• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.nmin函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.nmin函数的典型用法代码示例。如果您正苦于以下问题:Python nmin函数的具体用法?Python nmin怎么用?Python nmin使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了nmin函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: geweke_plot

def geweke_plot(data, name, format='png', suffix='-diagnostic', path='./', fontmap = None, 
    verbose=1):
    # Generate Geweke (1992) diagnostic plots

    if fontmap is None: fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}

    # Generate new scatter plot
    figure()
    x, y = transpose(data)
    scatter(x.tolist(), y.tolist())

    # Plot options
    xlabel('First iteration', fontsize='x-small')
    ylabel('Z-score for %s' % name, fontsize='x-small')

    # Plot lines at +/- 2 sd from zero
    pyplot((nmin(x), nmax(x)), (2, 2), '--')
    pyplot((nmin(x), nmax(x)), (-2, -2), '--')

    # Set plot bound
    ylim(min(-2.5, nmin(y)), max(2.5, nmax(y)))
    xlim(0, nmax(x))

    # Save to file
    if not os.path.exists(path):
        os.mkdir(path)
    if not path.endswith('/'):
        path += '/'
    savefig("%s%s%s.%s" % (path, name, suffix, format))
开发者ID:CosmologyTaskForce,项目名称:pymc,代码行数:29,代码来源:Matplot.py


示例2: geweke_plot

def geweke_plot(data,
                name,
                format='png',
                suffix='-diagnostic',
                path='./',
                fontmap=None):
    '''
    Generate Geweke (1992) diagnostic plots.
    
    :Arguments:
        data: list
            List (or list of lists for vector-valued variables) of Geweke diagnostics, output
            from the `pymc.diagnostics.geweke` function .

        name: string
            The name of the plot.

        format (optional): string
            Graphic output format (defaults to png).

        suffix (optional): string
            Filename suffix (defaults to "-diagnostic").

        path (optional): string
            Specifies location for saving plots (defaults to local directory).

        fontmap (optional): dict
            Font map for plot.
    
    '''

    if fontmap is None:
        fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4}

    # Generate new scatter plot
    figure()
    x, y = transpose(data)
    scatter(x.tolist(), y.tolist())

    # Plot options
    xlabel('First iteration', fontsize='x-small')
    ylabel('Z-score for %s' % name, fontsize='x-small')

    # Plot lines at +/- 2 sd from zero
    pyplot((nmin(x), nmax(x)), (2, 2), '--')
    pyplot((nmin(x), nmax(x)), (-2, -2), '--')

    # Set plot bound
    ylim(min(-2.5, nmin(y)), max(2.5, nmax(y)))
    xlim(0, nmax(x))

    # Save to file
    if not os.path.exists(path):
        os.mkdir(path)
    if not path.endswith('/'):
        path += '/'
    savefig("%s%s%s.%s" % (path, name, suffix, format))
开发者ID:shfengcj,项目名称:pymc,代码行数:57,代码来源:Matplot.py


示例3: csv_output

    def csv_output(self):
        
        """This method is used to report the results of
        a subscription test to a csv file"""

        # determine the file name
        csv_filename = "subscription-%s-%siter-%s-%s.csv" % (self.subscriptiontype,
                                                      self.iterations,
                                                      self.chart_type.lower(),
                                                      self.testdatetime)

        # initialize the csv file
        csvfile_stream = open(csv_filename, "w")
        csvfile_writer = csv.writer(csvfile_stream, delimiter=',', quoting=csv.QUOTE_MINIMAL)

        # iterate over the SIBs
        for sib in self.results.keys():                    
                                     
            row = [sib]
            
            # add all the times
            for value in self.results[sib]:
                row.append(value)

            # add the mean, min, max and variance value of the times to the row
            row.append(round(nmean(self.results[sib]),3))                
            row.append(round(nmin(self.results[sib]),3))                
            row.append(round(nmax(self.results[sib]),3))                
            row.append(round(nvar(self.results[sib]),3))                

            # write the row
            csvfile_writer.writerow(row)
                
        # close the csv file
        csvfile_stream.close()
开发者ID:desmovalvo,项目名称:pes,代码行数:35,代码来源:subscription_test.py


示例4: pce_param

def pce_param(V, T, P, aerosols):

    Smaxes = []
    for aerosol in aerosols:
        N = aerosol.distribution.N
        mu = aerosol.distribution.mu
        sigma = aerosol.distribution.sigma
        kappa = aerosol.kappa

        Smax = _pce_fit(N, mu, sigma, kappa, V, T, P)
        Smaxes.append(Smax)

        print "PCE with", N, mu, sigma, kappa, V, T, P, Smax

    min_smax = nmin(Smaxes)
    if 0. <= min_smax <= 0.5: 
        Smax = min_smax
    else:
        return 0., [0.]*len(aerosols)

    ## Compute scrit of each mode
    scrits = []
    for aerosol in aerosols:
        _, scrit = kohler_crit(T, aerosol.distribution.mu*1e-6, aerosol.kappa)
        scrits.append(scrit)

    act_fracs = []
    for aerosol, scrit in zip(aerosols, scrits):
        ui = 2.*np.log(scrit/Smax)/(3.*np.sqrt(2.)*np.log(aerosol.distribution.sigma))
        N_act = 0.5*aerosol.distribution.N*erfc(ui)
        act_fracs.append(N_act/aerosol.distribution.N)

    return Smax, act_fracs
开发者ID:jia-11,项目名称:parcel_model,代码行数:33,代码来源:activation.py


示例5: get_network_extents

def get_network_extents(net):
    '''
    For a given Emme Network, find the envelope (extents) of all of its elements.
    Includes link vertices as well as nodes.
    
    Args:
        -net: An Emme Network Object
    
    Returns:
        minx, miny, maxx, maxy tuple
    '''
    xs, ys = [], []
    for node in net.nodes():
        xs.append(node.x)
        ys.append(node.y)
    for link in net.links():
        for x, y in link.vertices:
            xs.append(x)
            ys.append(y)
    xa = array(xs)
    ya = array(ys)
    
    return nmin(xa) - 1.0, nmin(ya) - 1.0, nmax(xa) + 1.0, nmax(ya) + 1.0
开发者ID:kamelisl,项目名称:TMGToolbox,代码行数:23,代码来源:spatial_index.py


示例6: discrepancy_plot

def discrepancy_plot(
    data, name="discrepancy", report_p=True, format="png", suffix="-gof", path="./", fontmap=None, verbose=1
):
    # Generate goodness-of-fit deviate scatter plot

    if verbose > 0:
        print_("Plotting", name + suffix)

    if fontmap is None:
        fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4}

    # Generate new scatter plot
    figure()
    try:
        x, y = transpose(data)
    except ValueError:
        x, y = data
    scatter(x, y)

    # Plot x=y line
    lo = nmin(ravel(data))
    hi = nmax(ravel(data))
    datarange = hi - lo
    lo -= 0.1 * datarange
    hi += 0.1 * datarange
    pyplot((lo, hi), (lo, hi))

    # Plot options
    xlabel("Observed deviates", fontsize="x-small")
    ylabel("Simulated deviates", fontsize="x-small")

    if report_p:
        # Put p-value in legend
        count = sum(s > o for o, s in zip(x, y))
        text(
            lo + 0.1 * datarange,
            hi - 0.1 * datarange,
            "p=%.3f" % (count / len(x)),
            horizontalalignment="center",
            fontsize=10,
        )

    # Save to file
    if not os.path.exists(path):
        os.mkdir(path)
    if not path.endswith("/"):
        path += "/"
    savefig("%s%s%s.%s" % (path, name, suffix, format))
开发者ID:roban,项目名称:pymc,代码行数:48,代码来源:Matplot.py


示例7: csv_output

    def csv_output(self):
        
        """This method is used to report the results of
        an update test to a csv file"""

        # determine the file name
        csv_filename = "update-%s-%sstep-%smax-%siter-%s-%s.csv" % (self.updatetype,
                                                                    self.step,
                                                                    self.limit,
                                                                    self.iterations,
                                                                    self.chart_type.lower(),
                                                                    self.testdatetime)

        # initialize the csv file
        csvfile_stream = open(csv_filename, "w")
        csvfile_writer = csv.writer(csvfile_stream, delimiter=',', quoting=csv.QUOTE_MINIMAL)

        # iterate over the SIBs
        for sib in self.results.keys():                    
                         
            # iterate over the possible block lengths
            for triple_length in sorted(self.results[sib].keys(), key=int):
            
                row = [sib]
    
                # add the length of the block to the row
                row.append(triple_length)

                # add all the times
                for value in self.results[sib][triple_length]:
                    row.append(value)

                # add the mean value of the times to the row
                row.append(round(nmean(self.results[sib][triple_length]),3))                
                row.append(round(nmin(self.results[sib][triple_length]),3))                
                row.append(round(nmax(self.results[sib][triple_length]),3))                
                row.append(round(nvar(self.results[sib][triple_length]),3))                

                # write the row
                csvfile_writer.writerow(row)

        # close the csv file
        csvfile_stream.close()
开发者ID:desmovalvo,项目名称:pes,代码行数:43,代码来源:update_test.py


示例8: _creer_cmap

    def _creer_cmap(self, seuils):
        zmax = nmax(self._Z)
        zmin = nmin(self._Z)
        delta = zmax - zmin
        # On les ramène entre 0 et 1 par transformation affine
        if delta:
            a = 1/delta
            b = -zmin/delta
        seuils = [0] + [a*z + b for z in seuils if zmin < z < zmax] + [1] # NB: < et pas <=
        print(seuils)
        cdict = {'red': [], 'green': [], 'blue': []}
        def add_col(val, color1, color2):
            cdict['red'].append((val, color1[0], color2[0]))
            cdict['green'].append((val, color1[1], color2[1]))
            cdict['blue'].append((val, color1[2], color2[2]))

        n = len(self.couleurs)
        for i, seuil in enumerate(seuils):
            add_col(seuil, self.couleurs[(i - 1)%n], self.couleurs[i%n])
        return LinearSegmentedColormap('seuils', cdict, 256)
开发者ID:wxgeo,项目名称:geophar,代码行数:20,代码来源:__init__.py


示例9: discrepancy_plot

def discrepancy_plot(data, name, report_p=True, format='png', suffix='-gof', path='./', fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}, verbose=1):
    # Generate goodness-of-fit deviate scatter plot
    if verbose>0:
        print 'Plotting', name+suffix

    # Generate new scatter plot
    figure()
    try:
        x, y = transpose(data)
    except ValueError:
        x, y = data
    scatter(x, y)

    # Plot x=y line
    lo = nmin(ravel(data))
    hi = nmax(ravel(data))
    datarange = hi-lo
    lo -= 0.1*datarange
    hi += 0.1*datarange
    pyplot((lo, hi), (lo, hi))

    # Plot options
    xlabel('Observed deviates', fontsize='x-small')
    ylabel('Simulated deviates', fontsize='x-small')

    if report_p:
        # Put p-value in legend
        count = sum(s>o for o,s in zip(x,y))
        text(lo+0.1*datarange, hi-0.1*datarange,
             'p=%.3f' % (count/len(x)), horizontalalignment='center',
             fontsize=10)

    # Save to file
    if not os.path.exists(path):
        os.mkdir(path)
    if not path.endswith('/'):
        path += '/'
    savefig("%s%s%s.%s" % (path, name, suffix, format))
开发者ID:along1x,项目名称:pymc,代码行数:38,代码来源:Matplot.py


示例10: discrepancy_plot

def discrepancy_plot(
    data, name='discrepancy', report_p=True, format='png', suffix='-gof', path='./',
        fontmap=None):
    '''
    Generate goodness-of-fit deviate scatter plot.
    
    :Arguments:
        data: list
            List (or list of lists for vector-valued variables) of discrepancy values, output
            from the `pymc.diagnostics.discrepancy` function .

        name: string
            The name of the plot.
            
        report_p: bool
            Flag for annotating the p-value to the plot.

        format (optional): string
            Graphic output format (defaults to png).

        suffix (optional): string
            Filename suffix (defaults to "-gof").

        path (optional): string
            Specifies location for saving plots (defaults to local directory).

        fontmap (optional): dict
            Font map for plot.
    
    '''

    if verbose > 0:
        print_('Plotting', name + suffix)

    if fontmap is None:
        fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4}

    # Generate new scatter plot
    figure()
    try:
        x, y = transpose(data)
    except ValueError:
        x, y = data
    scatter(x, y)

    # Plot x=y line
    lo = nmin(ravel(data))
    hi = nmax(ravel(data))
    datarange = hi - lo
    lo -= 0.1 * datarange
    hi += 0.1 * datarange
    pyplot((lo, hi), (lo, hi))

    # Plot options
    xlabel('Observed deviates', fontsize='x-small')
    ylabel('Simulated deviates', fontsize='x-small')

    if report_p:
        # Put p-value in legend
        count = sum(s > o for o, s in zip(x, y))
        text(lo + 0.1 * datarange, hi - 0.1 * datarange,
             'p=%.3f' % (count / len(x)), horizontalalignment='center',
             fontsize=10)

    # Save to file
    if not os.path.exists(path):
        os.mkdir(path)
    if not path.endswith('/'):
        path += '/'
    savefig("%s%s%s.%s" % (path, name, suffix, format))
开发者ID:Gwill,项目名称:pymc,代码行数:70,代码来源:Matplot.py


示例11: plot

def plot(
    data, name, format='png', suffix='', path='./', common_scale=True, datarange=(None, None),
        new=True, last=True, rows=1, num=1, fontmap=None, verbose=1):
    """
    Generates summary plots for nodes of a given PyMC object.

    :Arguments:
        data: PyMC object, trace or array
            A trace from an MCMC sample or a PyMC object with one or more traces.

        name: string
            The name of the object.

        format (optional): string
            Graphic output format (defaults to png).

        suffix (optional): string
            Filename suffix.

        path (optional): string
            Specifies location for saving plots (defaults to local directory).

        common_scale (optional): bool
            Specifies whether plots of multivariate nodes should be on the same scale
            (defaults to True).

    """
    if fontmap is None:
        fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4}

    # If there is only one data array, go ahead and plot it ...
    if ndim(data) == 1:

        if verbose > 0:
            print_('Plotting', name)

        # If new plot, generate new frame
        if new:

            figure(figsize=(10, 6))

        # Call trace
        trace(
            data,
            name,
            datarange=datarange,
            rows=rows * 2,
            columns=2,
            num=num + 3 * (num - 1),
            last=last,
            fontmap=fontmap)
        # Call autocorrelation
        autocorrelation(
            data,
            name,
            rows=rows * 2,
            columns=2,
            num=num + 3 * (
                num - 1) + 2,
            last=last,
            fontmap=fontmap)
        # Call histogram
        histogram(
            data,
            name,
            datarange=datarange,
            rows=rows,
            columns=2,
            num=num * 2,
            last=last,
            fontmap=fontmap)

        if last:
            if not os.path.exists(path):
                os.mkdir(path)
            if not path.endswith('/'):
                path += '/'
            savefig("%s%s%s.%s" % (path, name, suffix, format))

    else:
        # ... otherwise plot recursively
        tdata = swapaxes(data, 0, 1)

        datarange = (None, None)
        # Determine common range for plots
        if common_scale:
            datarange = (nmin(tdata), nmax(tdata))

        # How many rows?
        _rows = min(4, len(tdata))

        for i in range(len(tdata)):

            # New plot or adding to existing?
            _new = not i % _rows
            # Current subplot number
            _num = i % _rows + 1
            # Final subplot of current figure?
            _last = (_num == _rows) or (i == len(tdata) - 1)

#.........这里部分代码省略.........
开发者ID:Gwill,项目名称:pymc,代码行数:101,代码来源:Matplot.py


示例12: summary_plot


#.........这里部分代码省略.........
        if chain is not None:
            chains = 1
            traces = [variable.trace(chain=chain)]
        else:
            chains = variable.trace.db.chains
            traces = [variable.trace(chain=i) for i in range(chains)]

        if gs is None:
            # Initialize plot
            if rhat and chains > 1:
                gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1])

            else:

                gs = gridspec.GridSpec(1, 1)

            # Subplot for confidence intervals
            interval_plot = subplot(gs[0])

        # Get quantiles
        data = [calc_quantiles(d, quantiles) for d in traces]
        if hpd:
            # Substitute HPD interval
            for i, d in enumerate(traces):
                hpd_interval = calc_hpd(d, alpha)
                data[i][quantiles[0]] = hpd_interval[0]
                data[i][quantiles[-1]] = hpd_interval[1]

        data = [[d[q] for q in quantiles] for d in data]
        # Ensure x-axis contains range of current interval
        if plotrange:
            plotrange = [min(
                         plotrange[0],
                         nmin(data)),
                         max(plotrange[1],
                             nmax(data))]
        else:
            plotrange = [nmin(data), nmax(data)]

        try:
            # First try missing-value stochastic
            value = variable.get_stoch_value()
        except AttributeError:
            # All other variable types
            value = variable.value

        # Number of elements in current variable
        k = size(value)
        
        # Append variable name(s) to list
        if k > 1:
            names = var_str(varname, shape(value)[int(shape(value)[0]==1):])
            labels += names
        else:
            labels.append(varname)
            # labels.append('\n'.join(varname.split('_')))

        # Add spacing for each chain, if more than one
        e = [0] + [(chain_spacing * ((i + 2) / 2)) * (
            -1) ** i for i in range(chains - 1)]

        # Loop over chains
        for j, quants in enumerate(data):

            # Deal with multivariate nodes
            if k > 1:
开发者ID:Gwill,项目名称:pymc,代码行数:67,代码来源:Matplot.py


示例13: summary_plot


#.........这里部分代码省略.........
        varname = variable.__name__

        # Retrieve trace(s)
        i = 0
        traces = []
        while True:
           try:
               #traces.append(pymc_obj.trace(varname, chain=i)[:])
               traces.append(variable.trace(chain=i))
               i+=1
           except KeyError:
               break
               
        chains = len(traces)
        
        if gs is None:
            # Initialize plot
            if rhat and chains>1:
                gs = gridspec.GridSpec(1, 2, width_ratios=[3,1])

            else:
                
                gs = gridspec.GridSpec(1, 1)
                
            # Subplot for confidence intervals
            interval_plot = subplot(gs[0])
                
        # Get quantiles
        data = [calc_quantiles(d, quantiles) for d in traces]
        data = [[d[q] for q in quantiles] for d in data]
        
        # Ensure x-axis contains range of current interval
        if plotrange:
            plotrange = [min(plotrange[0], nmin(data)), max(plotrange[1], nmax(data))]
        else:
            plotrange = [nmin(data), nmax(data)]
        
        try:
            # First try missing-value stochastic
            value = variable.get_stoch_value()
        except AttributeError:
            # All other variable types
            value = variable.value

        # Number of elements in current variable
        k = size(value)
        
        # Append variable name(s) to list
        if k>1:
            names = var_str(varname, shape(value))
            labels += names
        else:
            labels.append('\n'.join(varname.split('_')))
            
        # Add spacing for each chain, if more than one
        e = [0] + [(chain_spacing * ((i+2)/2))*(-1)**i for i in range(chains-1)]
        
        # Loop over chains
        for j,quants in enumerate(data):
            
            # Deal with multivariate nodes
            if k>1:

                for i,q in enumerate(transpose(quants)):
                    
                    # Y coordinate with jitter
开发者ID:along1x,项目名称:pymc,代码行数:67,代码来源:Matplot.py


示例14: shiftEnergies

def shiftEnergies(energies):
    emin = nmin(energies)
    if emin < 0:
        for i in range(len(energies)):
            energies[i] = energies[i] - emin
    return energies, emin
开发者ID:MHarland,项目名称:EasyED,代码行数:6,代码来源:hamiltonians.py



注:本文中的numpy.nmin函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.nonzero函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.nmax函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap