本文整理汇总了Python中numpy.ones_like函数的典型用法代码示例。如果您正苦于以下问题:Python ones_like函数的具体用法?Python ones_like怎么用?Python ones_like使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ones_like函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, capacity=100, cost=100, number=None):
Vehicle = namedtuple("Vehicle", ["index", "capacity", "cost"])
if number is None:
self.number = np.size(capacity)
else:
self.number = number
idxs = np.array(range(0, self.number))
if np.isscalar(capacity):
capacities = capacity * np.ones_like(idxs)
elif np.size(capacity) != np.size(capacity):
print("capacity is neither scalar, nor the same size as num!")
else:
capacities = capacity
if np.isscalar(cost):
costs = cost * np.ones_like(idxs)
elif np.size(cost) != self.number:
print(np.size(cost))
print("cost is neither scalar, nor the same size as num!")
else:
costs = cost
self.vehicles = [Vehicle(idx, capacity, cost) for idx, capacity, cost in zip(idxs, capacities, costs)]
开发者ID:supermihi,项目名称:or-tools,代码行数:26,代码来源:cvrptw.py
示例2: get_dummy_particles
def get_dummy_particles():
x, y = numpy.mgrid[-5 * dx : box_length + 5 * dx + 1e-10 : dx, -5 * dx : box_height + 5 * dx + 1e-10 : dx]
xd, yd = x.ravel(), y.ravel()
md = numpy.ones_like(xd) * m
hd = numpy.ones_like(xd) * h
rhod = numpy.ones_like(xd) * ro
cd = numpy.ones_like(xd) * co
pd = numpy.zeros_like(xd)
dummy_fluid = base.get_particle_array(name="dummy_fluid", type=Fluid, x=xd, y=yd, h=hd, rho=rhod, c=cd, p=pd)
# remove indices within the square
indices = []
np = dummy_fluid.get_number_of_particles()
x, y = dummy_fluid.get("x", "y")
for i in range(np):
if -dx / 2 <= x[i] <= box_length + dx / 2:
if -dx / 2 <= y[i] <= box_height + dx / 2:
indices.append(i)
to_remove = base.LongArray(len(indices))
to_remove.set_data(numpy.array(indices))
dummy_fluid.remove_particles(to_remove)
return dummy_fluid
开发者ID:sabago,项目名称:pysph,代码行数:32,代码来源:moving_square.py
示例3: test_arithmetic_overload_ccddata_operand
def test_arithmetic_overload_ccddata_operand(ccd_data):
ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data))
operand = ccd_data.copy()
result = ccd_data.add(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
2 * ccd_data.data)
np.testing.assert_array_equal(result.uncertainty.array,
np.sqrt(2) * ccd_data.uncertainty.array)
result = ccd_data.subtract(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
0 * ccd_data.data)
np.testing.assert_array_equal(result.uncertainty.array,
np.sqrt(2) * ccd_data.uncertainty.array)
result = ccd_data.multiply(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
ccd_data.data ** 2)
expected_uncertainty = (np.sqrt(2) * np.abs(ccd_data.data) *
ccd_data.uncertainty.array)
np.testing.assert_allclose(result.uncertainty.array,
expected_uncertainty)
result = ccd_data.divide(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
np.ones_like(ccd_data.data))
expected_uncertainty = (np.sqrt(2) / np.abs(ccd_data.data) *
ccd_data.uncertainty.array)
np.testing.assert_allclose(result.uncertainty.array,
expected_uncertainty)
开发者ID:AlexaVillaume,项目名称:ccdproc,代码行数:34,代码来源:test_ccddata.py
示例4: fix_chip_wavelength
def fix_chip_wavelength(model_orders, data_orders, band_cutoff=1870):
""" Adjust the wavelength in data_orders to be self-consistent
"""
# H band
model_orders_H = [o.copy() for o in model_orders if o.x[-1] < band_cutoff]
data_orders_H = [o.copy() for o in data_orders if o.x[-1] < band_cutoff]
ordernums_H = 121.0 - np.arange(len(model_orders_H))
p_H = fit_wavelength(model_orders_H, ordernums_H, first_order=3, last_order=len(ordernums_H) - 4)
# K band
model_orders_K = [o.copy() for o in model_orders if o.x[-1] > band_cutoff]
data_orders_K = [o.copy() for o in data_orders if o.x[-1] > band_cutoff]
ordernums_K = 92.0 - np.arange(len(model_orders_K))
p_K = fit_wavelength(model_orders_K, ordernums_K, first_order=7, last_order=len(ordernums_K) - 4)
new_orders = []
for i, order in enumerate(data_orders):
pixels = np.arange(order.size(), dtype=np.float)
if order.x[-1] < band_cutoff:
# H band
ordernum = ordernums_H[i] * np.ones_like(pixels)
wave = p_H(pixels, ordernum) / ordernum
else:
# K band
ordernum = ordernums_K[i-len(ordernums_H)] * np.ones_like(pixels)
wave = p_K(pixels, ordernum) / ordernum
new_orders.append(DataStructures.xypoint(x=wave, y=order.y, cont=order.cont, err=order.err))
return new_orders
开发者ID:kgullikson88,项目名称:IGRINS_Scripts,代码行数:29,代码来源:ApplyTelluricCorrection.py
示例5: get_fluid
def get_fluid():
""" Get the fluid particle array """
x, y = numpy.mgrid[dx : box_length - 1e-10 : dx, dx : box_height - 1e-10 : dx]
xf, yf = x.ravel(), y.ravel()
mf = numpy.ones_like(xf) * m
hf = numpy.ones_like(xf) * h
rhof = numpy.ones_like(xf) * ro
cf = numpy.ones_like(xf) * co
pf = numpy.zeros_like(xf)
fluid = base.get_particle_array(name="fluid", type=Fluid, x=xf, y=yf, h=hf, rho=rhof, c=cf, p=pf)
# remove indices within the square
indices = []
np = fluid.get_number_of_particles()
x, y = fluid.get("x", "y")
for i in range(np):
if 1.0 - dx / 2 <= x[i] <= 2.0 + dx / 2:
if 2.0 - dx / 2 <= y[i] <= 3.0 + dx / 2:
indices.append(i)
to_remove = base.LongArray(len(indices))
to_remove.set_data(numpy.array(indices))
fluid.remove_particles(to_remove)
return fluid
开发者ID:sabago,项目名称:pysph,代码行数:34,代码来源:moving_square.py
示例6: noise_variance_feedpairs
def noise_variance_feedpairs(self, fi, fj, f_indices, nt_per_day, ndays=None):
ndays = self.ndays if not ndays else ndays # Set to value if not set.
t_int = ndays * units.t_sidereal / nt_per_day
# bw = 1.0e6 * (self.freq_upper - self.freq_lower) / self.num_freq
bw = np.abs(self.frequencies[1] - self.frequencies[0]) * 1e6
return np.ones_like(fi) * np.ones_like(fj) * 2.0*self.tsys(f_indices)**2 / (t_int * bw) # 2.0 for two pol
开发者ID:TianlaiProject,项目名称:tlpipe,代码行数:7,代码来源:telescope.py
示例7: prime_to_pixel
def prime_to_pixel(self, xprime, yprime, color=0):
color0 = self._get_ricut()
g0, g1, g2, g3 = self._get_drow()
h0, h1, h2, h3 = self._get_dcol()
px, py, qx, qy = self._get_cscc()
# #$(%*&^(%$%*& bad documentation.
(px,py) = (py,px)
(qx,qy) = (qy,qx)
qx = qx * np.ones_like(xprime)
qy = qy * np.ones_like(yprime)
xprime -= np.where(color < color0, px * color, qx)
yprime -= np.where(color < color0, py * color, qy)
# Now invert:
# yprime = y + g0 + g1 * x + g2 * x**2 + g3 * x**3
# xprime = x + h0 + h1 * x + h2 * x**2 + h3 * x**3
x = xprime - h0
# dumb-ass Newton's method
dx = 1.
# FIXME -- should just update the ones that aren't zero
# FIXME -- should put in some failsafe...
while np.max(np.abs(np.atleast_1d(dx))) > 1e-10:
xp = x + h0 + h1 * x + h2 * x**2 + h3 * x**3
dxpdx = 1 + h1 + h2 * 2*x + h3 * 3*x**2
dx = (xprime - xp) / dxpdx
x += dx
y = yprime - (g0 + g1 * x + g2 * x**2 + g3 * x**3)
return (x, y)
开发者ID:joshuawallace,项目名称:astrometry.net,代码行数:30,代码来源:common.py
示例8: histgram_3D
def histgram_3D(data):
'''
入力された二次元配列を3Dhistgramとして表示する
'''
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = data[:,0]
y = data[:,1]
hist, xedges, yedges = np.histogram2d(x, y, bins=30)
X, Y = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
# bar3dでは行にする
X = X.flatten()
Y = Y.flatten()
Z = np.zeros(len(X))
# 表示するバーの太さ
dx = (xedges[1] - xedges[0]) * np.ones_like(Z)
dy = (yedges[1] - yedges[0]) * np.ones_like(Z)
dz = hist.flatten() # これはそのままでok
# 描画
ax.bar3d(X, Y, Z, dx, dy, dz, color='b', zsort='average')
开发者ID:DriesDries,项目名称:shangri-la,代码行数:26,代码来源:modeling.py
示例9: isclose
def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
def within_tol(x, y, atol, rtol):
result = np.less_equal(np.abs(x-y), atol + rtol * np.abs(y))
if np.isscalar(a) and np.isscalar(b):
result = np.bool(result)
return result
x = np.array(a, copy=False, subok=True, ndmin=1)
y = np.array(b, copy=False, subok=True, ndmin=1)
xfin = np.isfinite(x)
yfin = np.isfinite(y)
if np.all(xfin) and np.all(yfin):
return within_tol(x, y, atol, rtol)
else:
finite = xfin & yfin
cond = np.zeros_like(finite, subok=True)
# Because we're using boolean indexing, x & y must be the same shape.
# Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in
# lib.stride_tricks, though, so we can't import it here.
x = x * np.ones_like(cond)
y = y * np.ones_like(cond)
# Avoid subtraction with infinite/nan values...
cond[finite] = within_tol(x[finite], y[finite], atol, rtol)
# Check for equality of infinite values...
cond[~finite] = (x[~finite] == y[~finite])
if equal_nan:
# Make NaN == NaN
cond[np.isnan(x) & np.isnan(y)] = True
return cond
开发者ID:ismaelresp,项目名称:PyEMMA,代码行数:29,代码来源:numeric.py
示例10: _prepare_sw_arguments
def _prepare_sw_arguments(self, ncol, nlay):
aldif = _climlab_to_rrtm_sfc(self.aldif * np.ones_like(self.Ts))
aldir = _climlab_to_rrtm_sfc(self.aldir * np.ones_like(self.Ts))
asdif = _climlab_to_rrtm_sfc(self.asdif * np.ones_like(self.Ts))
asdir = _climlab_to_rrtm_sfc(self.asdir * np.ones_like(self.Ts))
coszen = _climlab_to_rrtm_sfc(self.coszen * np.ones_like(self.Ts))
# THE REST OF THESE ARGUMENTS ARE STILL BEING HARD CODED.
# NEED TO FIX THIS UP...
# These arrays have an extra dimension for number of bands
dim_sw1 = [nbndsw,ncol,nlay] # [nbndsw,ncol,nlay]
dim_sw2 = [ncol,nlay,nbndsw] # [ncol,nlay,nbndsw]
tauc = np.zeros(dim_sw1) # In-cloud optical depth
ssac = np.zeros(dim_sw1) # In-cloud single scattering albedo
asmc = np.zeros(dim_sw1) # In-cloud asymmetry parameter
fsfc = np.zeros(dim_sw1) # In-cloud forward scattering fraction (delta function pointing forward "forward peaked scattering")
# AEROSOLS
tauaer = np.zeros(dim_sw2) # Aerosol optical depth (iaer=10 only), Dimensions, (ncol,nlay,nbndsw)] # (non-delta scaled)
ssaaer = np.zeros(dim_sw2) # Aerosol single scattering albedo (iaer=10 only), Dimensions, (ncol,nlay,nbndsw)] # (non-delta scaled)
asmaer = np.zeros(dim_sw2) # Aerosol asymmetry parameter (iaer=10 only), Dimensions, (ncol,nlay,nbndsw)] # (non-delta scaled)
ecaer = np.zeros([ncol,nlay,naerec]) # Aerosol optical depth at 0.55 micron (iaer=6 only), Dimensions, (ncol,nlay,naerec)] # (non-delta scaled)
return (aldif,aldir,asdif,asdir,coszen,tauc,ssac,asmc,
fsfc,tauaer,ssaaer,asmaer,ecaer)
开发者ID:cjcardinale,项目名称:climlab,代码行数:25,代码来源:rrtm.py
示例11: _scalars_changed
def _scalars_changed(self, s):
self.dataset.point_data.scalars = s
self.dataset.point_data.scalars.name = 'scalars'
self.set(vectors=np.c_[np.ones_like(s),
np.ones_like(s),
s])
self.update()
开发者ID:JLHelm,项目名称:mayavi,代码行数:7,代码来源:sources.py
示例12: set_jds
def set_jds(self, val1, val2):
self._check_scale(self._scale) # Validate scale.
sum12, err12 = two_sum(val1, val2)
iy_start = np.trunc(sum12).astype(np.int)
extra, y_frac = two_sum(sum12, -iy_start)
y_frac += extra + err12
val = (val1 + val2).astype(np.double)
iy_start = np.trunc(val).astype(np.int)
imon = np.ones_like(iy_start)
iday = np.ones_like(iy_start)
ihr = np.zeros_like(iy_start)
imin = np.zeros_like(iy_start)
isec = np.zeros_like(y_frac)
# Possible enhancement: use np.unique to only compute start, stop
# for unique values of iy_start.
scale = self.scale.upper().encode('ascii')
jd1_start, jd2_start = erfa.dtf2d(scale, iy_start, imon, iday,
ihr, imin, isec)
jd1_end, jd2_end = erfa.dtf2d(scale, iy_start + 1, imon, iday,
ihr, imin, isec)
t_start = Time(jd1_start, jd2_start, scale=self.scale, format='jd')
t_end = Time(jd1_end, jd2_end, scale=self.scale, format='jd')
t_frac = t_start + (t_end - t_start) * y_frac
self.jd1, self.jd2 = day_frac(t_frac.jd1, t_frac.jd2)
开发者ID:BTY2684,项目名称:astropy,代码行数:30,代码来源:formats.py
示例13: plot
def plot(y, title, t):
a = y[0]
b = y[1]
print a
if a and b:
bins = numpy.linspace(min(a+b), max(a+b), 20)
pyplot.clf()
if a:
w0 = numpy.ones_like(a)/float(len(a))
pyplot.hist(a, bins, weights=w0,alpha=0.5, color='r', histtype='stepfilled', label='link')
if b:
w1 = numpy.ones_like(b)/float(len(b))
pyplot.hist(b, bins,weights=w1, alpha=0.5, color='b', histtype='stepfilled', label='no link')
pyplot.title(title)
pyplot.ylabel("Fraction over population")
pyplot.xlabel("Similarity")
pyplot.legend();
#plt.savefig("/Users/spoulson/Dropbox/my_papers/figs/"+title.replace(' ','_')+'_'+ str(t) +'.png')
pyplot.show()
开发者ID:steve-poulson,项目名称:inquisition,代码行数:26,代码来源:experiment4.py
示例14: get_circular_patch
def get_circular_patch(name="", type=0, dx=0.05):
x,y = numpy.mgrid[-1.05:1.05+1e-4:dx, -1.05:1.05+1e-4:dx]
x = x.ravel()
y = y.ravel()
m = numpy.ones_like(x)*dx*dx
h = numpy.ones_like(x)*2*dx
rho = numpy.ones_like(x)
p = 0.5*1.0*100*100*(1 - (x**2 + y**2))
cs = numpy.ones_like(x) * 100.0
u = 0*x
v = 0*y
indices = []
for i in range(len(x)):
if numpy.sqrt(x[i]*x[i] + y[i]*y[i]) - 1 > 1e-10:
indices.append(i)
pa = base.get_particle_array(x=x, y=y, m=m, rho=rho, h=h, p=p, u=u, v=v,
cs=cs,name=name, type=type)
la = base.LongArray(len(indices))
la.set_data(numpy.array(indices))
pa.remove_particles(la)
pa.set(idx=numpy.arange(len(pa.x)))
return pa
开发者ID:pankajp,项目名称:pysph,代码行数:34,代码来源:drops.py
示例15: siggen_model
def siggen_model(s, rad, phi, z, e, temp, num_1, num_2, num_3, den_1, den_2, den_3):
out = np.zeros_like(data)
detector.SetTemperature(temp)
siggen_wf= detector.GetSiggenWaveform(rad, phi, z, energy=2600)
if siggen_wf is None:
return np.ones_like(data)*-1.
if np.amax(siggen_wf) == 0:
print "wtf is even happening here?"
return np.ones_like(data)*-1.
siggen_wf = np.pad(siggen_wf, (detector.zeroPadding,0), 'constant', constant_values=(0, 0))
num = [num_1, num_2, num_3]
den = [1, den_1, den_2, den_3]
# num = [-1.089e10, 5.863e17, 6.087e15]
# den = [1, 3.009e07, 3.743e14,5.21e18]
system = signal.lti(num, den)
t = np.arange(0, len(siggen_wf)*10E-9, 10E-9)
tout, siggen_wf, x = signal.lsim(system, siggen_wf, t)
siggen_wf /= np.amax(siggen_wf)
siggen_data = siggen_wf[detector.zeroPadding::]
siggen_data = siggen_data*e
out[s:] = siggen_data[0:(len(data) - s)]
return out
开发者ID:benshanks,项目名称:mjd-analysis,代码行数:29,代码来源:signal_model_pymc3.py
示例16: test_ewma
def test_ewma(self):
ewma = EWMAVariance()
sv = ewma.starting_values(self.resids)
assert_equal(sv.shape[0], ewma.num_params)
bounds = ewma.bounds(self.resids)
assert_equal(len(bounds), 0)
var_bounds = ewma.variance_bounds(self.resids)
backcast = ewma.backcast(self.resids)
parameters = np.array([])
names = ewma.parameter_names()
names_target = []
assert_equal(names, names_target)
ewma.compute_variance(parameters, self.resids, self.sigma2,
backcast, var_bounds)
cond_var_direct = np.zeros_like(self.sigma2)
parameters = np.array([0.0, 0.06, 0.94])
rec.garch_recursion(parameters,
self.resids ** 2.0,
np.sign(self.resids),
cond_var_direct,
1, 0, 1, self.T, backcast, var_bounds)
# sigma3 = np.zeros_like(self.sigma2)
# sigma3[0] = backcast
# for t in range(1,self.T):
# sigma3[t] = 0.94 * sigma3[t-1] + 0.06 * self.resids[t-1]**2.0
assert_allclose(self.sigma2 / cond_var_direct,
np.ones_like(self.sigma2))
A, b = ewma.constraints()
A_target = np.empty((0, 0))
b_target = np.empty((0,))
assert_array_equal(A, A_target)
assert_array_equal(b, b_target)
state = np.random.get_state()
rng = Normal()
sim_data = ewma.simulate(parameters, self.T, rng.simulate([]))
np.random.set_state(state)
e = np.random.standard_normal(self.T + 500)
initial_value = 1.0
sigma2 = np.zeros(self.T + 500)
data = np.zeros(self.T + 500)
sigma2[0] = initial_value
data[0] = np.sqrt(initial_value)
for t in range(1, self.T + 500):
sigma2[t] = 0.94 * sigma2[t - 1] + 0.06 * data[t - 1] ** 2.0
data[t] = e[t] * np.sqrt(sigma2[t])
data = data[500:]
sigma2 = sigma2[500:]
assert_almost_equal(data - sim_data[0] + 1.0, np.ones_like(data))
assert_almost_equal(sigma2 / sim_data[1], np.ones_like(sigma2))
assert_equal(ewma.num_params, 0)
assert_equal(ewma.name, 'EWMA/RiskMetrics')
开发者ID:VolosSoftware,项目名称:arch,代码行数:60,代码来源:test_volatility.py
示例17: logit
def logit(prop, max_events=None):
"""Convert proportion (expressed in the range [0, 1]) to logit.
Parameters
----------
prop : float | array-like
the occurrence proportion.
max_events : int | array-like | None
the number of events used to calculate ``prop``. Used in a correction
factor for cases when ``prop`` is 0 or 1, to prevent returning ``inf``.
If ``None``, no correction is done, and ``inf`` or ``-inf`` may result.
Returns
-------
lgt : ``numpy.ndarray``, with shape matching ``numpy.array(prop).shape``.
"""
prop = np.atleast_1d(prop).astype(float)
if np.any([prop > 1, prop < 0]):
raise ValueError('Proportions must be in the range [0, 1].')
if max_events is not None:
# add equivalent of half an event to 0s, and subtract same from 1s
max_events = np.atleast_1d(max_events) * np.ones_like(prop)
corr_factor = 0.5 / max_events
for loc in zip(*np.where(prop == 0)):
prop[loc] = corr_factor[loc]
for loc in zip(*np.where(prop == 1)):
prop[loc] = 1 - corr_factor[loc]
return np.log(prop / (np.ones_like(prop) - prop))
开发者ID:mmittag,项目名称:expyfun,代码行数:28,代码来源:_analyze.py
示例18: reflective_transformation
def reflective_transformation(y, lb, ub):
"""Compute reflective transformation and its gradient."""
if in_bounds(y, lb, ub):
return y, np.ones_like(y)
lb_finite = np.isfinite(lb)
ub_finite = np.isfinite(ub)
x = y.copy()
g_negative = np.zeros_like(y, dtype=bool)
mask = lb_finite & ~ub_finite
x[mask] = np.maximum(y[mask], 2 * lb[mask] - y[mask])
g_negative[mask] = y[mask] < lb[mask]
mask = ~lb_finite & ub_finite
x[mask] = np.minimum(y[mask], 2 * ub[mask] - y[mask])
g_negative[mask] = y[mask] > ub[mask]
mask = lb_finite & ub_finite
d = ub - lb
t = np.remainder(y[mask] - lb[mask], 2 * d[mask])
x[mask] = lb[mask] + np.minimum(t, 2 * d[mask] - t)
g_negative[mask] = t > d[mask]
g = np.ones_like(y)
g[g_negative] = -1
return x, g
开发者ID:MechCoder,项目名称:scipy,代码行数:29,代码来源:common.py
示例19: test_blocked
def test_blocked(self):
# test alignments offsets for simd instructions
# alignments for vz + 2 * (vs - 1) + 1
for dt, sz in [(np.float32, 11), (np.float64, 7)]:
for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
type='binary',
max_size=sz):
exp1 = np.ones_like(inp1)
inp1[...] = np.ones_like(inp1)
inp2[...] = np.zeros_like(inp2)
assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg)
assert_almost_equal(np.add(inp1, 1), exp1 + 1, err_msg=msg)
assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg)
np.add(inp1, inp2, out=out)
assert_almost_equal(out, exp1, err_msg=msg)
inp2[...] += np.arange(inp2.size, dtype=dt) + 1
assert_almost_equal(np.square(inp2),
np.multiply(inp2, inp2), err_msg=msg)
assert_almost_equal(np.reciprocal(inp2),
np.divide(1, inp2), err_msg=msg)
inp1[...] = np.ones_like(inp1)
inp2[...] = np.zeros_like(inp2)
np.add(inp1, 1, out=out)
assert_almost_equal(out, exp1 + 1, err_msg=msg)
np.add(1, inp2, out=out)
assert_almost_equal(out, exp1, err_msg=msg)
开发者ID:8ballbb,项目名称:ProjectRothar,代码行数:29,代码来源:test_scalarmath.py
示例20: __test_pass
def __test_pass(axis, data, idx):
# By default, mean aggregation
dsync = librosa.util.sync(data, idx, axis=axis)
if data.ndim == 1 or axis == -1:
assert np.allclose(dsync, 2 * np.ones_like(dsync))
else:
assert np.allclose(dsync, data)
# Explicit mean aggregation
dsync = librosa.util.sync(data, idx, aggregate=np.mean, axis=axis)
if data.ndim == 1 or axis == -1:
assert np.allclose(dsync, 2 * np.ones_like(dsync))
else:
assert np.allclose(dsync, data)
# Max aggregation
dsync = librosa.util.sync(data, idx, aggregate=np.max, axis=axis)
if data.ndim == 1 or axis == -1:
assert np.allclose(dsync, 4 * np.ones_like(dsync))
else:
assert np.allclose(dsync, data)
# Min aggregation
dsync = librosa.util.sync(data, idx, aggregate=np.min, axis=axis)
if data.ndim == 1 or axis == -1:
assert np.allclose(dsync, np.zeros_like(dsync))
else:
assert np.allclose(dsync, data)
# Test for dtype propagation
assert dsync.dtype == data.dtype
开发者ID:kb-rahul,项目名称:librosa,代码行数:31,代码来源:test_util.py
注:本文中的numpy.ones_like函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论