• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.np_array函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.np_array函数的典型用法代码示例。如果您正苦于以下问题:Python np_array函数的具体用法?Python np_array怎么用?Python np_array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了np_array函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self, dbFileName, force=False, scaleFactor=1000):
        # data
        self.dataManager = GMDataManager()  # most data is saved to hdf
        self.dbFileName = dbFileName        # db containing all the data we'd like to use
        self.condition = ""                 # condition will be supplied at loading time
        # --> NOTE: ALL of the arrays in this section are in sync
        # --> each one holds information for an individual contig 
        self.indices = np_array([])        # indices into the data structure based on condition
        self.covProfiles = np_array([])     # coverage based coordinates
        self.transformedCP = np_array([])   # the munged data points
        self.averageCoverages = np_array([]) # average coverage across all stoits
        self.kmerSigs = np_array([])        # raw kmer signatures
        self.kmerVals = np_array([])        # PCA'd kmer sigs

        self.contigNames = np_array([])
        self.contigLengths = np_array([])
        self.contigColours = np_array([])   # calculated from kmerVals
        
        self.binIds = np_array([])          # list of bin IDs
        # --> end section

        # meta                
        self.validBinIds = {}               # valid bin ids -> numMembers
        self.binnedRowIndicies = {}         # dictionary of those indices which belong to some bin
        self.restrictedRowIndicies = {}     # dictionary of those indices which can not be binned yet
        self.numContigs = 0                 # this depends on the condition given
        self.numStoits = 0                  # this depends on the data which was parsed

        # contig links
        self.links = {}
        
        # misc
        self.forceWriting = force           # overwrite existng values silently?
        self.scaleFactor = scaleFactor      # scale every thing in the transformed data to this dimension
开发者ID:jnesme,项目名称:GroopM-1,代码行数:34,代码来源:profileManager.py


示例2: plot_energy

def plot_energy(S, filename):

    cen = np_array(S**2).cumsum() / np_array(S**2).sum() * 100
    DPI = 100
    fig = plt.figure()

    # Energy subplot
    ax1 = fig.add_subplot(2, 1, 1)
    line = ax1.plot(S**2, "o-", linewidth=1)
    ax1.set_yscale("log")
    plt.title("Basis vector vs Energy")
    plt.xlabel("Basis vector number")
    plt.ylabel("Energy")
    plt.axis([0, None, None, None])
    plt.grid(True)

    # Cumulative energy subplot
    ax2 = fig.add_subplot(2, 1, 2)
    line = ax2.plot(cen, "o-", linewidth=1)
    ax2.axis([0, None, 90, 101])
    plt.title("Cumulative Energy")
    plt.xlabel("Basis vector number")
    plt.ylabel("Cumulative Energy")
    plt.grid(True)

    plt.tight_layout()
    plt.savefig('{}.png'.format(filename), bbox_inches='tight', dpi=DPI)

    return
开发者ID:JaimeLeal,项目名称:projects,代码行数:29,代码来源:pod.py


示例3: compare_csv_decimal_files

def compare_csv_decimal_files(file1, file2, header=True, timeseries=False):
    """
    This function compares two csv files
    """
    #CHECK NUM LINES
    with open_csv(file1) as fh1, \
         open_csv(file2) as fh2:
         assert sum(1 for line1 in fh1) == sum(1 for line2 in fh2)
    
    with open_csv(file1) as fh1, \
         open_csv(file2) as fh2:
        csv1 = csv.reader(fh1)
        csv2 = csv.reader(fh2)
        
        if header:
            assert next(csv1) == next(csv2) #header
            
        while True:
            try:
                row1 = next(csv1)
                row2 = next(csv2)
                compare_start_index = 0
                if timeseries:
                    assert row1[0] == row2[0] #check dates
                    compare_start_index=1
                    
                assert_almost_equal(np_array(row1[compare_start_index:], dtype=np_float32),
                                    np_array(row2[compare_start_index:], dtype=np_float32),
                                    decimal=2)
            except StopIteration:
                break
                pass
    return True
开发者ID:erdc-cm,项目名称:RAPIDpy,代码行数:33,代码来源:helper_functions.py


示例4: real_imaginary_freq_domain

def real_imaginary_freq_domain(samples):
  """
  Apply fft on the samples and return the real and imaginary
  parts in separate 
  """
  freq_domain = fft(samples)
  freq_domain_real = np_array([abs(x.real) for x in freq_domain])
  freq_domain_imag = np_array([abs(x.imag) for x in freq_domain])

  return freq_domain_real, freq_domain_imag
开发者ID:rafaelvalle,项目名称:machine_listening,代码行数:10,代码来源:audiotools.py


示例5: __init_statistics

 def __init_statistics(self):
     stats = self.raw_stats
     if stats is not None:
         combined = np_array([[int(team), stats['oprs'][team], stats['dprs'][team],
                               stats['ccwms'][team]] for team in stats['oprs'].keys()], np_object)
     else:
         teams = self.get_team()[:, 0]
         num_teams = len(teams)
         combined = np_rot90(
             np_array([teams, np_zeros(num_teams), np_zeros(num_teams), np_zeros(num_teams)], np_object))[::-1]
     self.stats = combined
开发者ID:Alexanders101,项目名称:The-Blue-Alliance-Python-API,代码行数:11,代码来源:Blue_Alliance_API.py


示例6: centroidfinder

def centroidfinder(cvimage, color, threshold):
    lo =  [ c - t for c, t in zip(color, threshold) ]
    hi =  [ c + t for c, t in zip(color, threshold) ]
    mat = cv.CreateMat(cvimage.height, cvimage.width, cv.CV_8U)
    cv.InRangeS(cvimage, lo, hi, mat)
    data = [ [x, y] for x, y in product(range(mat.height), range(mat.width))
             if int(mat[x, y]) ]
    np_data = np_array(data)
    np_centroids = np_array( [ [0, 0], [0, mat.width],
                            [mat.height, 0], [mat.height, mat.width] ])
    centroids, labels = kmeans2(np_data, np_centroids)
    return [ (x, y) for x, y in centroids.tolist() ]
开发者ID:zeraholladay,项目名称:pygames,代码行数:12,代码来源:featurecam.py


示例7: _interp_line

    def _interp_line(self, line):
#        handles = line.getViewHandlePositions()
#        x = []
#        y = []
#        for h in handles:
#            x.append(h[1].x())
#            y.append(h[1].y())

        (x,y) = self._handle2points(line)

        xi = range(int(x[0]),int(x[-1])+1)
        yi = np_interp(np_array(xi), np_array(x), np_array(y))


        return (xi,yi)
开发者ID:eSpaceEPFL,项目名称:marsissharadviewer,代码行数:15,代码来源:radar_plots.py


示例8: updateAlgoData

def updateAlgoData():
    """
    Update from raw data into FPs directly used by location.fixPosWLAN() from WppDB(wpp_clusterid, wpp_cfps).
    1) Retrieve latest incremental rawdata(csv) from remote FTP server(hosted by FPP).
    2) Decompress bzip2, import CSV into wpp_uprecsinfo with its ver_uprecs, Update ver_uprecs in wpp_uprecsver.
    3) Incr clustering inserted rawdata for direct algo use.
    """
    dbips = DB_OFFLINE
    for dbip in dbips:
        dbsvr = dbsvrs[dbip]
        wppdb = WppDB(dsn=dbsvr['dsn'], dbtype=dbsvr['dbtype'])
        ver_wpp = wppdb.getRawdataVersion()
        # Sync rawdata into wpp_uprecsinfo from remote FTP server.
        print 'Probing rawdata version > [%s]' % ver_wpp
        vers_fpp,localbzs = syncFtpUprecs(FTPCFG, ver_wpp)
        if not vers_fpp: print 'Not found!'; continue
        else: print 'Found new vers: %s' % vers_fpp
        # Handle each bzip2 file.
        alerts = {'vers':[], 'details':''}
        tab_rd = 'wpp_uprecsinfo'
        for bzfile in localbzs:
            # Filter out the ver_uprecs info from the name of each bzip file.
            ver_bzfile = bzfile.split('_')[-1].split('.')[0]
            # Update ver_uprecs in wpp_uprecsver to ver_bzfile.
            wppdb.setRawdataVersion(ver_bzfile)
            print '%s\nUpdate ver_uprecs -> [%s]' % ('-'*40, ver_bzfile)
            # Decompress bzip2.
            sys.stdout.write('Decompress & append rawdata ... ')
            csvdat = csv.reader( BZ2File(bzfile) )
            try:
                indat = np_array([ line for line in csvdat ])
            except csv.Error, e:
                sys.exit('\n\nERROR: %s, line %d: %s!\n' % (bzfile, csvdat.line_num, e))
            # Append ver_uprecs(auto-incr),area_ok(0),area_try(0) to raw 16-col fp.
            append_info = np_array([ [ver_bzfile,0,0] for i in xrange(len(indat)) ])
            indat_withvers = np_append(indat, append_info, axis=1).tolist(); print 'Done'
            # Import csv into wpp_uprecsinfo.
            try:
                sys.stdout.write('Import rawdata: ')
                wppdb.insertMany(table_name=tab_rd, indat=indat_withvers, verb=True)
            except Exception, e:
                _lineno = sys._getframe().f_lineno
                _file = sys._getframe().f_code.co_filename
                alerts['details'] += '\n[ver:%s][%s:%s]: %s' % \
                        (ver_bzfile, _file, _lineno, str(e).replace('\n', ' '))
                alerts['vers'].append(ver_bzfile)
                print 'ERROR: Insert Rawdata Failed!'
                continue
开发者ID:FomkaV,项目名称:wifi-arsenal,代码行数:48,代码来源:offline.py


示例9: __init_matches

    def __init_matches(self):

        for match_type, var in [['qm', 'qualification_matches'], ['qf', 'quarter_final_matches'],
                                ['sf', 'semi_final_matches'], ['f', 'final_matches']]:
            num_matches = self.__count_matches(self.raw_matches, match_type)
            if num_matches is not 0:
                # zero = range(num_matches)
                red_teams = np_zeros((num_matches,), np_object)
                blue_teams = np_zeros((num_matches,), np_object)
                blue_scores = np_zeros((num_matches,), np_object)
                red_scores = np_zeros((num_matches,), np_object)
                match_code = np_zeros((num_matches,), np_object)
                match_numbers = np_arange(1, num_matches + 1, 1)

                for match in self.raw_matches:
                    if match['comp_level'] == match_type:
                        match_num = match['match_number'] - 1

                        red_teams[match_num] = [np_int(match['alliances']['red']['teams'][0][3:]),
                                                np_int(match['alliances']['red']['teams'][1][3:]),
                                                np_int(match['alliances']['red']['teams'][2][3:])]

                        red_scores[match_num] = [-1 if match['alliances']['red']['score'] is None
                                                 else match['alliances']['red']['score'],
                                                 -1 if match['score_breakdown']['red']['auto'] is None
                                                 else match['score_breakdown']['red']['auto'],
                                                 -1 if match['score_breakdown']['red']['foul'] is None
                                                 else match['score_breakdown']['red']['foul']]

                        blue_teams[match_num] = [np_int(match['alliances']['blue']['teams'][0][3:]),
                                                 np_int(match['alliances']['blue']['teams'][1][3:]),
                                                 np_int(match['alliances']['blue']['teams'][2][3:])]

                        blue_scores[match_num] = [-1 if match['alliances']['blue']['score'] is None
                                                  else match['alliances']['blue']['score'],
                                                  -1 if match['score_breakdown']['blue']['auto'] is None
                                                  else match['score_breakdown']['blue']['auto'],
                                                  -1 if match['score_breakdown']['blue']['foul'] is None
                                                  else match['score_breakdown']['blue']['foul']]
                        match_code[match_num] = match['key']

                red_win = np_array(red_scores.tolist())[:, 0] > np_array(blue_scores.tolist())[:, 0]
                winner = np_array(['blue'] * len(red_win))
                winner[red_win] = 'red'

                self.__setattr__(var,
                                 np_rot90(np_array([[match_type] * num_matches, match_numbers, red_teams, blue_teams,
                                                    red_scores, blue_scores, winner, match_code], np_object))[::-1])
开发者ID:Alexanders101,项目名称:The-Blue-Alliance-Python-API,代码行数:48,代码来源:Blue_Alliance_API.py


示例10: get_zone_count_estimates

def get_zone_count_estimates(location_id, door_count_placement_view_pair, start_date, end_date, adjusted=False):
  """Iterates through .csv files to return a list of (datetime, zone_count)
  ARGS
    location_id: location_id of installation, eg '55'
    door_count_placement_view_pair: placement and view id pair, e.g. ('3333230','0')
    start_date: in format YYYY-MM-DD, <datetime>
    end_date: in format YYYY-MM-DD. range is exclusive '<'. <datetime>
    adjusted: to select between raw data or adusted <bool>. if adjusted is chosen but not available, returns raw.
  RETURN
    array with (datetime, zone_count) tuples
  """
  datetime_zone_count_pairs = []
  day = timedelta(days = 1)

  curr_day = start_date

  while curr_day < end_date:
    date_str = date2str(curr_day, "%Y-%m-%d")
    fullpath = ANALYSIS_FOLDER_GLOBAL+str(location_id)+'/'+gtfilename(location_id,door_count_placement_view_pair,curr_day)
    if DEBUG:
      print 'get_zone_count_estimates: reading file:', fullpath
    data = read_csv(fullpath)
    for idx in range(len(data)):
      ts = utc.localize(get_datetime_from_csv_row(data[idx]), is_dst=None).astimezone(utc)
      if ts >= start_date and ts < end_date:
        datetime_zone_count_pairs.append(get_zone_count(data[idx], adjusted))
    curr_day += day
  datetime_zone_count_pairs = np_array(datetime_zone_count_pairs)
  return datetime_zone_count_pairs
开发者ID:rafaelvalle,项目名称:machine_listening,代码行数:29,代码来源:ground_truth.py


示例11: iterboxed

    def iterboxed(self, rows):
        """Iterator that yields each scanline in boxed row flat pixel
        format.  `rows` should be an iterator that yields the bytes of
        each row in turn.
        """

        def asvalues(raw):
            """Convert a row of raw bytes into a flat row.  Result will
            be a freshly allocated object, not shared with
            argument.
            """

            if self.bitdepth == 8:
                return np_array(raw,'uint8')
            else:
                raw = tostring(raw)
                return np_array(struct.unpack('!%dH' % (len(raw)//2), raw),'uint%d' % self.bitdepth)
            assert self.bitdepth < 8
            width = self.width
            # Samples per byte
            spb = 8//self.bitdepth
            out = array('B')
            mask = 2**self.bitdepth - 1
            shifts = [self.bitdepth * i
                for i in reversed(list(range(spb)))]
            for o in raw:
                out.extend([mask&(o>>i) for i in shifts])
            return out[:width]

        return np_array(map(asvalues, rows))
开发者ID:zack-vii,项目名称:archive,代码行数:30,代码来源:png.py


示例12: amplitude_regularization

def amplitude_regularization(signal, bits=16, factor=0.7):
  """
  ARGS: 
    signal: signal amplitudes, should be in the range [-1.0, 1.0], numpy array of numbers
    bits: bit-depth value, <int>
    factor: 0.7 by default, as suggested by Gerald Friedland @ ICSI
  RETURN: 
    regularized: amplitude regularized signal, <number> or numpy array of numbers
  """
  if isinstance(signal, list):
    signal = np_array(signal)
  elif isinstance(signal, (int, long, float, complex)):
    raise Exception("Invalid arg")
    
  # convert amplitude [-1.0, 1.0] to N-bit samples
  half_n_bits = 2**(bits-1)
  signal_scaled_to_n_bits = (signal + 1) * half_n_bits

  # regularize
  regularized = signal_scaled_to_n_bits ** factor

  # scale back to [-1.0,1.0]
  regularized -=  half_n_bits
  regularized /= half_n_bits
  return regularized
开发者ID:rafaelvalle,项目名称:machine_listening,代码行数:25,代码来源:audiotools.py


示例13: pca

    def pca(self, data_matrix):
        """Perform PCA.

        Principal components are given in self.pca,
        and the variance in self.variance.

        Parameters
        ----------
        data_matrix : list of lists
          List of tetranucleotide signatures
        """

        cols = len(data_matrix[0])
        data_matrix = np_reshape(np_array(data_matrix), (len(data_matrix), cols))

        pca = PCA()
        pc, variance = pca.pca_matrix(data_matrix, 3, bCenter=True, bScale=False)

        # ensure pc matrix has at least 3 dimensions
        if pc.shape[1] == 1:
            pc = np_append(pc, np_zeros((pc.shape[0], 2)), 1)
            variance = np_append(variance[0], np_ones(2))
        elif pc.shape[1] == 2:
            pc = np_append(pc, np_zeros((pc.shape[0], 1)), 1)
            variance = np_append(variance[0:2], np_ones(1))

        return pc, variance
开发者ID:AlexRBaker,项目名称:RefineM,代码行数:27,代码来源:cluster.py


示例14: sim

    def sim(self, src, tar):
        """Return the Steffensen similarity of two strings.

        Parameters
        ----------
        src : str
            Source string (or QGrams/Counter objects) for comparison
        tar : str
            Target string (or QGrams/Counter objects) for comparison

        Returns
        -------
        float
            Steffensen similarity

        Examples
        --------
        >>> cmp = Steffensen()
        >>> cmp.sim('cat', 'hat')
        0.24744247205786737
        >>> cmp.sim('Niall', 'Neil')
        0.1300991207720166
        >>> cmp.sim('aluminum', 'Catalan')
        0.011710186806836031
        >>> cmp.sim('ATCG', 'TAGC')
        4.1196952743871653e-05


        .. versionadded:: 0.4.0

        """
        if src == tar:
            return 1.0
        if not src or not tar:
            return 0.0

        self._tokenize(src, tar)

        a = self._intersection_card()
        b = self._src_only_card()
        c = self._tar_only_card()
        d = self._total_complement_card()
        n = a + b + c + d

        p = np_array([[a, b], [c, d]]) / n

        psisq = 0.0

        for i in range(len(p)):
            pi_star = p[i, :].sum()
            for j in range(len(p[i])):
                pj_star = p[:, j].sum()
                num = p[i, j] * (p[i, j] - pi_star * pj_star) ** 2
                if num:
                    psisq += num / (
                        pi_star * (1 - pi_star) * pj_star * (1 - pj_star)
                    )

        return psisq
开发者ID:chrislit,项目名称:abydos,代码行数:59,代码来源:_steffensen.py


示例15: hz2mel

def hz2mel(f):
  """ Convert a number or numpy numerical array of frequencies in Hz into mel
  ARGS: Frequency or array of frequencies,  <number> or numpy array of numbers
  RETURN: Mel frequency(ies), <number> or numpy array of numbers
  """
  if isinstance(f, list):
    f = np_array(f)  
  return 1127.01048 * log(f/700.0 +1)
开发者ID:rafaelvalle,项目名称:machine_listening,代码行数:8,代码来源:audiotools.py


示例16: get_sample_energy

def get_sample_energy(samples):
  """
  ARGS:
    samples: samples of a signal
  """
  if isinstance(samples, list) or isinstance(samples, tuple):
    samples = np_array(samples)
  return sum(samples**2)
开发者ID:rafaelvalle,项目名称:machine_listening,代码行数:8,代码来源:audiotools.py


示例17: mel2hz

def mel2hz(m):
  """ Convert a number or numpy numerical array of frequency in mel into Hz
  ARGS: Mel Frequency or array of mel frequencies,  <number> or numpy array of numbers
  RETURN: frequency(ies) in Hz, <number> or numpy array of numbers
  """
  if isinstance(m, list):
    m = np_array(m)
  return (exp(m / 1127.01048) - 1) * 700
开发者ID:rafaelvalle,项目名称:machine_listening,代码行数:8,代码来源:audiotools.py


示例18: makeColourProfile

 def makeColourProfile(self):
     """Make a colour profile based on ksig information"""
     working_data = np_array(self.kmerSigs, copy=True) 
     Center(working_data,verbose=0)
     p = PCA(working_data)
     components = p.pc()
     
     # now make the colour profile based on PC1
     self.kmerVals = np_array([float(i) for i in components[:,0]])
     
     # normalise to fit between 0 and 1
     self.kmerVals -= np_min(self.kmerVals)
     self.kmerVals /= np_max(self.kmerVals)
     if(False):
         plt.figure(1)
         plt.subplot(111)
         plt.plot(components[:,0], components[:,1], 'r.')
         plt.show()
开发者ID:jnesme,项目名称:GroopM-1,代码行数:18,代码来源:profileManager.py


示例19: __init__

 def __init__(self, wheels):
     """
     Create a new chassis, specifying a set of wheels.
     
     :param wheels:
         A sequence of :class:`triangula.chassis.HoloChassis.OmniWheel` objects defining the wheels for this chassis.
     """
     self.wheels = wheels
     self._matrix_coefficients = np_array([[wheel.co_x, wheel.co_y, wheel.co_theta] for wheel in self.wheels])
开发者ID:BaseBot,项目名称:triangula,代码行数:9,代码来源:chassis.py


示例20: init_classifier_fn

    def init_classifier_fn(self, **kwargs):
        cs_df = self._academic_clusterer.courses_features
        AcademicFailureEstimator.COURSES = cs_df['course'].values
        
        se_df = self._academic_clusterer.semesters_features
        sf_df = self._academic_clusterer.students_features
        gpa_df = self._academic_clusterer.ha_df.drop_duplicates(['student','GPA'])
        ss_df = pd_merge( se_df, sf_df, on='student' )
        ss_df = pd_merge( ss_df, gpa_df, on='student' )
        ss_df = pd_merge( ss_df, cs_df, on='course' )
        
        data = ss_df.apply( self.get_ss_features, axis=1 )
        data = np_array( data.tolist() )
        X = data
        y = ss_df['ha_reprobado'].apply(lambda x: 0 if x else 1).values

        # H = np_unique( X[:,0] )
        # H = np_array( [ H, np_zeros( len(H) ) ] ).T
        # l = np_ones( len( H ) )
        # X = np_append( X, H, axis=0)
        # y = np_append( y, l )

        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.30,
                                                            random_state=7)

        # logreg = LogisticRegression(random_state=7)
        logreg = AdaBoostClassifier(random_state=10)
        logreg = CalibratedClassifierCV( logreg, cv=2, method='sigmoid')
        # logreg = GaussianNB()
        logreg.fit(X, y)
        logreg_prob = logreg.predict_proba
        logreg_predict = logreg.predict

        y_pred = logreg.predict(X_test)
        recall = recall_score(y_test, y_pred)

        def quality(data):
            _z_ = logreg_predict(data)[0]
            sample = X[ y==_z_ ]
            sample_ = X[ y==(1-_z_) ]
            d = np_linalg_norm( [data] - sample )
            d_ = np_linalg_norm( [data] - sample_ )
            r = np_max( d_ )/np_max( d )
            # r = np_mean( d )/np_mean( d_ )
            # r = np_min( d )/np_min( d_ )
            # r = 0.5 * ( r + recall )
            if r > 1:
                r = abs( 1-r )
            r = 0.5 * ( r + recall )
            return str( r )
        
        clf = lambda data: [ logreg_prob( data ), quality(data) ]
        self._clf = clf
        """
开发者ID:rxgranda,项目名称:uncertaintyServerComponents,代码行数:56,代码来源:classifier_estimator.py



注:本文中的numpy.np_array函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.np_sum函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.not_equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap