• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.memmap函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.memmap函数的典型用法代码示例。如果您正苦于以下问题:Python memmap函数的具体用法?Python memmap怎么用?Python memmap使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了memmap函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: convert

def convert(in_name, out_name):
    """convert the file identified by filename in_name to a complex numpy array and store it to a file named out_name"""
    wav = wave.open(in_name,'rb')
    verifyfileformat(wav)

    length = wav.getnframes()
    channels = wav.getnchannels()

    logging.info('length: {} frames, channels: {}'.format(length, channels))
    wav.close()
   
    # now that we know the format is valid, access data directly
    npinfile = np.memmap(in_name, dtype=np.int16, mode='r', offset=44) 
    if npinfile.shape[0]/2 != length:
        raise TypeError('frame mismatch in direct access')

    # our output file, this will be an npy binary holding complex64 types
    npfile = np.memmap(out_name, dtype=np.complex64,
                       mode='w+',
                       shape=(length,))

    # convert input to complex output
    npfile[:] = npinfile[0::2] + 1j * npinfile[1::2]
    
    # cleanup
    del npinfile
    del npfile
开发者ID:hdznrrd,项目名称:parseiq,代码行数:27,代码来源:iq2npy.py


示例2: read_ply

def read_ply(ply_filename):
    vfile = tempfile.mktemp()
    ffile = tempfile.mktemp()
    reader = ply_reader.PlyReader(ply_filename)
    
    v_id = 0
    f_id = 0

    # Reading the header
    for evt, data in reader.read():
        if evt == ply_reader.EVENT_HEADER:
            n_vertices, n_faces = data
            vertices = np.memmap(vfile, dtype='float64', shape = (n_vertices,3),
                                mode='w+')
            faces = np.memmap(ffile, dtype='int64', shape = (n_faces,3),
                              mode='w+')
            break

    # Reading the vertices and faces
    for evt, data in reader.read():
        if evt == ply_reader.EVENT_VERTEX:
            current_vertex = data
            vertices[v_id] = current_vertex
            v_id += 1

        elif evt == ply_reader.EVENT_FACE:
            faces[f_id] = data
            f_id += 1

    return vertices, faces
开发者ID:tfmoraes,项目名称:openracm_py,代码行数:30,代码来源:colour_clusters.py


示例3: test_score_memmap

def test_score_memmap():
    # Ensure a scalar score of memmap type is accepted
    iris = load_iris()
    X, y = iris.data, iris.target
    clf = MockClassifier()
    tf = tempfile.NamedTemporaryFile(mode='wb', delete=False)
    tf.write(b'Hello world!!!!!')
    tf.close()
    scores = np.memmap(tf.name, dtype=np.float64)
    score = np.memmap(tf.name, shape=(), mode='r', dtype=np.float64)
    try:
        cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
        # non-scalar should still fail
        assert_raises(ValueError, cross_val_score, clf, X, y,
                      scoring=lambda est, X, y: scores)
    finally:
        # Best effort to release the mmap file handles before deleting the
        # backing file under Windows
        scores, score = None, None
        for _ in range(3):
            try:
                os.unlink(tf.name)
                break
            except WindowsError:
                sleep(1.)
开发者ID:YinongLong,项目名称:scikit-learn,代码行数:25,代码来源:test_validation.py


示例4: sim_calc

 def sim_calc(self):
     nt = self.corpora[0]
     self.scores = {}
     for corp in self.corpora:
         i_nt = []
         i_c2 = []
         rows = self.ekk_rows[corp[0]]
         for i, word in enumerate(self.ekk_rows['NT']):
             if word in rows:
                 i_nt.append(i)
                 i_c2.append(self.ekk_rows[corp[0]].index(word))
         d_c2 = np.memmap(
             '{0}{1}/{4}/{2}/{5}_{2}_lems=False_{4}_min_occ={3}_{6}no_stops=False_NORMED.dat'.format(
                 self.base, corp[0], corp[1], corp[2], self.english, self.prefix, self.svd),
             dtype='float32', shape=(len(rows), len(rows)))[i_c2]
         d_c2 = d_c2[:, i_c2]
         d_nt = np.memmap(
             '{0}{1}/{4}/{2}/{5}_{2}_lems=False_{4}_min_occ={3}_{6}no_stops=False_NORMED.dat'.format(
                 self.base, nt[0], nt[1], nt[2], self.english, self.prefix,
                 self.svd), dtype='float32',
             shape=(len(self.ekk_rows['NT']), len(self.ekk_rows['NT'])))[
             i_nt]
         d_nt = d_nt[:, i_nt]
         self.scores['{0}_{1}'.format('NT', corp[0])] = np.average(np.diag(
             1 - pairwise_distances(d_nt, d_c2, metric='cosine',
                                    n_jobs=12)))
开发者ID:sonofmun,项目名称:DissProject,代码行数:26,代码来源:compare_vectors.py


示例5: save

 def save(self, dirname = None):
     """Save the current rdfspace to a directory (by default the directory in which indexes are stored)"""
     if dirname is None and self._index_dir is not None:
         dirname = self._index_dir
     if not os.path.exists(dirname):
         os.makedirs(dirname)
     # We memmap big matrices, as pickle eats the whole RAM
     # We don't save the full adjacency matrix
     ut_m = np.memmap(os.path.join(dirname, 'ut.dat'), dtype='float64', mode='w+', shape=self._ut_shape)
     ut_m[:] = self._ut[:]
     s_m = np.memmap(os.path.join(dirname, 's.dat'), dtype='float64', mode='w+', shape=self._s_shape)
     s_m[:] = self._s[:]
     vt_m = np.memmap(os.path.join(dirname, 'vt.dat'), dtype='float64', mode='w+', shape=self._vt_shape)
     vt_m[:] = self._vt[:]
     if self._index_dir is None:
         # The index is in memory, we'll pickle it with the rest
         (adjacency, ut, s, vt) = (self._adjacency, self._ut, self._s, self._vt)
         (self._adjacency, self._ut, self._s, self._vt) = (None, None, None, None)
         f = open(os.path.join(dirname, 'space.dat'), 'w')
         pickle.dump(self, f)
         f.close()
         (self._adjacency, self._ut, self._s, self._vt) = (adjacency, ut, s, vt)
     else:
         # Flushing indexes
         self._uri_index.close()
         self._index_uri.close()
         # The index is stored in dbm, we will exclude it from the pickle
         (adjacency, ut, s, vt) = (self._adjacency, self._ut, self._s, self._vt)
         (self._adjacency, self._ut, self._s, self._vt, self._uri_index, self._index_uri) = (None, None, None, None, None, None)
         f = open(os.path.join(dirname, 'space.dat'), 'w')
         pickle.dump(self, f)
         f.close()
         (self._adjacency, self._ut, self._s, self._vt) = (adjacency, ut, s, vt)
         self._uri_index = dbm.open(os.path.join(dirname, 'uri_index'), 'r')
         self._index_uri = dbm.open(os.path.join(dirname, 'index_uri'), 'r')
开发者ID:anukat2015,项目名称:rdfspace,代码行数:35,代码来源:space.py


示例6: memmap

def memmap(docompute, dowrite, verbose):

    afilename = os.path.join(OUT_DIR, "memmap-a.bin")
    bfilename = os.path.join(OUT_DIR, "memmap-b.bin")
    rfilename = os.path.join(OUT_DIR, "memmap-output.bin")
    if dowrite:
        t0 = time()
        a = np.memmap(afilename, dtype='float32', mode='w+', shape=shape)
        b = np.memmap(bfilename, dtype='float32', mode='w+', shape=shape)

        # Fill arrays a and b
        #row = np.linspace(0, 1, ncols)
        row = np.arange(0, ncols, dtype='float32')
        for i in range(nrows):
            a[i] = row * (i + 1)
            b[i] = row * (i + 1) * 2
        del a, b  # flush data
        print("[numpy.memmap] Time for creating inputs:",
              round(time() - t0, 3))

    if docompute:
        t0 = time()
        # Reopen inputs in read-only mode
        a = np.memmap(afilename, dtype='float32', mode='r', shape=shape)
        b = np.memmap(bfilename, dtype='float32', mode='r', shape=shape)
        # Create the array output
        r = np.memmap(rfilename, dtype='float32', mode='w+', shape=shape)
        # Do the computation row by row
        for i in range(nrows):
            r[i] = eval(expr, {'a': a[i], 'b': b[i]})
        if verbose:
            print("First ten values:", r[0, :10])
        del a, b
        del r  # flush output data
        print("[numpy.memmap] Time for compute & save:", round(time() - t0, 3))
开发者ID:B-Rich,项目名称:PyTables,代码行数:35,代码来源:expression.py


示例7: parse_graph

    def parse_graph(self, graph_path, data_dir='data', load_edges=False, extend_paths=2):
        graph = parser.Graph(graph_path)
        self.from_nodes, self.to_nodes = graph.get_mappings()
        graph.save_mappings(self.output_dir)

        if load_edges:
            self.inverse_degrees = np.memmap(
                os.path.join(data_dir, 'inverse_degrees.mat'),
                mode='r',
                dtype='float32'
            )
            self.from_to_idxs = np.memmap(
                os.path.join(data_dir, 'from_to.mat'),
                mode='r',
                dtype='int32'
            )
            self.from_to_idxs = np.reshape(self.from_to_idxs, newshape=(self.inverse_degrees.shape[0], 2))
        else:
            from_to_idxs, inverse_degrees = graph.extend_graph(max_degree=extend_paths)
            self.from_to_idxs = np.memmap(
                os.path.join(data_dir, 'from_to.mat'),
                mode='r+',
                shape=from_to_idxs.shape,
                dtype='int32'
            )
            self.from_to_idxs[:] = from_to_idxs[:]
            self.inverse_degrees = np.memmap(
                os.path.join(data_dir, 'inverse_degrees.mat'),
                mode='r+',
                shape=inverse_degrees.shape,
                dtype='float32'
            )
            self.inverse_degrees[:] = inverse_degrees[:]
开发者ID:NobodyInAmerica,项目名称:graph2vec,代码行数:33,代码来源:trainer.py


示例8: _train

	def _train(self, x):
# 		print self.dtype
		if len(x) > self.defaultOutputLength:
			self.defaultOutputLength = len(x)
		self.cacheLength += len(x)
		if self.cache is None:
			if self.cacheSize == -1:
				#self.cache = np.memmap(self.cacheName, dtype='float32', mode='w+', shape = x.shape)
				self.cache = np.memmap(self.cacheName, dtype=self.dtype, mode='w+', shape = x.shape)
			else:
				#self.cache = np.memmap(self.cacheName, dtype='float32', mode='w+', shape = (self.cacheSize, len(x[0])))
				self.cache = np.memmap(self.cacheName, dtype=self.dtype, mode='w+', shape = (self.cacheSize, len(x[0])))
		elif self.cacheSize == -1:
			self.reshape((self.cache.shape[0]+len(x), len(x[0])))
# 			print x[0][0].dtype.itemsize
# 			print self.cache._mmap.size()
# 			#self.cache._mmap.resize( (self.cache.shape[0]+len(x), len(x[0])) )
# 			print self.cache.shape
# 			newShape = (self.cache.shape[0]+len(x), len(x[0]))
# 			memmap_resize( newShape, self.cache )
# 			del self.cache
# 			self.cache = np.memmap(self.cacheName, dtype=self.dtype, mode='w+', shape = newShape)
# 			print "new size: "+str(self.cache._mmap.size())
# 			print self.cache.reshape(newShape)
		self.cache[self.cachePos:self.cachePos+len(x)] = x
# 		print self.cache._mmap.size()
# 		print self.cache[0][0]
# 		print self.cache[0][0].dtype.itemsize
# 		print "---"
		self.cachePos += len(x)
开发者ID:Stewori,项目名称:GNUPFA,代码行数:30,代码来源:cache_node.py


示例9: main

def main(A):
    """convolve the tau(mass) field, 
    add in thermal broadening and redshift distortion """

    sightlines = Sightlines(A)
    maker = SpectraMaker(A, sightlines)
    fgpa = FGPAmodel(A)

    Npixels = sightlines.Npixels.sum()

    spectaureal = numpy.memmap(A.SpectraOutputTauReal, mode='w+', 
            dtype='f4', shape=Npixels)
    spectaured = numpy.memmap(A.SpectraOutputTauRed, mode='w+', 
            dtype='f4', shape=Npixels)
    specdelta = numpy.memmap(A.SpectraOutputDelta, mode='w+', 
            dtype='f4', shape=Npixels)

    def work(i):
        sl2 = slice(sightlines.PixelOffset[i], 
                sightlines.PixelOffset[i] + sightlines.Npixels[i])
        result =  maker.convolve(i, Afunc=fgpa.Afunc, Bfunc=fgpa.Bfunc)
        spectaureal[sl2] = result.taureal
        spectaured[sl2] = result.taured
        specdelta[sl2] = result.delta
        sightlines.Z_RED[i] = result.Zqso
    chunkmap(work, range(len(sightlines)), 100)

    spectaureal.flush()
    spectaured.flush()
    specdelta.flush()
    sightlines.Z_RED.flush()
开发者ID:rainwoodman,项目名称:lyamock,代码行数:31,代码来源:spectra.py


示例10: extract_to_memmap

    def extract_to_memmap(self):
        """
        Allocate a memmap, fill it with extracted features, return r/o view.
        """
        filename = self.filename
        feature_shp = self.feature_shp
        print('Creating memmap %s for features of shape %s' % (
                                              filename,
                                              str(feature_shp)))
        features_fp = np.memmap(filename,
            dtype='float32',
            mode='w+',
            shape=feature_shp)
        info = open(filename+'.info', 'w')
        cPickle.dump(('float32', feature_shp), info)
        del info

        self.extract_to_storage(features_fp)

        # -- docs here:
        #    http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
        #    say that deletion is the way to flush changes !?
        del features_fp
        rval = np.memmap(self.filename,
            dtype='float32',
            mode='r',
            shape=feature_shp)
        return rval
开发者ID:yamins81,项目名称:simffa,代码行数:28,代码来源:theano_slm.py


示例11: next

    def next(self):
        # for python 2.x
        # Keep under lock only the mechainsem which advance the indexing of each batch
        # see # http://anandology.com/blog/using-iterators-and-generators/
        with self.lock:
            song_idx, self.cur_song = self.cur_song, self.cur_song+1

        bX, bY = (None, None)
        if song_idx < self.n_songs:
            x_path = self.data[self.sidstr[song_idx]]['X_path']
            y_path = self.data[self.sidstr[song_idx]]['y_path']
            bX = np.memmap(
                x_path,
                dtype='float32',
                mode='r',
                shape=tuple(self.data[self.sidstr[song_idx]]['X_shape'])
                )
            bY = np.memmap(
                y_path,
                dtype='float32',
                mode='r',
                shape=tuple(self.data[self.sidstr[song_idx]]['y_shape'])
                )
            return bX, bY
        else:
            raise StopIteration()
        return bX, bY
开发者ID:smajida,项目名称:cnn-music-structure,代码行数:27,代码来源:keras_net.py


示例12: __init__

    def __init__(self,fdata,fndata):
        #dump to binary
        print('Initialize binary from ' + fdata)

        if (not os.path.isfile(fndata)):

            print('create Epix100a flat file ' + fndata + ' from ' + fdata)
            
            datain=Epix100a(fdata);

            #write header
            binheader=np.zeros(16).astype(np.uint32);
            binheader[0:6]=[datain.nframes, datain.my*datain.mx, datain.my, datain.mx, datain.nblocks, datain.nbcols];
            binheader.tofile(fndata);    

            #write data
            dataout=np.memmap(fndata,dtype=np.int16,mode='r+', shape=(datain.nframes,datain.my,datain.mx),offset=64);
            t0=time.clock();
            for iframe in range(datain.nframes):
                dataout[iframe]=datain.frame(iframe);
                if (iframe%100==0):
                    #progress(iframe,nframes,iframe);
                    print (str(iframe)+' - '+str(1000*(time.clock()-t0)/(iframe+1))+' ms. average frame: '+str(np.mean(datain.frame(iframe))))
            dataout.flush();
            
            del dataout;
            del datain;
        
        #get nr of frames
        else:
            print(fndata + ' file already exists.')
        data=np.memmap(fndata,dtype=np.uint32,mode='r',shape=((64)),offset=0); 
        self.nframes=data[0]; self.nframesize=data[1]; self.my=data[2]; self.mx=data[3]; self.nblocks=data[4]; self.nbcols=data[5];
        self.data=np.memmap(fndata,dtype=np.int16,mode='c',shape=(self.nframes,self.my,self.mx),offset=64);
开发者ID:perhansson,项目名称:daq,代码行数:34,代码来源:epix.py


示例13: get_sequence

def get_sequence(mraw_path, file_shape, nmax=None, offset=0):
    '''
    Get a sequence of image files as 3D numpy array.

    :param mraw_path: path to .mraw file containing image data
    :param file_shape: tuple, (ntotal, height, width) of images in .mraw file
    :param nmax: maximum number of images in sequence
    :param offset: First image to be read
    :return: 3D array of image sequence
    '''
    ntotal, h, w = file_shape
    byte_size = 2*h*w                   # Number of bytes for one image 
    byte_offset = offset * byte_size    # Offset to first byte to be read

    # If only a single image was requested:
    if nmax and nmax == 1:
        with open(mraw_path, 'rb') as mraw:
            imarray = np.memmap(mraw, dtype=np.uint16, offset=byte_offset, mode='r', shape=(h, w))
    # Only display nmax or less images:
    elif nmax and ntotal > nmax:
        image_step = ntotal//nmax
        with open(mraw_path, 'rb') as mraw:
            memmap = np.memmap(mraw, dtype=np.uint16, offset=byte_offset, mode='r', shape=(ntotal-offset, h, w))
            imarray = memmap[::image_step, :, :]
    # If there are less than nmax images:
    else:
        with open(mraw_path, 'rb') as mraw:
            imarray = np.memmap(mraw, dtype=np.uint16, offset=byte_offset, mode='r', shape=(ntotal-offset, h, w))

    return imarray
开发者ID:ladisk,项目名称:pyDIC,代码行数:30,代码来源:dic_tools.py


示例14: __next__

    def __next__(self):
        #check to see if at end of chunks
        if self._chunk_counter==self.num_chunks:
            offset = int(self._chunk_counter * self.chunksize)
            row_size = self.rmndr_row_size
            self._chunk_counter += 1
        elif self._chunk_counter < self.num_chunks:
            offset = int(self._chunk_counter * self.chunksize)
            end_dp = (self._chunk_counter+1) + self.chunksize
            row_size = self.chunk_row_size
            self._chunk_counter += 1
        elif self._chunk_counter > self.num_chunks:
            raise StopIteration

        if self.abr.header['f_structure']['nDataFormat'][0]==1: #float data
            data = memmap(self.abr.fid, dtype = float32, shape = (row_size,self.ncols), offset = offset+self.offset_base)
            return data

        elif self.abr.header['f_structure']['nDataFormat'][0]==0: #integer data
            try:
                data = memmap(self.abr.fid, dtype = int16, shape = (row_size,self.ncols),
                              mode = 'r',offset = offset + self.offset_base)
            except ValueError:
                pdb.set_trace()
            data = data[:].astype(float32)
            data = self.abr.scale_int_data(data)
            return data
开发者ID:matthewperkins,项目名称:abf_reader,代码行数:27,代码来源:chunker.py


示例15: update

    def update(self):
        """ Updates L-BFGS algorithm history
        """
        unix.cd(self.path)

        s = self.load('m_new') - self.load('m_old')
        y = self.load('g_new') - self.load('g_old')

        m = len(s)
        n = self.memory

        if self.memory_used == 0:
            S = np.memmap('LBFGS/S', mode='w+', dtype='float32', shape=(m, n))
            Y = np.memmap('LBFGS/Y', mode='w+', dtype='float32', shape=(m, n))
            S[:, 0] = s
            Y[:, 0] = y
            self.memory_used = 1

        else:
            S = np.memmap('LBFGS/S', mode='r+', dtype='float32', shape=(m, n))
            Y = np.memmap('LBFGS/Y', mode='r+', dtype='float32', shape=(m, n))
            S[:, 1:] = S[:, :-1]
            Y[:, 1:] = Y[:, :-1]
            S[:, 0] = s
            Y[:, 0] = y

            if self.memory_used < self.memory:
                self.memory_used += 1

        return S, Y
开发者ID:PrincetonUniversity,项目名称:seisflows,代码行数:30,代码来源:LBFGS.py


示例16: compute_pca

def compute_pca(data_path=os.path.join(BASE_DIR, 'data/memmap/'),
                  out_path=os.path.join(BASE_DIR, 'data/'),
                  batch_size=500, image_size=3*300*300):

    ipca = IncrementalPCA(n_components=3, batch_size=batch_size)

    path = os.path.join(data_path, 'tn_x.dat')
    train = np.memmap(path, dtype=theano.config.floatX, mode='r+', shape=(4044,image_size))
    n_samples, _ = train.shape

    for batch_num, batch in enumerate(gen_batches(n_samples, batch_size)):
        X = train[batch,:]
        X = np.reshape(X, (X.shape[0], 3, int(image_size/3)))
        X = X.transpose(0, 2, 1)
        X = np.reshape(X, (reduce(np.multiply, X.shape[:2]), 3))
        ipca.partial_fit(X)

    path = os.path.join(data_path, 'v_x.dat')
    valid = np.memmap(path, dtype=theano.config.floatX, mode='r+', shape=(500,image_size))
    n_samples, _ = valid.shape


    for batch_num, batch in enumerate(gen_batches(n_samples, batch_size)):
        X = valid[batch,:]
        X = np.reshape(X, (X.shape[0], 3, int(image_size/3)))
        X = X.transpose(0, 2, 1)
        X = np.reshape(X, (reduce(np.multiply, X.shape[:2]), 3))
        ipca.partial_fit(X)

    eigenvalues, eigenvectors = np.linalg.eig(ipca.get_covariance())
    eigenvalues.astype('float32').dump(os.path.join(out_path, 'eigenvalues.dat'))
    eigenvectors.astype('float32').dump(os.path.join(out_path, 'eigenvectors.dat'))
开发者ID:121onto,项目名称:noaa,代码行数:32,代码来源:preproc.py


示例17: get_session

    def get_session(self, session=-1, signal="data"):
        """Return the aggregate data array of a session

        If the session consists in many buffers, they are concatenated into a
        single buffer loaded in memory.

        If the data is a single file, it is memmaped as an array.
        """
        sessions = self.list_sessions()
        if isinstance(session, int):
            session_id = sessions[session]
        elif session in sessions:
            session_id = session
        else:
            raise ValueError("No such session %r" % session)

        signal_folder = os.path.join(self.data_folder, session_id, signal)
        data_files = os.listdir(signal_folder)
        dtypes = [self.decode_dtype(filename) for filename in data_files]
        if len(data_files) == 0:
            return np.array([])
        elif len(data_files) == 1:
            return np.memmap(os.path.join(signal_folder, data_files[0]), dtype=dtypes[0])
        else:
            return np.concatenate(
                [np.memmap(os.path.join(signal_folder, f), dtype=dtype) for f, dtype in zip(data_files, dtypes)]
            )
开发者ID:Jared314,项目名称:pythinkgear,代码行数:27,代码来源:collect.py


示例18: convert

    def convert(cls, file_path):
        meta_path = file_path + '.meta'
        index_path = file_path + '.idx'
        edge_path = file_path + '.bin'

        with open(file_path, 'r') as f:
            nodes, edges = map(int, f.readline().split())
            nodes, edges = nodes + 1, edges + 1
            with open(meta_path, 'w+') as m:
                m.write('{} {}'.format(nodes, edges))
            index_map = np.memmap(index_path, dtype='uint32', mode='w+', shape=(nodes, 2))
            edge_map = np.memmap(edge_path, dtype='uint32', mode='w+', shape=(edges, 1))

            current = 0
            count = 0
            degree = 0

            for line in f:
                origin, destination = map(int, line.split())
                while current < origin:
                    index_map[current] = (count - degree, degree)
                    degree = 0
                    current += 1
                if current == origin:
                    degree += 1
                edge_map[count] = destination
                count += 1

            index_map[current] = (count - degree, degree)
            index_map.flush()
            edge_map.flush()
开发者ID:mmap-graph,项目名称:mmap-python,代码行数:31,代码来源:models.py


示例19: main

def main(A):
    sightlines = Sightlines(A)
    fgpa = FGPAmodel(A)

    Npixels = sightlines.Npixels.sum()
    specloglam = numpy.memmap(A.SpectraOutputLogLam, mode='w+', 
            dtype='f4', shape=Npixels)
    # now save LogLam of the pixels for ease of access
    # (not used by our code)
    LogLamGrid = A.LogLamGrid
    LogLamCenter = 0.5 * (LogLamGrid[1:] + LogLamGrid[:-1])
    for index in range(len(sightlines)):
        sl2 = slice(sightlines.PixelOffset[index], 
                sightlines.PixelOffset[index] + sightlines.Npixels[index])
        sl = slice(
            sightlines.LogLamGridIndMin[index],
            sightlines.LogLamGridIndMax[index] - 1)
        specloglam[sl2] = LogLamCenter[sl]
    specloglam.flush()

    # now save QSONpixel for ease of access
    # (not used by our code)
    QSONpixel = numpy.memmap(A.QSONpixel, mode='w+', 
            dtype='i4', shape=len(sightlines))
    QSONpixel[...] = numpy.int32(sightlines.Npixels)
    QSONpixel.flush()
开发者ID:rainwoodman,项目名称:lyamock,代码行数:26,代码来源:export.py


示例20: LogOfMatrix

def LogOfMatrix(ccMapObj):

    ccMapObj.make_readable()

    LogHiCmap = CCMAP()
    LogHiCmap.path2matrix = os.getcwd() + '/nparray_' + getRandomName() + '.bin'

    LogHiCmap.shape = ccMapObj.shape
    LogHiCmap.xticks = ccMapObj.xticks
    LogHiCmap.yticks = ccMapObj.yticks
    LogHiCmap.binsize = ccMapObj.binsize
    LogHiCmap.bLog = True

    bNonZeros = None
    #if ccMapObj.bNoData is not None:
    #	LogHiCmap.bNoData = ccMapObj.bNoData
    #	bNonZeros = ~LogHiCmap.bNoData
    #else:
    LogHiCmap.bNoData = np.all( ccMapObj.matrix == 0.0, axis=0)
    bNonZeros = ~LogHiCmap.bNoData

    # Log of part of matrix containing data
    path2matrixA = os.getcwd() + '/nparray_' + getRandomName() + '.bin'
    A = (ccMapObj.matrix[bNonZeros,:])[:,bNonZeros]   # Selected row-column which are not all zeros
    BinMatrixA = np.memmap(path2matrixA, dtype=dtype_npBINarray, mode='w+', shape=A.shape)
    BinMatrixA[:] = np.log10(A)[:]
    BinMatrixA.flush()

    # Assigning minvalue and maxvalue
    LogHiCmap.maxvalue = float(np.amax(BinMatrixA))
    minvalue = np.amin(BinMatrixA)
    v_steps = np.linspace(minvalue, LogHiCmap.maxvalue, 100)
    LogHiCmap.minvalue = minvalue - (v_steps[1] - v_steps[0])

    # Making full matrix
    BinLogMatrix = np.memmap(LogHiCmap.path2matrix, dtype=dtype_npBINarray, mode='w+', shape=LogHiCmap.shape)
    A_i = -1
    A_j = 0
    for i in range(BinLogMatrix.shape[0]):
        if not LogHiCmap.bNoData[i]:
            A_i += 1

        A_j = 0
        for j in range(BinLogMatrix.shape[1]):
            if LogHiCmap.bNoData[i] or LogHiCmap.bNoData[j]:
                BinLogMatrix[i][j] = LogHiCmap.minvalue
            else:
                BinLogMatrix[i][j] = BinMatrixA[A_i][A_j]
                A_j += 1
    BinLogMatrix.flush()

    del BinLogMatrix
    del BinMatrixA

    try:
        os.remove(path2matrixA)
    except:
        pass

    return LogHiCmap
开发者ID:rjdkmr,项目名称:gcMapExplorer,代码行数:60,代码来源:ccmap.py



注:本文中的numpy.memmap函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.meshgrid函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.median函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap