• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.matrix函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.matrix函数的典型用法代码示例。如果您正苦于以下问题:Python matrix函数的具体用法?Python matrix怎么用?Python matrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了matrix函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_square_matrices_1

    def test_square_matrices_1(self):
        op4 = OP4()
        # matrices = op4.read_op4(os.path.join(op4Path, fname))
        form1 = 1
        form2 = 2
        form3 = 2
        from numpy import matrix, ones, reshape, arange

        A1 = matrix(ones((3, 3), dtype="float64"))
        A2 = reshape(arange(9, dtype="float64"), (3, 3))
        A3 = matrix(ones((1, 1), dtype="float32"))
        matrices = {"A1": (form1, A1), "A2": (form2, A2), "A3": (form3, A3)}

        for (is_binary, fname) in [(False, "small_ascii.op4"), (True, "small_binary.op4")]:
            op4_filename = os.path.join(op4Path, fname)
            op4.write_op4(op4_filename, matrices, name_order=None, precision="default", is_binary=False)
            matrices2 = op4.read_op4(op4_filename, precision="default")
            (form1b, A1b) = matrices2["A1"]
            (form2b, A2b) = matrices2["A2"]
            self.assertEqual(form1, form1b)
            self.assertEqual(form2, form2b)

            (form1b, A1b) = matrices2["A1"]
            (form2b, A2b) = matrices2["A2"]
            (form3b, A3b) = matrices2["A3"]
            self.assertEqual(form1, form1b)
            self.assertEqual(form2, form2b)
            self.assertEqual(form3, form3b)

            self.assertTrue(array_equal(A1, A1b))
            self.assertTrue(array_equal(A2, A2b))
            self.assertTrue(array_equal(A3, A3b))
            del A1b, A2b, A3b
            del form1b, form2b, form3b
开发者ID:ClaesFredo,项目名称:pyNastran,代码行数:34,代码来源:op4_test.py


示例2: test_ohess

def test_ohess():
    """Simple test of ohess matrix."""
    n = 10
    a = rogues.ohess(n)
    # Test to see if a is orthogonal...
    b = np.matrix(a) * np.matrix(a.T)
    assert(np.allclose(b, np.eye(n)))
开发者ID:fabianp,项目名称:rogues,代码行数:7,代码来源:test_rogues.py


示例3: __init__

    def __init__(self, x_m, y_m, heading_d=None):
        if heading_d is None:
            heading_d = 0.0
        self._estimates = numpy.matrix(
            # x m, y m, heading d, speed m/s
            [x_m, y_m, heading_d, 0.0]
        ).transpose()  # x

        # This will be populated as the filter runs
        # TODO: Ideally, this should be initialized to those values, for right
        # now, identity matrix is fine
        self._covariance_matrix = numpy.matrix([  # P
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1],
        ])
        # TODO: Tune this parameter for maximum performance
        self._process_noise = numpy.matrix([  # Q
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1],
        ])

        self._last_observation_s = time.time()
        self._estimated_turn_rate_d_s = 0.0
开发者ID:bskari,项目名称:sparkfun-avc,代码行数:27,代码来源:location_filter.py


示例4: test_arclength_half_circle

def test_arclength_half_circle():
    """ Here we define the tests for the lenght computer of our ArcLengthParametrizer, we try it with a half a 
    circle and a fan. 
    We test it both in 2d and 3d."""


    # Number of interpolation points minus one
    n = 5
    toll = 1.e-6
    points = np.linspace(0, 1, (n+1) ) 
    R = 1
    P = 1
    control_points_2d = np.asmatrix(np.zeros([n+1,2]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
    control_points_2d[:,0] = np.transpose(np.matrix([R*np.cos(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_2d[:,1] = np.transpose(np.matrix([R*np.sin(1 * i * np.pi / (n + 1))for i in range(n+1)]))

    control_points_3d = np.asmatrix(np.zeros([n+1,3]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
    control_points_3d[:,0] = np.transpose(np.matrix([R*np.cos(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_3d[:,1] = np.transpose(np.matrix([R*np.sin(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_3d[:,2] = np.transpose(np.matrix([P*i for i in range(n+1)]))

    vsl = AffineVectorSpace(UniformLagrangeVectorSpace(n+1),0,1)
    dummy_arky_2d = ArcLengthParametrizer(vsl, control_points_2d)
    dummy_arky_3d = ArcLengthParametrizer(vsl, control_points_3d)
    length2d = dummy_arky_2d.compute_arclength()[-1,1]
    length3d = dummy_arky_3d.compute_arclength()[-1,1]
#    print (length2d)
#    print (n * np.sqrt(2))
    l2 = np.pi * R
    l3 = 2 * np.pi * np.sqrt(R * R + (P / (2 * np.pi)) * (P / (2 * np.pi)))
    print (length2d, l2)
    print (length3d, l3)
    assert (length2d - l2) < toll
    assert (length3d - l3) < toll
开发者ID:luca-heltai,项目名称:ePICURE,代码行数:34,代码来源:test_arclength.py


示例5: svdUpdate

def svdUpdate(U, S, V, a, b):
    """
    Update SVD of an (m x n) matrix `X = U * S * V^T` so that
    `[X + a * b^T] = U' * S' * V'^T`
    and return `U'`, `S'`, `V'`.
    
    `a` and `b` are (m, 1) and (n, 1) rank-1 matrices, so that svdUpdate can simulate 
    incremental addition of one new document and/or term to an already existing 
    decomposition.
    """
    rank = U.shape[1]
    m = U.T * a
    p = a - U * m
    Ra = numpy.sqrt(p.T * p)
    assert float(Ra) > 1e-10
    P = (1.0 / float(Ra)) * p
    n = V.T * b
    q = b - V * n
    Rb = numpy.sqrt(q.T * q)
    assert float(Rb) > 1e-10
    Q = (1.0 / float(Rb)) * q

    K = numpy.matrix(numpy.diag(list(numpy.diag(S)) + [0.0])) + numpy.bmat("m ; Ra") * numpy.bmat(" n; Rb").T
    u, s, vt = numpy.linalg.svd(K, full_matrices=False)
    tUp = numpy.matrix(u[:, :rank])
    tVp = numpy.matrix(vt.T[:, :rank])
    tSp = numpy.matrix(numpy.diag(s[:rank]))
    Up = numpy.bmat("U P") * tUp
    Vp = numpy.bmat("V Q") * tVp
    Sp = tSp
    return Up, Sp, Vp
开发者ID:beibeiyang,项目名称:Latent-Dirichlet-Allocation,代码行数:31,代码来源:lsimodel.py


示例6: __init__

 def __init__(self):
     self._position = numpy.zeros((2,))
     self._position_frozen = False
     self._matrix = numpy.matrix(numpy.identity(3, numpy.float64))
     self._temp_matrix = numpy.matrix(numpy.identity(3, numpy.float64))
     self._selected = False
     self._scene = None
开发者ID:MiniRalis,项目名称:Cura2,代码行数:7,代码来源:displayableObject.py


示例7: __init__

    def __init__(self, mol, mints):
        """
        Initialize the rhf
        :param mol: a psi4 molecule object
        :param mints: a molecular integrals object (from MintsHelper)
        """
        self.mol = mol
        self.mints = mints

        self.V_nuc = mol.nuclear_repulsion_energy()
        self.T = np.matrix(mints.ao_kinetic())
        self.S = np.matrix(mints.ao_overlap())
        self.V = np.matrix(mints.ao_potential())

        self.g = np.array(mints.ao_eri())

        # Determine the number of electrons and the number of doubly occupied orbitals
        self.nelec = -mol.molecular_charge()
        for A in range(mol.natom()):
            self.nelec += int(mol.Z(A))
        if mol.multiplicity() != 1 or self.nelec % 2:
            raise Exception("This code only allows closed-shell molecules")
        self.ndocc = self.nelec / 2

        self.maxiter = psi4.get_global_option('MAXITER')
        self.e_convergence = psi4.get_global_option('E_CONVERGENCE')

        self.nbf = mints.basisset().nbf()
开发者ID:yu-shang,项目名称:summer-program,代码行数:28,代码来源:rhf.py


示例8: manova1_single_node

def manova1_single_node(Y, GROUP):
	### assemble counts:
	u           = np.unique(GROUP)
	nGroups     = u.size
	nResponses  = Y.shape[0]
	nComponents = Y.shape[1]
	### create design matrix:
	X           = np.zeros((nResponses, nGroups))
	ind0        = 0
	for i,uu in enumerate(u):
		n       = (GROUP==uu).sum()
		X[ind0:ind0+n, i] = 1
		ind0   += n
	### SS for original design:
	Y,X   = np.matrix(Y), np.matrix(X)
	b     = np.linalg.pinv(X)*Y
	R     = Y - X*b
	R     = R.T*R
	### SS for reduced design:
	X0    = np.matrix(  np.ones(Y.shape[0])  ).T
	b0    = np.linalg.pinv(X0)*Y
	R0    = Y - X0*b0
	R0    = R0.T*R0
	### Wilk's lambda:
	lam   = np.linalg.det(R) / (np.linalg.det(R0) + eps)
	### test statistic:
	N,p,k = float(nResponses), float(nComponents), float(nGroups)
	x2    = -((N-1) - 0.5*(p+k)) * log(lam)
	df    = p*(k-1)
	# return lam, x2, df
	return x2
开发者ID:jorjuato,项目名称:spm1d,代码行数:31,代码来源:manova.py


示例9: get_system_model

def get_system_model():

    A = np.matrix([[DT, 1.0],
                   [0.0, DT]])
    B = np.matrix([0.0, 1.0]).T

    return A, B
开发者ID:BailiShanghai,项目名称:PythonRobotics,代码行数:7,代码来源:LQRplanner.py


示例10: findClosestPointInB

def findClosestPointInB(b_data, a, offset):

	xd = offset[0]
	yd = offset[1]
	theta = offset[2]

	T = numpy.matrix([	[math.cos(theta), -math.sin(theta), xd],
			[math.sin(theta), math.cos(theta), yd],
			[0.0, 0.0, 1.0]
		    ])


	a_hom = numpy.matrix([[a[0]],[a[1]],[1.0]])
	temp = T*a_hom
	a_off = [temp[0,0],temp[1,0]]

	minDist = 1e100
	minPoint = None

	for p in b_data:

	 	dist = math.sqrt((p[0]-a_off[0])**2 + (p[1]-a_off[1])**2)
		if dist < minDist:
			minPoint = copy(p)
			minDist = dist


	if minPoint != None:
		return minPoint, minDist
	else:
		raise
开发者ID:zhewang,项目名称:lcvis,代码行数:31,代码来源:gen_icp.py


示例11: load_matlab_matrix

def load_matlab_matrix( matfile, matname=None ):
    """
    Wraps scipy.io.loadmat.

    If matname provided, returns np.ndarray representing the index
    map. Otherwise, the full dict provided by loadmat is returns.
    """
    if not matname:
        out = spio.loadmat( matfile )
        mat = _extract_mat( out )
        # if mat is a sparse matrix, convert it to numpy matrix
        try:
            mat = np.matrix( mat.toarray() )
        except AttributeError:
            mat = np.matrix( mat )
        return mat
    else:
        matdict = spio.loadmat( matfile )
        mat = matdict[ matname ]
        # if mat is a sparse matrix, convert it to numpy matrix
        try:
            mat = np.matrix( mat.toarray() )
        except AttributeError:
            mat = np.matrix( mat )
        return mat #np.matrix( mat[ matname ] )
开发者ID:caosuomo,项目名称:rads,代码行数:25,代码来源:utils.py


示例12: _update

 def _update(self):
     """
     Calculate those terms for prediction that do not depend on predictive
     inputs.
     """
     from numpy.linalg import cholesky, solve, LinAlgError
     from numpy import transpose, eye, matrix
     import types
     self._K = self.calc_covariance(self.X)
     if not self._K.shape[0]:  # we didn't have any data
         self._L = matrix(zeros((0, 0), numpy.float64))
         self._alpha = matrix(zeros((0, 1), numpy.float64))
         self.LL = 0.
     else:
         try:
             self._L = matrix(cholesky(self._K))
         except LinAlgError as detail:
             raise RuntimeError("""Cholesky decomposition of covariance """
                                """matrix failed. Your kernel may not be positive """
                                """definite. Scipy complained: %s""" % detail)
         self._alpha = solve(self._L.T, solve(self._L, self.y))
         self.LL = (
             - self.n * math.log(2.0 * math.pi)
             - (self.y.T * self._alpha)[0, 0]
         ) / 2.0
     # print self.LL
     # import IPython; IPython.Debugger.Pdb().set_trace()
     self.LL -= log(diagonal(self._L)).sum()
开发者ID:JohnReid,项目名称:infpy,代码行数:28,代码来源:gaussian_process.py


示例13: predict

    def predict(self, x_star):
        """
        Predict the process's values on the input values

        @arg x_star: Prediction points

        @return: ( mean, variance, LL )
        where mean are the predicted means, variance are the predicted
        variances and LL is the log likelihood of the data for the given
        value of the parameters (i.e. not integrating over hyperparameters)
        """
        from numpy.linalg import solve
        import types
        # print 'Predicting'
        if 0 == len(self.X):
            f_star_mean = matrix(zeros((len(x_star), 1), numpy.float64))
            v = matrix(zeros((0, len(x_star)), numpy.float64))
        else:
            k_star = self.calc_covariance(self.X, x_star)
            f_star_mean = k_star.T * self._alpha
            if 0 == len(x_star):  # no training data
                v = matrix(zeros((0, len(x_star)), numpy.float64))
            else:
                v = solve(self._L, k_star)
        V_f_star = self.calc_covariance(x_star) - v.T * v
        # print 'Done predicting'
        # import IPython; IPython.Debugger.Pdb().set_trace()
        return (f_star_mean, V_f_star, self.LL)
开发者ID:JohnReid,项目名称:infpy,代码行数:28,代码来源:gaussian_process.py


示例14: main

def main():

    sample='q'
    sm_bin='10.0_10.5'
    catalogue = 'sm_9.5_s0.2_sfr_c-0.75_250'

    #load in fiducial mock
    filepath = './'
    filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'_cov.npy'
    cov = np.matrix(np.load(filepath+filename))
    diag = np.diagonal(cov)
    filepath = cu.get_output_path() + 'analysis/central_quenching/observables/'
    filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'.dat'
    data = ascii.read(filepath+filename)
    rbins = np.array(data['r'])
    mu = np.array(data['wp'])
    
    #load in comparison mock
    
    
    
    
    plt.figure()
    plt.errorbar(rbins, mu, yerr=np.sqrt(np.diagonal(cov)), color='black')
    plt.plot(rbins, wp,  color='red')
    plt.xscale('log')
    plt.yscale('log')
    plt.show()
    
    inv_cov = cov.I
    Y = np.matrix((wp-mu))
    
    X = Y*inv_cov*Y.T
    
    print(X)
开发者ID:duncandc,项目名称:mpeak_vpeak_mock,代码行数:35,代码来源:chi_squared_corr_create_mock.py


示例15: test_pascal_1

def test_pascal_1():
    """Simple test of pascal matrix: k = 1."""
    # Notice we recover the unit matrix with n = 18, better than previous test
    n = 18
    a = rogues.pascal(n, 1)
    b = np.matrix(a) * np.matrix(a)
    assert(np.allclose(b, np.eye(n)))
开发者ID:fabianp,项目名称:rogues,代码行数:7,代码来源:test_rogues.py


示例16: get_derivatives

def get_derivatives(sample_df,delta_t):
	bid_price_names=[]
	bid_size_names=[]
	ask_price_names=[]
	ask_size_names=[]
	ask_price_derivative_names=[]
	ask_size_derivative_names=[]
	bid_price_derivative_names=[]
	bid_size_derivative_names=[]
	for i in range(1,11):
		bid_price_names.append("bid_price"+str(i))
		bid_size_names.append('bid_size'+str(i))
		ask_price_names.append('ask_price'+str(i))
		ask_size_names.append("ask_size"+str(i))
		ask_price_derivative_names.append('ask_price_derivative'+str(i))
		ask_size_derivative_names.append('ask_size_derivative'+str(i))
		bid_price_derivative_names.append('bid_price_derivative'+str(i))
		bid_size_derivative_names.append('bid_size_derivative'+str(i))
	original_df=sample_df[ask_price_names+ask_size_names+bid_price_names+bid_size_names][:(sample_df.shape[0]-delta_t)]
	shift_df=sample_df[ask_price_names+ask_size_names+bid_price_names+bid_size_names][delta_t:]
	derivative_df=pd.DataFrame((np.matrix(shift_df)-np.matrix(original_df))/delta_t)
#	derivative_df=pd.concat([pd.DataFrame(np.array(np.nan).repeat(delta_t*derivative_df.shape[1]).reshape((delta_t, derivative_df.shape[1]))), derivative_df])
#	time_index_sub=sample_df[['Index','Time']][delta_t:]
	derivative_df.index=[i for i in range(delta_t,len(sample_df))]
	time_index_sub=sample_df[['Index','Time']][delta_t:]
	derivative_df.index = time_index_sub.index
	derivative_df=pd.concat([time_index_sub,derivative_df],axis=1)
	derivative_df.columns=['Index','Time']+ask_price_derivative_names+ask_size_derivative_names+bid_price_derivative_names+bid_size_derivative_names
	return(derivative_df)
开发者ID:MengfeiJiang,项目名称:Stock-Movement-Prediction-Python,代码行数:29,代码来源:sensitive_set.py


示例17: broyden1_modified

def broyden1_modified(F, xin, iter=10, alpha=0.1, verbose = False):
    """Broyden's first method, modified by O. Certik.

    Updates inverse Jacobian using some matrix identities at every iteration,
    its faster then newton_slow, but still not optimal.

    The best norm |F(x)|=0.005 achieved in ~45 iterations.
    """
    def inv(A,u,v):

        #interesting is that this 
        #return (A.I+u*v.T).I
        #is more stable than
        #return A-A*u*v.T*A/float(1+v.T*A*u)
        Au=A*u
        return A-Au*(v.T*A)/float(1+v.T*Au)
    xm=numpy.matrix(xin).T
    Fxm=myF(F,xm)
    Jm=alpha*numpy.matrix(numpy.identity(len(xin)))
    for n in range(iter):
        deltaxm=Jm*Fxm
        xm=xm+deltaxm
        Fxm1=myF(F,xm)
        deltaFxm=Fxm1-Fxm
        Fxm=Fxm1
#        print "-------------",norm(deltaFxm),norm(deltaxm)
        deltaFxm/=norm(deltaxm)
        deltaxm/=norm(deltaxm)
        Jm=inv(Jm+deltaxm*deltaxm.T*Jm,-deltaFxm,deltaxm)
        
        if verbose:
            print "%d:  |F(x)|=%.3f"%(n, norm(Fxm))
    return xm
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:33,代码来源:nonlin.py


示例18: window_fn_matrix

def window_fn_matrix(Q,N,num_remov=None,save_tag=None,lms=None):
    Q = n.matrix(Q); N = n.matrix(N)
    Ninv = uf.pseudo_inverse(N,num_remov=None) # XXX want to remove dynamically
    #print Ninv 
    info = n.dot(Q.H,n.dot(Ninv,Q))
    M = uf.pseudo_inverse(info,num_remov=num_remov)
    W = n.dot(M,info)

    if save_tag!=None:
        foo = W[0,:]
        foo = n.real(n.array(foo))
        foo.shape = (foo.shape[1]),
        print foo.shape
        p.scatter(lms[:,0],foo,c=lms[:,1],cmap=mpl.cm.PiYG,s=50)
        p.xlabel('l (color is m)')
        p.ylabel('W_0,lm')
        p.title('First Row of Window Function Matrix')
        p.colorbar()
        p.savefig('{0}/{1}_W.pdf'.format(fig_loc,save_tag))
        p.clf()

        print 'W ',W.shape
        p.imshow(n.real(W))
        p.title('Window Function Matrix')
        p.colorbar()
        p.savefig('{0}/{1}_W_im.pdf'.format(fig_loc,save_tag))
        p.clf()


    return W
开发者ID:SaulAryehKohn,项目名称:capo,代码行数:30,代码来源:Q_gsm_error_analysis.py


示例19: cline

def cline(qx,qy,h):
    """Finds the center-line flow in the channel, i.e. the path of the maximum flow rate in a     channel. It uses quadratic interpolation to find the exact location where the flow rate is max    imum between two pixels.

    Usage: cline(qx_data, qy_data, h_data)
    """
    tx,ty = ida.tipcoord(h)
    print tx,ty
    nx, ny = qx.shape[0], qx.shape[1]
    Q = np.sqrt(np.matrix(qx**2.0 + qy**2.0))
    Qmax = np.zeros(tx)
    ymax = np.zeros(tx)
    ymax2 = np.zeros(tx)
    for x in range(tx):
        Qmax[x] = Q[x,:].max()
        for y in range(ny):
            if Q[x,y] == Qmax[x]:
                ymax[x] = y
        A = np.matrix([[(ymax[x]-1)**2,ymax[x]-1,1],[(ymax[x])**2,ymax[x],1],[(ymax[x]+1)**2,ymax[x]+1,1]])
        B = np.matrix([[(Q[x,(ymax[x]-1)])],[(Q[x,(ymax[x])])],[(Q[x,(ymax[x]+1)])]])
        X = np.linalg.solve(A,B)
        ymax2[x] = (-X[1]/(2*X[0]))
    plt.plot(ymax2,Qmax)
    #plt.axis([0,h.shape[0],ymax2[0]-5,ymax2[0]+5])
    plt.show()
    return ymax2
开发者ID:viratupadhyay,项目名称:ida,代码行数:25,代码来源:ida.py


示例20: test_get_relative_transformation_pasteboard

 def test_get_relative_transformation_pasteboard(self):
     """
     Test get_relative_transformation() relative to the pasteboard
     """
     self.assertTrue(numpy.all(
         doc.get_relative_transformation() == 
         numpy.identity(3)
     ))
     spread = doc.get_children('Spread')[1]
     self.assertTrue(numpy.all(
         spread.get_relative_transformation() == 
         numpy.matrix([
             [1, 0, 0],
             [0, 1, 0],
             [0, 1200.472440944882, 1],
         ])
     ))
     page_item = spread.get_children('TextFrame')[0]
     self.assertTrue(numpy.all(
         page_item.get_relative_transformation() == 
         numpy.matrix([
             [1, 0, 0],
             [0, 1, 0],
             [401.10236220472433, 941.96692913385834, 1],
         ])
     ))
开发者ID:bfirsh,项目名称:pyidml,代码行数:26,代码来源:test_element.py



注:本文中的numpy.matrix函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.matrixmultiply函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.matmul函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap