• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.object_函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.object_函数的典型用法代码示例。如果您正苦于以下问题:Python object_函数的具体用法?Python object_怎么用?Python object_使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了object_函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: train

def train(fpath):
    df = pd.read_csv(fpath)
    df = df.drop(['DateTime'], axis=1)
    df.SubId = np.object_(np.int64(df.SubId))
    df.UserId = np.object_(df.UserId)
    df.Rating = np.int64(df.Rating)
    temp = df.UserId.value_counts()[df.UserId.value_counts() < 10].index
    temp = set(temp)
    remain = []
    for i in df.index:
        if df.UserId[i] not in temp:
            remain.append(i)
    df = df.loc[remain]
    sf = gl.SFrame(df)
    print 'finished reading in data'
    training, test = gl.recommender.util.random_split_by_user(sf,
                                                              user_id='UserId',
                                                              item_id='SubId',
                                                              item_test_proportion=0.2,
                                                              random_seed=1234)
    rcmder = gl.recommender.factorization_recommender.create(training,
                                                             user_id='UserId',
                                                             item_id='SubId',
                                                             target='Rating',
                                                             regularization=1e-5)
    print 'finished training model'
    print rcmder.evaluate(test, target='Rating')
    return rcmder
开发者ID:glennq,项目名称:bangumi_anime_recommender,代码行数:28,代码来源:MFRecommender.py


示例2: train

def train(fpath):
    df = pd.read_csv(fpath)
    df = df.drop(['DateTime'], axis=1)
    df.SubId = np.object_(np.int64(df.SubId))
    df.UserId = np.object_(df.UserId)
    df.Rating = np.int64(df.Rating)
    temp = df.UserId.value_counts()[df.UserId.value_counts() < 10].index
    temp = set(temp)
    remain = []
    for i in df.index:
        if df.UserId[i] not in temp:
            remain.append(i)
    df = df.loc[remain]
    sf = gl.SFrame(df)
    print 'finished reading in data'
    dataset, test = gl.recommender.util.random_split_by_user(sf,
                                                             user_id='UserId',
                                                             item_id='SubId',
                                                             item_test_proportion=0.2,
                                                             random_seed=2345)
    training, validate = gl.recommender.util.random_split_by_user(dataset,
                                                                  user_id='UserId',
                                                                  item_id='SubId',
                                                                  item_test_proportion=0.25,
                                                                  random_seed=3456)
    stype = ['jaccard', 'cosine', 'pearson']
    thres = [10 ** e for e in range(-8, 1)]
    res = {}
    min_rmse = 99999.0
    coor_min_rmse = (stype[0], thres[0])
    for j in stype:
        for i in thres:
            rcmder = gl.recommender.item_similarity_recommender.create(training,
                                                                       user_id='UserId',
                                                                       item_id='SubId',
                                                                       target='Rating',
                                                                       threshold=i,
                                                                       similarity_type=j)
            res[(j, i)] = rcmder.evaluate(validate, metric='rmse',
                                          target='Rating')['rmse_overall']
            if res[(j, i)] < min_rmse:
                min_rmse = res[(j, i)]
                coor_min_rmse = (j, i)
    print res
    print 'best combination is {} with RMSE {}'.format(coor_min_rmse, min_rmse)
    rcmder = gl.recommender.item_similarity_recommender.create(dataset,
                                                               user_id='UserId',
                                                               item_id='SubId',
                                                               target='Rating',
                                                               threshold=coor_min_rmse[1],
                                                               similarity_type=coor_min_rmse[0])
    print 'finished training model'
    print rcmder.evaluate(test, metric='rmse', target='Rating')
    return rcmder
开发者ID:glennq,项目名称:bangumi_anime_recommender,代码行数:54,代码来源:sim_recommeder_grid.py


示例3: test_for_object_scalar_creation

 def test_for_object_scalar_creation(self, level=rlevel):
     """Ticket #816"""
     a = np.object_()
     b = np.object_(3)
     b2 = np.object_(3.0)
     c = np.object_([4,5])
     d = np.object_([None, {}, []])
     assert a is None
     assert type(b) is int
     assert type(b2) is float
     assert type(c) is np.ndarray
     assert c.dtype == object
     assert d.dtype == object
开发者ID:Ademan,项目名称:NumPy-GSoC,代码行数:13,代码来源:test_regression.py


示例4: test_for_object_scalar_creation

 def test_for_object_scalar_creation(self):
     import numpy as np
     import sys
     a = np.object_()
     b = np.object_(3)
     b2 = np.object_(3.0)
     c = np.object_([4, 5])
     d = np.array([None])[0]
     assert a is None
     assert type(b) is int
     assert type(b2) is float
     assert type(c) is np.ndarray
     assert c.dtype == object
     assert type(d) is type(None)
     if '__pypy__' in sys.builtin_module_names:
         skip('not implemented yet')
     e = np.object_([None, {}, []])
     assert e.dtype == object
开发者ID:Qointum,项目名称:pypy,代码行数:18,代码来源:test_object_arrays.py


示例5: test_isscalar_numpy_array_scalars

 def test_isscalar_numpy_array_scalars(self):
     self.assertTrue(is_scalar(np.int64(1)))
     self.assertTrue(is_scalar(np.float64(1.)))
     self.assertTrue(is_scalar(np.int32(1)))
     self.assertTrue(is_scalar(np.object_('foobar')))
     self.assertTrue(is_scalar(np.str_('foobar')))
     self.assertTrue(is_scalar(np.unicode_(u('foobar'))))
     self.assertTrue(is_scalar(np.bytes_(b'foobar')))
     self.assertTrue(is_scalar(np.datetime64('2014-01-01')))
     self.assertTrue(is_scalar(np.timedelta64(1, 'h')))
开发者ID:cgrin,项目名称:pandas,代码行数:10,代码来源:test_inference.py


示例6: test_isscalar_numpy_array_scalars

 def test_isscalar_numpy_array_scalars(self):
     self.assertTrue(lib.isscalar(np.int64(1)))
     self.assertTrue(lib.isscalar(np.float64(1.0)))
     self.assertTrue(lib.isscalar(np.int32(1)))
     self.assertTrue(lib.isscalar(np.object_("foobar")))
     self.assertTrue(lib.isscalar(np.str_("foobar")))
     self.assertTrue(lib.isscalar(np.unicode_(u("foobar"))))
     self.assertTrue(lib.isscalar(np.bytes_(b"foobar")))
     self.assertTrue(lib.isscalar(np.datetime64("2014-01-01")))
     self.assertTrue(lib.isscalar(np.timedelta64(1, "h")))
开发者ID:Feyi1,项目名称:pandas,代码行数:10,代码来源:test_infer_and_convert.py


示例7: test_generic_roundtrip

 def test_generic_roundtrip(self):
     values = [
         np.int_(1),
         np.int32(-2),
         np.float_(2.5),
         np.nan,
         -np.inf,
         np.inf,
         np.datetime64('2014-01-01'),
         np.str_('foo'),
         np.unicode_('bar'),
         np.object_({'a': 'b'}),
         np.complex_(1 - 2j)
     ]
     for value in values:
         decoded = self.roundtrip(value)
         assert_equal(decoded, value)
         self.assertTrue(isinstance(decoded, type(value)))
开发者ID:jaraco,项目名称:jsonpickle,代码行数:18,代码来源:test_ext.py


示例8: test_generic_roundtrip

 def test_generic_roundtrip(self):
     if self.should_skip:
         return self.skip("numpy is not importable")
     values = [
         np.int_(1),
         np.int32(-2),
         np.float_(2.5),
         np.nan,
         -np.inf,
         np.inf,
         np.datetime64("2014-01-01"),
         np.str_("foo"),
         np.unicode_("bar"),
         np.object_({"a": "b"}),
         np.complex_(1 - 2j),
     ]
     for value in values:
         decoded = self.roundtrip(value)
         assert_equal(decoded, value)
         self.assertTrue(isinstance(decoded, type(value)))
开发者ID:jsonpickle,项目名称:jsonpickle,代码行数:20,代码来源:numpy_test.py


示例9: assert_equal_none_format

def assert_equal_none_format(a, b, options=None):
    # Compares a and b for equality. b is always the original. If they
    # are dictionaries, a must be a structured ndarray and they must
    # have the same set of keys, after which they values must all be
    # compared. If they are a collection type (list, tuple, set,
    # frozenset, or deque), then the compairison must be made with b
    # converted to an object array. If the original is not a numpy type
    # (isn't or doesn't inherit from np.generic or np.ndarray), then it
    # is a matter of converting it to the appropriate numpy
    # type. Otherwise, both are supposed to be numpy types. For object
    # arrays, each element must be iterated over to be compared. Then,
    # if it isn't a string type, then they must have the same dtype,
    # shape, and all elements. If it is an empty string, then it would
    # have been stored as just a null byte (recurse to do that
    # comparison). If it is a bytes_ type, the dtype, shape, and
    # elements must all be the same. If it is string_ type, we must
    # convert to uint32 and then everything can be compared. Big longs
    # and ints get written as numpy.bytes_.
    if type(b) == dict or (sys.hexversion >= 0x2070000
                           and type(b) == collections.OrderedDict):
        assert type(a) == np.ndarray
        assert a.dtype.names is not None

        # Determine if any of the keys could not be stored as str. If
        # they all can be, then the dtype field names should be the
        # keys. Otherwise, they should be 'keys' and 'values'.
        all_str_keys = True
        if sys.hexversion >= 0x03000000:
            tp_str = str
            tp_bytes = bytes
            converters = {tp_str: lambda x: x,
                          tp_bytes: lambda x: x.decode('UTF-8'),
                          np.bytes_:
                          lambda x: bytes(x).decode('UTF-8'),
                          np.unicode_: lambda x: str(x)}
            tp_conv = lambda x: converters[type(x)](x)
            tp_conv_str = lambda x: tp_conv(x)
        else:
            tp_str = unicode
            tp_bytes = str
            converters = {tp_str: lambda x: x,
                          tp_bytes: lambda x: x.decode('UTF-8'),
                          np.bytes_:
                          lambda x: bytes(x).decode('UTF-8'),
                          np.unicode_: lambda x: unicode(x)}
            tp_conv = lambda x: converters[type(x)](x)
            tp_conv_str = lambda x: tp_conv(x).encode('UTF-8')
        tps = tuple(converters.keys())
        for k in b.keys():
            if type(k) not in tps:
                all_str_keys = False
                break
            try:
                k_str = tp_conv(k)
            except:
                all_str_keys = False
                break
        if all_str_keys:
            assert set(a.dtype.names) == set([tp_conv_str(k)
                                              for k in b.keys()])
            for k in b:
                assert_equal_none_format(a[tp_conv_str(k)][0],
                                         b[k], options)
        else:
            names = (options.dict_like_keys_name,
                     options.dict_like_values_name)
            assert set(a.dtype.names) == set(names)
            keys = a[names[0]]
            values = a[names[1]]
            assert_equal_none_format(keys, tuple(b.keys()), options)
            assert_equal_none_format(values, tuple(b.values()), options)
    elif type(b) in (list, tuple, set, frozenset, collections.deque):
        assert_equal_none_format(a, np.object_(list(b)), options)
    elif not isinstance(b, (np.generic, np.ndarray)):
        if b is None:
            # It should be np.float64([])
            assert type(a) == np.ndarray
            assert a.dtype == np.float64([]).dtype
            assert a.shape == (0, )
        elif (sys.hexversion >= 0x03000000 \
                and isinstance(b, (bytes, bytearray))) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(b, (bytes, bytearray))):
            assert a == np.bytes_(b)
        elif (sys.hexversion >= 0x03000000 \
                and isinstance(b, str)) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(b, unicode)):
            assert_equal_none_format(a, np.unicode_(b), options)
        elif (sys.hexversion >= 0x03000000 \
                and type(b) == int) \
                or (sys.hexversion < 0x03000000 \
                and type(b) == long):
            if b > 2**63 or b < -(2**63 - 1):
                assert_equal_none_format(a, np.bytes_(b), options)
            else:
                assert_equal_none_format(a, np.int64(b), options)
        else:
            assert_equal_none_format(a, np.array(b)[()], options)
    else:
#.........这里部分代码省略.........
开发者ID:sungjinlees,项目名称:hdf5storage,代码行数:101,代码来源:asserts.py


示例10: assert_equal_matlab_format

def assert_equal_matlab_format(a, b, options=None):
    # Compares a and b for equality. b is always the original. If they
    # are dictionaries, a must be a structured ndarray and they must
    # have the same set of keys, after which they values must all be
    # compared. If they are a collection type (list, tuple, set,
    # frozenset, or deque), then the compairison must be made with b
    # converted to an object array. If the original is not a numpy type
    # (isn't or doesn't inherit from np.generic or np.ndarray), then it
    # is a matter of converting it to the appropriate numpy
    # type. Otherwise, both are supposed to be numpy types. For object
    # arrays, each element must be iterated over to be compared. Then,
    # if it isn't a string type, then they must have the same dtype,
    # shape, and all elements. All strings are converted to numpy.str_
    # on read unless they were stored as a numpy.bytes_ due to having
    # non-ASCII characters. If it is empty, it has shape (1, 0). A
    # numpy.str_ has all of its strings per row compacted together. A
    # numpy.bytes_ string has to have the same thing done, but then it
    # needs to be converted up to UTF-32 and to numpy.str_ through
    # uint32. Big longs and ints end up getting converted to UTF-16
    # uint16's when written and read back as UTF-32 numpy.unicode_.
    #
    # In all cases, we expect things to be at least two dimensional
    # arrays.
    if type(b) == dict or (sys.hexversion >= 0x2070000
                           and type(b) == collections.OrderedDict):
        assert type(a) == np.ndarray
        assert a.dtype.names is not None

        # Determine if any of the keys could not be stored as str. If
        # they all can be, then the dtype field names should be the
        # keys. Otherwise, they should be 'keys' and 'values'.
        all_str_keys = True
        if sys.hexversion >= 0x03000000:
            tp_str = str
            tp_bytes = bytes
            converters = {tp_str: lambda x: x,
                          tp_bytes: lambda x: x.decode('UTF-8'),
                          np.bytes_:
                          lambda x: bytes(x).decode('UTF-8'),
                          np.unicode_: lambda x: str(x)}
            tp_conv = lambda x: converters[type(x)](x)
            tp_conv_str = lambda x: tp_conv(x)
        else:
            tp_str = unicode
            tp_bytes = str
            converters = {tp_str: lambda x: x,
                          tp_bytes: lambda x: x.decode('UTF-8'),
                          np.bytes_:
                          lambda x: bytes(x).decode('UTF-8'),
                          np.unicode_: lambda x: unicode(x)}
            tp_conv = lambda x: converters[type(x)](x)
            tp_conv_str = lambda x: tp_conv(x).encode('UTF-8')
        tps = tuple(converters.keys())
        for k in b.keys():
            if type(k) not in tps:
                all_str_keys = False
                break
            try:
                k_str = tp_conv(k)
            except:
                all_str_keys = False
                break
        if all_str_keys:
            assert set(a.dtype.names) == set([tp_conv_str(k)
                                              for k in b.keys()])
            for k in b:
                assert_equal_matlab_format(a[tp_conv_str(k)][0],
                                           b[k], options)
        else:
            names = (options.dict_like_keys_name,
                     options.dict_like_values_name)
            assert set(a.dtype.names) == set(names)
            keys = a[names[0]][0]
            values = a[names[1]][0]
            assert_equal_matlab_format(keys, tuple(b.keys()), options)
            assert_equal_matlab_format(values, tuple(b.values()),
                                       options)
    elif type(b) in (list, tuple, set, frozenset, collections.deque):
        assert_equal_matlab_format(a, np.object_(list(b)), options)
    elif not isinstance(b, (np.generic, np.ndarray)):
        if b is None:
            # It should be np.zeros(shape=(0, 1), dtype='float64'))
            assert type(a) == np.ndarray
            assert a.dtype == np.dtype('float64')
            assert a.shape == (1, 0)
        elif (sys.hexversion >= 0x03000000 \
                and isinstance(b, (bytes, str, bytearray))) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(b, (bytes, unicode, bytearray))):
            if len(b) == 0:
                assert_equal(a, np.zeros(shape=(1, 0), dtype='U'),
                             options)
            elif isinstance(b, (bytes, bytearray)):
                try:
                    c = np.unicode_(b.decode('ASCII'))
                except:
                    c = np.bytes_(b)
                assert_equal(a, np.atleast_2d(c), options)
            else:
                assert_equal(a, np.atleast_2d(np.unicode_(b)), options)
#.........这里部分代码省略.........
开发者ID:sungjinlees,项目名称:hdf5storage,代码行数:101,代码来源:asserts.py


示例11: assert_equal_none_format

def assert_equal_none_format(a, b):
    # Compares a and b for equality. b is always the original. If they
    # are dictionaries, a must be a structured ndarray and they must
    # have the same set of keys, after which they values must all be
    # compared. If they are a collection type (list, tuple, set,
    # frozenset, or deque), then the compairison must be made with b
    # converted to an object array. If the original is not a numpy type
    # (isn't or doesn't inherit from np.generic or np.ndarray), then it
    # is a matter of converting it to the appropriate numpy
    # type. Otherwise, both are supposed to be numpy types. For object
    # arrays, each element must be iterated over to be compared. Then,
    # if it isn't a string type, then they must have the same dtype,
    # shape, and all elements. If it is an empty string, then it would
    # have been stored as just a null byte (recurse to do that
    # comparison). If it is a bytes_ type, the dtype, shape, and
    # elements must all be the same. If it is string_ type, we must
    # convert to uint32 and then everything can be compared.
    if type(b) == dict:
        assert type(a) == np.ndarray
        assert a.dtype.names is not None
        assert set(a.dtype.names) == set(b.keys())
        for k in b:
            assert_equal_none_format(a[k][0], b[k])
    elif type(b) in (list, tuple, set, frozenset, collections.deque):
        assert_equal_none_format(a, np.object_(list(b)))
    elif not isinstance(b, (np.generic, np.ndarray)):
        if b is None:
            # It should be np.float64([])
            assert type(a) == np.ndarray
            assert a.dtype == np.float64([]).dtype
            assert a.shape == (0, )
        elif (sys.hexversion >= 0x03000000 \
                and isinstance(b, (bytes, bytearray))) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(b, (bytes, bytearray))):
            assert a == np.bytes_(b)
        elif (sys.hexversion >= 0x03000000 \
                and isinstance(b, str)) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(b, unicode)):
            assert_equal_none_format(a, np.unicode_(b))
        else:
            assert_equal_none_format(a, np.array(b)[()])
    else:
        if b.dtype.name != 'object':
            if b.dtype.char in ('U', 'S'):
                if b.dtype.char == 'S' and b.shape == tuple() \
                        and len(b) == 0:
                    assert_equal(a, \
                        np.zeros(shape=tuple(), dtype=b.dtype.char))
                elif b.dtype.char == 'U':
                    if b.shape == tuple() and len(b) == 0:
                        c = np.uint32(())
                    else:
                        c = np.atleast_1d(b).view(np.uint32)
                    assert a.dtype == c.dtype
                    assert a.shape == c.shape
                    npt.assert_equal(a, c)
                else:
                    assert a.dtype == b.dtype
                    assert a.shape == b.shape
                    npt.assert_equal(a, b)
            else:
                assert a.dtype == b.dtype
                # Now, if b.shape is just all ones, then a.shape will
                # just be (1,). Otherwise, we need to compare the shapes
                # directly. Also, dimensions need to be squeezed before
                # comparison in this case.
                assert np.prod(a.shape) == np.prod(b.shape)
                assert a.shape == b.shape \
                    or (np.prod(b.shape) == 1 and a.shape == (1,))
                if np.prod(a.shape) == 1:
                    a = np.squeeze(a)
                    b = np.squeeze(b)
                npt.assert_equal(a, b)
        else:
            assert a.dtype == b.dtype
            assert a.shape == b.shape
            for index, x in np.ndenumerate(a):
                assert_equal_none_format(a[index], b[index])
开发者ID:CyberLight,项目名称:hdf5storage,代码行数:80,代码来源:asserts.py


示例12: assert_equal_matlab_format

def assert_equal_matlab_format(a, b):
    # Compares a and b for equality. b is always the original. If they
    # are dictionaries, a must be a structured ndarray and they must
    # have the same set of keys, after which they values must all be
    # compared. If they are a collection type (list, tuple, set,
    # frozenset, or deque), then the compairison must be made with b
    # converted to an object array. If the original is not a numpy type
    # (isn't or doesn't inherit from np.generic or np.ndarray), then it
    # is a matter of converting it to the appropriate numpy
    # type. Otherwise, both are supposed to be numpy types. For object
    # arrays, each element must be iterated over to be compared. Then,
    # if it isn't a string type, then they must have the same dtype,
    # shape, and all elements. All strings are converted to numpy.str_
    # on read. If it is empty, it has shape (1, 0). A numpy.str_ has all
    # of its strings per row compacted together. A numpy.bytes_ string
    # has to have the same thing done, but then it needs to be converted
    # up to UTF-32 and to numpy.str_ through uint32.
    #
    # In all cases, we expect things to be at least two dimensional
    # arrays.
    if type(b) == dict:
        assert type(a) == np.ndarray
        assert a.dtype.names is not None
        assert set(a.dtype.names) == set(b.keys())
        for k in b:
            assert_equal_matlab_format(a[k][0], b[k])
    elif type(b) in (list, tuple, set, frozenset, collections.deque):
        assert_equal_matlab_format(a, np.object_(list(b)))
    elif not isinstance(b, (np.generic, np.ndarray)):
        if b is None:
            # It should be np.zeros(shape=(0, 1), dtype='float64'))
            assert type(a) == np.ndarray
            assert a.dtype == np.dtype('float64')
            assert a.shape == (1, 0)
        elif (sys.hexversion >= 0x03000000 \
                and isinstance(b, (bytes, str, bytearray))) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(b, (bytes, unicode, bytearray))):
            if len(b) == 0:
                assert_equal(a, np.zeros(shape=(1, 0), dtype='U'))
            elif isinstance(b, (bytes, bytearray)):
                assert_equal(a, np.atleast_2d(np.unicode_(b.decode())))
            else:
                assert_equal(a, np.atleast_2d(np.unicode_(b)))
        else:
            assert_equal(a, np.atleast_2d(np.array(b)))
    else:
        if b.dtype.name != 'object':
            if b.dtype.char in ('U', 'S'):
                if len(b) == 0 and (b.shape == tuple() \
                        or b.shape == (0, )):
                    assert_equal(a, np.zeros(shape=(1, 0),
                                 dtype='U'))
                elif b.dtype.char == 'U':
                    c = np.atleast_1d(b)
                    c = np.atleast_2d(c.view(np.dtype('U' \
                        + str(c.shape[-1]*c.dtype.itemsize//4))))
                    assert a.dtype == c.dtype
                    assert a.shape == c.shape
                    npt.assert_equal(a, c)
                elif b.dtype.char == 'S':
                    c = np.atleast_1d(b)
                    c = c.view(np.dtype('S' \
                        + str(c.shape[-1]*c.dtype.itemsize)))
                    c = np.uint32(c.view(np.dtype('uint8')))
                    c = c.view(np.dtype('U' + str(c.shape[-1])))
                    c = np.atleast_2d(c)
                    assert a.dtype == c.dtype
                    assert a.shape == c.shape
                    npt.assert_equal(a, c)
                    pass
                else:
                    c = np.atleast_2d(b)
                    assert a.dtype == c.dtype
                    assert a.shape == c.shape
                    npt.assert_equal(a, c)
            else:
                c = np.atleast_2d(b)
                # An empty complex number gets turned into a real
                # number when it is stored.
                if np.prod(c.shape) == 0 \
                        and b.dtype.name.startswith('complex'):
                    c = np.real(c)
                # If it is structured, check that the field names are
                # the same, in the same order, and then go through them
                # one by one. Otherwise, make sure the dtypes and shapes
                # are the same before comparing all values.
                if b.dtype.names is None and a.dtype.names is None:
                    assert a.dtype == c.dtype
                    assert a.shape == c.shape
                    npt.assert_equal(a, c)
                else:
                    assert a.dtype.names is not None
                    assert b.dtype.names is not None
                    assert set(a.dtype.names) == set(b.dtype.names)
                    assert a.dtype.names == b.dtype.names
                    a = a.flatten()
                    b = b.flatten()
                    for k in b.dtype.names:
                        for index, x in np.ndenumerate(a):
#.........这里部分代码省略.........
开发者ID:CyberLight,项目名称:hdf5storage,代码行数:101,代码来源:asserts.py


示例13: train

def train(fpath):
    df = pd.read_csv(fpath)
    df = df.drop(['DateTime'], axis=1)
    df.SubId = np.object_(np.int64(df.SubId))
    df.UserId = np.object_(df.UserId)
    df.Rating = np.int64(df.Rating)
    # remove users with less than 50 ratings
    temp = df.UserId.value_counts()[df.UserId.value_counts() < 50].index
    temp = set(temp)
    remain = []
    for i in df.index:
        if df.UserId[i] not in temp:
            remain.append(i)
    df = df.loc[remain]
    # remove items with less than 50 ratings
    temp = df.SubId.value_counts()[df.SubId.value_counts() < 50].index
    temp = set(temp)
    remain = []
    for i in df.index:
        if df.SubId[i] not in temp:
            remain.append(i)
    df = df.loc[remain]

    sf = gl.SFrame(df)
    print 'finished reading in data'
    dataset, test = gl.recommender.util.random_split_by_user(sf,
                                                             user_id='UserId',
                                                             item_id='SubId',
                                                             item_test_proportion=0.2,
                                                             random_seed=2345)
    training, validate = gl.recommender.util.random_split_by_user(dataset,
                                                                  user_id='UserId',
                                                                  item_id='SubId',
                                                                  item_test_proportion=0.25,
                                                                  random_seed=3456)
    numf = [2 ** e for e in range(3, 8)]
    regl = [1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 1e-3]
    res = {}
    min_rmse = 99999.0
    coor_min_rmse = (numf[0], regl[0])
    for j in numf:
        for i in regl:
            rcmder = gl.recommender.factorization_recommender.create(training,
                                                                     user_id='UserId',
                                                                     item_id='SubId',
                                                                     target='Rating',
                                                                     regularization=i,
                                                                     num_factors=j)
            res[(j, i)] = rcmder.evaluate(validate, metric='rmse',
                                          target='Rating')['rmse_overall']
            if res[(j, i)] < min_rmse:
                min_rmse = res[(j, i)]
                coor_min_rmse = (j, i)
    print res
    print 'best combination is {} with RMSE {}'.format(coor_min_rmse, min_rmse)
    rcmder = gl.recommender.factorization_recommender.create(dataset,
                                                             user_id='UserId',
                                                             item_id='SubId',
                                                             target='Rating',
                                                             regularization=coor_min_rmse[1],
                                                             num_factors=coor_min_rmse[0])
    print 'finished training model'
    print rcmder.evaluate(test, metric='rmse', target='Rating')
    return rcmder
开发者ID:glennq,项目名称:bangumi_anime_recommender,代码行数:64,代码来源:MFRecommender_reg.py



注:本文中的numpy.object_函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.ones函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.numpysum函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap