t -1], betastarl[t])
            np.logaddexp.reduce(betastarl[t] + Al,axis=1,out=betal[t-1])
        betal[-1] = 0.

        return betal, betastarl
开发者ID:123mitnik,项目名称:pyhsmm,代码行数:27,代码来源:states.py


示例2: calc_log_proba_mod

def calc_log_proba_mod(peptide, domain, sequence):
    """
    Function which computes the log of the updated probability.
    For numerical stability, the sum of the logs is computed as
    log(exp(logA)+exp(logB)) which is just log(A+B)
    """
    ix = PDZ_Data.domain_names.index(domain.name)
    alpha = PDZ_Data.fp_interaction_matrix[peptide.name][ix]

    score = eval_score(domain, sequence,0)
    z_1 = log_modified(score)
    z_2 = log_modified(-1.0*score)
    if alpha > 0:
        a = peptide.posterior_matrix[1,1]
        x = np.log(a) -z_1
        b = peptide.posterior_matrix[1,0]
        y = np.log(b) - z_2
        result = np.logaddexp(x,y)
    else:
        a = peptide.posterior_matrix[0,1]
        x = np.log(a) - z_1
        b = peptide.posterior_matrix[0,0]
        y = np.log(b) - z_2
        result = np.logaddexp(x,y)
    return result*-1.0
开发者ID:dhruvparamhans,项目名称:project3a,代码行数:25,代码来源:run_mc.py


示例3: compute_score_vect

    def compute_score_vect(self, bin_n, mu_vect, sigmasq_vect, pi_vect):
        bin_edges = np.arange(bin_n + 1, dtype=np.float32)/ (bin_n+1)
        bin_centers = bin_edges[:-1] + 1./bin_n 
        score_bins = np.zeros(bin_n)

        # compute the prob for each bin
        K = len(pi_vect)
        dp_per_comp_scores = np.zeros((bin_n, K), dtype=np.float32)

        for k in range(K):
            mu = mu_vect[k]
            sigmasq = sigmasq_vect[k]
            pi = pi_vect[k]
            dp_per_comp_scores[:, k] = irm.util.log_norm_dens(bin_centers, mu, sigmasq)
            dp_per_comp_scores[:, k] += np.log(pi)

        scores = dp_per_comp_scores[:, 0]
        for k in range(1, K):
            scores = np.logaddexp(scores, dp_per_comp_scores[:, k])

        # normalize
        score_total = scores[0]
        for i in range(1, bin_n):
            score_total = np.logaddexp(score_total, scores[i])
        scores -= score_total

        return scores
开发者ID:ericmjonas,项目名称:connectodiscovery,代码行数:27,代码来源:model.py


示例4: softmax_loss2

def softmax_loss2(props, lbls, mask=None):
    grdts = dict()
    err = 0

    for name, prop in props.iteritems():
        # make sure that it is the output of binary class
        assert(prop.shape[0]==2)

        print "original prop: ", prop

        # rebase the prop for numerical stability
        # mathimatically, this do not affect the softmax result!
        # http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
#        prop = prop - np.max(prop)
        propmax = np.max(prop, axis=0)
        prop[0,:,:,:] -= propmax
        prop[1,:,:,:] -= propmax

        log_softmax = np.empty(prop.shape, dtype=prop.dtype)
        log_softmax[0,:,:,:] = prop[0,:,:,:] - np.logaddexp( prop[0,:,:,:], prop[1,:,:,:] )
        log_softmax[1,:,:,:] = prop[1,:,:,:] - np.logaddexp( prop[0,:,:,:], prop[1,:,:,:] )
        prop = np.exp(log_softmax)
        props[name] = prop

        lbl = lbls[name]
        grdts[name] = prop - lbl
        err = err + np.sum( -lbl * log_softmax )
        print "gradient: ", grdts[name]
        assert(not np.any(np.isnan(grdts[name])))
    return (props, err, grdts)
开发者ID:seung-lab,项目名称:znn-release,代码行数:30,代码来源:cost_fn.py


示例5: forward_backward

def forward_backward(node_potentials,edge_potentials):
    H,N = node_potentials.shape
    forward = -1000.0 * np.ones([H,N],dtype=float)
    backward = -1000.0 * np.ones([H,N],dtype=float)
    forward[:,0] = np.log(node_potentials[:,0])
    ## Forward loop
    for pos in xrange(1,N):
        for current_state in xrange(H):
            for prev_state in xrange(H):
                forward_v = forward[prev_state,pos-1]
                trans_v = np.log(edge_potentials[prev_state,current_state,pos-1])
                logprob = forward_v + trans_v
                forward[current_state,pos] = np.logaddexp(forward[current_state,pos], logprob)
            forward[current_state,pos] += np.log(node_potentials[current_state,pos])
    ## Backward loop
    backward[:,N-1] = 0.0 # log(1) = 0
    for pos in xrange(N-2,-1,-1):
        for current_state in xrange(H):
            logprob = -1000.0 
            for next_state in xrange(H):
                back = backward[next_state,pos+1]
                trans = np.log(edge_potentials[current_state,next_state,pos]);
                observation = np.log(node_potentials[next_state,pos+1]);
                logprob = np.logaddexp(logprob, trans + observation + back);
            backward[current_state,pos] = logprob
    #sanity_check_forward_backward(forward,backward)
    #print forward, backward
    return np.exp(forward),np.exp(backward)
开发者ID:FilippoC,项目名称:lxmls-toolkit,代码行数:28,代码来源:forward_backward_2.py


示例6: hsmm_messages_backwards_log

def hsmm_messages_backwards_log(
    trans_potentials, initial_state_potential,
    cumulative_obs_potentials, dur_potentials, dur_survival_potentials,
    betal, betastarl,
    left_censoring=False, right_censoring=True):
    errs = np.seterr(invalid='ignore') # logaddexp(-inf,-inf)

    T, _ = betal.shape

    betal[-1] = 0.
    for t in xrange(T-1,-1,-1):
        cB, offset = cumulative_obs_potentials(t)
        dp = dur_potentials(t)
        np.logaddexp.reduce(betal[t:t+cB.shape[0]] + cB + dur_potentials(t),
                axis=0, out=betastarl[t])
        betastarl[t] -= offset
        if right_censoring:
            np.logaddexp(betastarl[t], cB[-1] - offset + dur_survival_potentials(t),
                    out=betastarl[t])
        np.logaddexp.reduce(betastarl[t] + trans_potentials(t-1),
                axis=1, out=betal[t-1])
    betal[-1] = 0. # overwritten on last iteration

    if not left_censoring:
        normalizer = np.logaddexp.reduce(initial_state_potential + betastarl[0])
    else:
        raise NotImplementedError

    np.seterr(**errs)
    return betal, betastarl, normalizer
开发者ID:Tell1,项目名称:ml-impl,代码行数:30,代码来源:hsmm_states.py


示例7: ctc_loss

def ctc_loss(label, prob, remainder, seq_length, batch_size, num_gpu=1, big_num=1e10):
    label_ = [0, 0]
    prob[prob < 1 / big_num] = 1 / big_num
    log_prob = np.log(prob)

    l = len(label)
    for i in range(l):
        label_.append(int(label[i]))
        label_.append(0)

    l_ = 2 * l + 1
    a = np.full((seq_length, l_ + 1), -big_num)
    a[0][1] = log_prob[remainder][0]
    a[0][2] = log_prob[remainder][label_[2]]
    for i in range(1, seq_length):
        row = i * int(batch_size / num_gpu) + remainder
        a[i][1] = a[i - 1][1] + log_prob[row][0]
        a[i][2] = np.logaddexp(a[i - 1][2], a[i - 1][1]) + log_prob[row][label_[2]]
        for j in range(3, l_ + 1):
            a[i][j] = np.logaddexp(a[i - 1][j], a[i - 1][j - 1])
            if label_[j] != 0 and label_[j] != label_[j - 2]:
                a[i][j] = np.logaddexp(a[i][j], a[i - 1][j - 2])
            a[i][j] += log_prob[row][label_[j]]

    return -np.logaddexp(a[seq_length - 1][l_], a[seq_length - 1][l_ - 1])
开发者ID:dpom,项目名称:incubator-mxnet,代码行数:25,代码来源:stt_metric.py


示例8: compute_weights

def compute_weights(data, Nlive):
    """Returns log_ev, log_wts for the log-likelihood samples in data,
    assumed to be a result of nested sampling with Nlive live points."""

    start_data=data[:-Nlive]
    end_data=data[-Nlive:]

    log_wts=zeros(data.shape[0])

    log_vol_factor=log1p(-1.0/Nlive)
    log_dvol = -1.0/Nlive

    log_vol = 0.0
    log_ev = -float('inf')
    for i,log_like in enumerate(start_data):
        # Volume associated with this likelihood = Vol/Nlive:
        log_this_vol=log_vol+log_dvol
        log_wts[i] = log_like+log_this_vol
        log_ev = logaddexp(log_ev, log_wts[i])
        log_vol += log_vol_factor

    avg_log_like_end = -float('inf')
    for i,log_l in enumerate(end_data):
        avg_log_like_end = logaddexp(avg_log_like_end, log_l)
    avg_log_like_end-=log(Nlive)

    # Each remaining live point contributes (Vol/Nlive)*like to
    # integral, but have posterior weights Vol relative to the other samples
    log_wts[-Nlive:] = log_vol+end_data

    log_ev = logaddexp(log_ev, avg_log_like_end + log_vol)

    log_wts -= log_ev

    return log_ev, log_wts
开发者ID:smirshekari,项目名称:lalsuite,代码行数:35,代码来源:nest2pos.py


示例9: test_transition_probabilities

def test_transition_probabilities(hm):
    alpha = hm.forward()
    beta = hm.backward()
    gamma = hm.state_probs(alpha, beta)
    xi = hm.bw(alpha, beta)

    trans = hm.transition_probabilities(xi, gamma)

    iter_trans = []
    for i in range(len(hm.hidden_states)):
        row = []
        for j in range(len(hm.hidden_states)):
            num = np.NINF
            den = np.NINF
            for seq in range(len(hm.observations)):
                num_seq = xi[seq][0][i][j]
                den_seq = gamma[seq][0][i]
                for o in range(1, len(hm.observations[seq]) - 1):
                    # xi is probability of probability
                    # of being at state i at time t and
                    # state j at time t+1
                    num_seq = np.logaddexp(num_seq, xi[seq][o][i][j])
                    # gamma is probability of being in
                    # state i at time t
                    den_seq = np.logaddexp(den_seq, gamma[seq][o][i])
                # add the current sequence contribution to total
                num = np.logaddexp(num, num_seq)
                den = np.logaddexp(den, den_seq)
            row.append(np.exp(num - den))
        iter_trans.append(row)

    assert iter_trans == approx(trans)
开发者ID:hyperboliccake,项目名称:introgression,代码行数:32,代码来源:test_hmm_bw.py


示例10: equilibrium_concentrations

   def equilibrium_concentrations(cls, DeltaG, Ptot, Ltot):
      """
      Compute equilibrium concentrations for simple two-component association.

      Parameters
      ----------
      DeltaG : float
         Reduced free energy of binding (in units of kT)
      Ptot : float or numpy array
         Total protein concentration summed over bound and unbound species, molarity.
      Ltot : float or numpy array
         Total ligand concentration summed over bound and unbound speciesl, molarity.

      Returns
      -------
      P : float or numpy array with same dimensions as Ptot
         Free protein concentration, molarity.
      L : float or numpy array with same dimensions as Ptot
         Free ligand concentration, molarity.
      PL : float or numpy array with same dimensions as Ptot
         Bound complex concentration, molarity.

      """

      # Original form:
      #Kd = np.exp(DeltaG)
      #sqrt_arg = (Ptot + Ltot + Kd)**2 - 4*Ptot*Ltot
      #sqrt_arg[sqrt_arg < 0.0] = 0.0
      #PL = 0.5 * ((Ptot + Ltot + Kd) - np.sqrt(sqrt_arg));  # complex concentration (M)

      # Numerically stable variant?
      logP = np.log(Ptot)
      logL = np.log(Ltot)
      logPLK = np.logaddexp(np.logaddexp(logP, logL), DeltaG)
      PLK = np.exp(logPLK);
      sqrt_arg = 1.0 - np.exp(np.log(4.0) + logP + logL - 2*logPLK);
      sqrt_arg[sqrt_arg < 0.0] = 0.0 # ensure always positive
      PL = 0.5 * PLK * (1.0 - np.sqrt(sqrt_arg));  # complex concentration (M)

      # Another variant
      #PL = 2*Ptot*Ltot / ((Ptot+Ltot+Kd) + np.sqrt((Ptot + Ltot + Kd)**2 - 4*Ptot*Ltot));  # complex concentration (M)
      # Yet another numerically stable variant?
      #logPLK = np.logaddexp(np.log(Ptot + Ltot),  DeltaG);
      #PLK = np.exp(logPLK);
      #xy = np.exp(np.log(Ptot) + np.log(Ltot) - 2.0*logPLK);
      #chi = 1.0 - 4.0 * xy;
      #chi[chi < 0.0] = 0.0 # prevent square roots of negative numbers
      #PL = 0.5 * PLK * (1 - np.sqrt(chi))

      # Ensure all concentrations are within limits, correcting cases where numerical issues cause problems.
      PL[PL < 0.0] = 0.0 # complex cannot have negative concentration
      #PL_max = np.minimum(Ptot, Ltot)
      #indices = np.where(PL > PL_max)
      #PL[indices] = PL_max[indices]

      # Compute remaining concentrations.
      P = Ptot - PL; # free protein concentration in sample cell after n injections (M)
      L = Ltot - PL; # free ligand concentration in sample cell after n injections (M)
      return [P, L, PL]
开发者ID:sonyahanson,项目名称:assaytools,代码行数:59,代码来源:bindingmodels.py


示例11: log_proba

 def log_proba(self, kde, value, period=None):
     if period is None:
         return kde.score([[value]])
     else:
         values = kde.score_samples([[value], [value+period], [value-period]])
         total = np.logaddexp(values[0], values[1])
         total = np.logaddexp(total, values[2])
         return total
开发者ID:fairypp,项目名称:facebook_check_in_prediction,代码行数:8,代码来源:axis_kde.py


示例12: compute_visible_llr

    def compute_visible_llr(self, data):
        background = data.frames.background
        ball = data.frames.ball

        ball.present_ll_c[...] = numpy.logaddexp(ball.color_analysis.ll, self.occlusion_analyzer.occluded_lpr)
        ball.absent_ll_c[...] = data.background.q_estimation * numpy.logaddexp(background.color_analysis.ll, self.occlusion_analyzer.occluded_lpr)

        ball.present_llr[...] = numpy.logaddexp(ball.present_ll_c - ball.absent_ll_c + self.visible_lpr, ball.absent_ll_c)
开发者ID:subotto,项目名称:subtracker,代码行数:8,代码来源:ball.py


示例13: pixel_space_information_gain

 def pixel_space_information_gain(self, baseline, gold_standard, stimulus, eps=1e-20):
     log_p_gold = gold_standard.log_density(stimulus)
     log_p_baseline = baseline.log_density(stimulus)
     log_p_model = self.log_density(stimulus)
     p_gold = np.exp(log_p_gold)
     p_gold[p_gold == 0] = p_gold[p_gold > 0].min()
     ig = (p_gold)*(np.logaddexp(log_p_model, np.log(eps))-np.logaddexp(log_p_baseline, np.log(eps)))
     return ig
开发者ID:matthias-k,项目名称:pysaliency,代码行数:8,代码来源:models.py


示例14: compute_sig_PPsi

    def compute_sig_PPsi ( self ,layers  , y_possible  , mode = "None" ):
        #print self.Prob[layers]
        update_Psi_o = np.zeros(self.w_o.shape)
        update_Psi_t = np.zeros(self.w_t.shape)
        update_Psi   = np.zeros(self.w.shape)
        CRF_Prob = 0
        if mode == "Start" :
            log_current_Prob = ( np.dot(self.w_o[y_possible] , self.x[layers]/(self.SEQ_LENGTH) ) + self.w_t[self.y_class][y_possible]/self.SEQ_LENGTH )  
            update_Psi_o[y_possible]               = (log_current_Prob) + np.log(self.x[layers])- np.log(self.SEQ_LENGTH) 
            update_Psi_t[self.y_class][y_possible] = (log_current_Prob) - np.log(self.SEQ_LENGTH)
            CRF_Prob = log_current_Prob
        elif mode == "End" :
            log_current_Prob           = ( self.w_t.T[self.y_class][:-1] )  
            update_Psi                 = log_current_Prob + self.CRF_Psi[layers][:] 
            update_Psi_t.T[self.y_class] = (log_current_Prob) - (self.SEQ_LENGTH) 
            CRF_Prob                   =  log_current_Prob + (self.CRF_Prob[layers][:]) 
        else:
            log_current_Prob = ( np.dot(self.w_o[y_possible] , self.x[layers]/(self.SEQ_LENGTH) ) + self.w_t.T[y_possible][:-1])  
            update_Psi                     = log_current_Prob + self.CRF_Psi[layers][:] 
            update_Psi_t.T[y_possible][:]  = (log_current_Prob) - np.log(self.SEQ_LENGTH) 
            update_Psi_o[y_possible]       = log_current_Prob + np.log(self.x[layers]) - np.log(self.SEQ_LENGTH) 
            CRF_Prob                         = log_current_Prob + self.CRF_Prob[layers][:]  
        '''
        for y_last in range(0,self.y_class):
            if mode == "Start" :
                log_current_Prob = ( np.dot(self.w_o[y_possible] , self.x[layers]/(self.SEQ_LENGTH) ) + self.w_t[self.y_class][y_possible]/self.SEQ_LENGTH )  
                update_Psi_o[y_possible]               = (log_current_Prob) + np.log(self.x[layers])- np.log(self.SEQ_LENGTH) 
                update_Psi_t[self.y_class][y_possible] = (log_current_Prob) - np.log(self.SEQ_LENGTH)

                CRF_Prob = log_current_Prob
            elif mode == "End" :
                log_current_Prob = ( self.w_t[y_last][self.y_class]/self.SEQ_LENGTH )  
                update_Psi                       = np.logaddexp ( update_Psi ,  log_current_Prob + self.CRF_Psi[layers][y_last] )
                update_Psi_t[y_last][y_possible] = np.logaddexp( update_Psi_t[y_last][y_possible] , (log_current_Prob) - (self.SEQ_LENGTH) )

                CRF_Prob                         = np.logaddexp( CRF_Prob   ,  log_current_Prob + (self.CRF_Prob[layers][y_last]) )
            else:
                log_current_Prob = ( np.dot(self.w_o[y_possible] , self.x[layers]/(self.SEQ_LENGTH) ) + self.w_t[y_last][y_possible]/self.SEQ_LENGTH )  
                update_Psi                       = np.logaddexp ( update_Psi ,  log_current_Prob + self.CRF_Psi[layers][y_last]) 
                update_Psi_t[y_last][y_possible] = np.logaddexp ( update_Psi_t[y_last][y_possible] , (log_current_Prob) - np.log(self.SEQ_LENGTH) )
                update_Psi_o[y_possible]         = np.logaddexp ( update_Psi_o[y_possible]  ,  log_current_Prob + np.log(self.x[layers]) - np.log(self.SEQ_LENGTH) )

                CRF_Prob                         = np.logaddexp( CRF_Prob , log_current_Prob + self.CRF_Prob[layers][y_last] ) 
        '''
        update_Psi = np.hstack( ( np.hstack(update_Psi_o) , np.hstack(update_Psi_t)    ) )
        if mode != "Start":
            a = update_Psi[0]
            b = CRF_Prob[0]
            for idx in range(1 , self.y_class):
                a = np.logaddexp( a , update_Psi[idx])
                b = np.logaddexp( b , CRD_Prob[idx])
        else:
            a = update_Psi
            b = CRF_Prob
            
        self.CRF_Psi[layers+1][y_possible]  =  a #update_Psi
        #print "update_Psi = " , update_Psi
        self.CRF_Prob[layers+1][y_possible] = b #CRF_Prob
开发者ID:iammrhelo,项目名称:MLDS,代码行数:58,代码来源:Viterbi.py


示例15: loglik

    def loglik(self, a):
        if not np.issubdtype(a.dtype, int):
            raise RuntimeError('a must be an integer array')
        if not np.all((a==0) + (a==1)):
            raise RuntimeError('a must be a binary array')

        log_p = -np.logaddexp(0., -self.odds)
        log_1_minus_p = -np.logaddexp(0., self.odds)
        return a * log_p + (1-a) * log_1_minus_p
开发者ID:alexjekell,项目名称:compositional_structure_search,代码行数:9,代码来源:distributions.py


示例16: __call__

    def __call__(self, h_word, c_word, h_tag, c_tag, h_pos=0, c_pos=0):
        """
        Given a potential dependency, give score
        """

        val = logaddexp(self.word_score(h_word, c_word),
                        self.tag_score(h_tag, c_tag))
        val = logaddexp(val, self.dist_score(h_pos, c_pos))

        return val
开发者ID:azzamsu,项目名称:cl1-hw,代码行数:10,代码来源:dependency.py


示例17: logsumexp

def logsumexp(array):
    """
    Recursive algorithm that sums numbers using the log of the exponentials of the input array.
        This is used because the probabilities can be very small in the likelihoods.
        Unfortunately its pretty slow.
    """
    if len(array) == 2:
        return np.logaddexp(array[0],array[1])
    else:
        return np.logaddexp(array[0],logsumexp(array[1:]))
开发者ID:rferdman,项目名称:swiftmonitor,代码行数:10,代码来源:ml_toa.py


示例18: test_nan

 def test_nan(self):
     err = np.seterr(invalid="ignore")
     try:
         assert np.isnan(np.logaddexp(np.nan, np.inf))
         assert np.isnan(np.logaddexp(np.inf, np.nan))
         assert np.isnan(np.logaddexp(np.nan, 0))
         assert np.isnan(np.logaddexp(0, np.nan))
         assert np.isnan(np.logaddexp(np.nan, np.nan))
     finally:
         np.seterr(**err)
开发者ID:8cH9azbsFifZ,项目名称:wspr,代码行数:10,代码来源:test_umath.py


示例19: _logaddexp

def _logaddexp(x1, x2, out=None):
    """Fix np.logaddexp in numpy < 1.4 when x1 == x2 == -np.inf."""
    if out is not None:
        result = np.logaddexp(x1, x2, out=out)
    else:
        result = np.logaddexp(x1, x2)

    result[np.logical_and(x1 == -np.inf, x2 == -np.inf)] = -np.inf

    return result
开发者ID:2011200799,项目名称:scikit-learn,代码行数:10,代码来源:fixes.py


示例20: marginal_dist_n

 def marginal_dist_n(self, n, log_object_prior=None):
     log_object_prior = self._domain.log_object_prior(log_object_prior)
     marginal_dist = None
     for logP, lexicon in zip(*self.weighted_lexicons()):
         dist = self._domain.dist_n(n, lexicon, log_object_prior)
         if marginal_dist is None:
             marginal_dist = np.empty(dist.shape)
             marginal_dist[:] = -np.inf
         np.logaddexp(marginal_dist, logP + dist, out=marginal_dist)
     return marginal_dist
开发者ID:mllewis,项目名称:pragLearnConcepts,代码行数:10,代码来源:conpact2C1.py



注:本文中的numpy.logaddexp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.logaddexp2函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.log2函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap