本文整理汇总了Python中numpy.place函数的典型用法代码示例。如果您正苦于以下问题:Python place函数的具体用法?Python place怎么用?Python place使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了place函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: score_MCC
def score_MCC(ground_truth, scores):
'''
assuming the model output is the probability of being default,
then this probability can be used for ranking. Then using the fraction of
default in validation data to assign the proper threshold to the prediction
'''
if isinstance(scores, pd.Series):
scores = scores.values
if isinstance(ground_truth, pd.Series):
ground_truth = ground_truth.values
tmp_ground_truth = np.copy(ground_truth)
fault_frac = tmp_ground_truth.mean()
#print 'score shape:', scores.shape,
print 'mean of groud truth:', fault_frac
thres_value = np.percentile(scores, 100.*(1-fault_frac), axis=0)
print 'threshold for preds:', thres_value
binary_scores = scores > thres_value
binary_scores = binary_scores.astype(int)
## convert to sk-learn format
np.place(binary_scores, binary_scores==0, -1)
np.place(tmp_ground_truth, tmp_ground_truth==0, -1)
return matthews_corrcoef(tmp_ground_truth, binary_scores)
开发者ID:mengyx-work,项目名称:xgboost_hyperopt,代码行数:26,代码来源:validation_tools.py
示例2: conditional_logsumexp
def conditional_logsumexp(where, axis):
masked = -np.ones(a.shape) * np.inf
np.copyto(masked, a, where = where)
masked_sum = logsumexp(masked, axis = axis)
#np.copyto(masked_sum, -np.ones(masked_sum.shape) * np.inf, where = np.isnan(masked_sum))
np.place(masked_sum, np.isnan(masked_sum), -np.inf)
return masked_sum
开发者ID:ingmarschuster,项目名称:ModelSelection,代码行数:7,代码来源:estimator_statistics.py
示例3: make_mask_map_4d
def make_mask_map_4d(data, infile, outfile):
""" Make mask map with 4d dimeions
data: values for levels in infile. Shape = [4th dimension, regions]
infile: input file to replace levels with values
outfile: output file name
"""
from neurosynth.base.mask import Masker
from neurosynth.base import imageutils
from nibabel import nifti1
data = np.array(data)
# Load image with masker
masker = Masker(infile)
img = imageutils.load_imgs(infile, masker)
header = masker.get_header()
shape = header.get_data_shape()[0:3] + (data.shape[0],)
header.set_data_shape(shape)
result = []
for t_dim, t_val in enumerate(data):
result.append(img.copy())
for num, value in enumerate(t_val):
np.place(result[t_dim], img == num + 1, [value])
result = np.hstack(result)
header.set_data_dtype(result.dtype) # Avoids loss of precision
img = nifti1.Nifti1Image(masker.unmask(result).squeeze(), None, header)
img.to_filename(outfile)
开发者ID:margulies,项目名称:NS_Classify,代码行数:33,代码来源:tools.py
示例4: __call__
def __call__(self, x):
x_ = np.asarray(x)
if x_.size == 1:
x_.shape = (1,)
np.place(x_, x_ > 0, [1])
np.place(x_, x_ < 0, [-1])
return x_
开发者ID:evenmarbles,项目名称:rlpy,代码行数:7,代码来源:neuralnet.py
示例5: remove_wrongly_sized_connected_components
def remove_wrongly_sized_connected_components(self, a, min_size, max_size, in_place):
"""
Adapted from http://github.com/jni/ray/blob/develop/ray/morpho.py
(MIT License)
"""
bin_out = self.BinaryOut.value
original_dtype = a.dtype
if not in_place:
a = a.copy()
if min_size == 0 and (max_size is None or max_size > numpy.prod(a.shape)): # shortcut for efficiency
return a
try:
component_sizes = numpy.bincount( a.ravel() )
except TypeError:
# On 32-bit systems, must explicitly convert from uint32 to int
# (This fix is just for VM testing.)
component_sizes = numpy.bincount( numpy.asarray(a.ravel(), dtype=int) )
bad_sizes = component_sizes < min_size
if max_size is not None:
numpy.logical_or( bad_sizes, component_sizes > max_size, out=bad_sizes )
bad_locations = bad_sizes[a]
a[bad_locations] = 0
if (bin_out):
# Replace non-zero values with 1
numpy.place(a,a,1)
return numpy.array(a, dtype=original_dtype)
开发者ID:JensNRAD,项目名称:lazyflow,代码行数:30,代码来源:opFilterLabels.py
示例6: substitute_values
def substitute_values(self, vect):
"""
Internal method to substitute integers into the vector, and construct
metadata to convert back to the original vector.
np.nan is always given -1, all other objects are given integers in
order of apperence.
Parameters
----------
vect : np.array
the vector in which to substitute values in
"""
try:
unique = np.unique(vect)
except:
unique = set(vect)
unique = [
x for x in unique if not isinstance(x, float) or not isnan(x)
]
arr = np.copy(vect)
for new_id, value in enumerate(unique):
np.place(arr, arr==value, new_id)
self.metadata[new_id] = value
arr = arr.astype(np.float)
np.place(arr, np.isnan(arr), -1)
self.arr = arr
if -1 in arr:
self.metadata[-1] = self._missing_id
开发者ID:Rambatino,项目名称:CHAID,代码行数:33,代码来源:column.py
示例7: _getdatafromsql
def _getdatafromsql(connection, tmp_table, query):
"""
Private function creating a ndarray from the current table.
Parameters
----------
connection: sqlite3.Connection
Current SQL connection.
tmp_table: string
Name of the temporary table created for the purpose of keeping ids when WHERE is used
query: string
SQL query.
"""
# Transforms the typestr into dtypes
# Define and execute the query
connection.execute("CREATE TEMPORARY TABLE %s AS %s"%(tmp_table, query))
# Get the list of names and types from the pragma
pragmastr = "PRAGMA TABLE_INFO(%s)"%tmp_table
(names, typestr) = zip(*(_[1:3] for _ in connection.execute(pragmastr).fetchall()))
ndtype = []
for (i, (n, t)) in enumerate(zip(names, typestr)):
# Transform the name into a regular string (not unicode)
n = str(n)
if t =='INTEGER':
ndtype.append((n, int))
elif t =='TEXT':
ndtype.append((n, '|S30'))
elif t == 'BLOB':
ndtype.append((n, object))
else:
ndtype.append((n, float))
# Construct the ndarray
connection.row_factory = sqlite3.Row
data = connection.execute("SELECT * FROM %s"%tmp_table).fetchall()
try:
return np.array(data, dtype=ndtype)
except TypeError:
output = ma.empty(len(data), dtype=ndtype)
# Find the index of the first row (0 or 1)?
rowidref = connection.execute("SELECT rowid FROM %s LIMIT 1"%tmp_table).fetchone()[0]
# Loop through the different fields identifying the null fields to mask
maskstr_template = "SELECT rowid FROM %s WHERE %%s IS NULL"%tmp_table
datastr_template = "SELECT %%s FROM %s WHERE %%s IS NOT NULL"%tmp_table
for (i, field) in enumerate(names):
current_output = output[field]
current_mask = current_output._mask
maskstr = maskstr_template % field
maskidx = [_[0] - rowidref for _ in connection.execute(maskstr).fetchall()]
current_mask[maskidx] = True
datastr = datastr_template % (field, field)
np.place(current_output._data, ~current_mask,
[_[0] for _ in connection.execute(datastr).fetchall()])
connection.execute("DROP TABLE %s"%tmp_table)
return output
开发者ID:calanoue,项目名称:GFIN_Data_Work,代码行数:60,代码来源:sqlite_io.py
示例8: pcprint
def pcprint(self):
if self.doBoth==1:
subplot(1,2,2)
fs=12
else:
fs=15
self.c1=self.data1.copy() #for copying histogram value
data2=np.isfinite(self.data1)
data3=self.data1[data2]
nn=str(self.lineEdit_4.text())
b=nn.split(',')
if len(b)==1:
m=int(b[0])
n=int(b[0])
else:
m=int(b[0])
n=int(b[1])
dmax=nanmax(data3)
dmin=nanmin(data3)
total=dmax-dmin
low=dmin+(total*m)/100
high=dmax-(total*n)/100
datal = np.where(data3 < low ,low,data3)
datah = np.where(datal > high ,high,datal)
if self.checkBox.isChecked(): # for fix Legend
self.c1[0][0]=self.maxdata
self.c1[0][1]=self.mindata
np.place(self.c1,data2,datah)
plt.imshow(self.c1,cmap=get_cmap(self.colormap),extent=[self.originX,self.lastX,self.lastY,self.originY])
plt.text(79.2,31,self.image,fontsize=fs)
plt.title('Percentile Clipped')
plt.colorbar()
开发者ID:adityacp,项目名称:Time_Series_Satellite_Data_Visualizer,代码行数:32,代码来源:TSSDV.py
示例9: remove_wrongly_sized_connected_components
def remove_wrongly_sized_connected_components(a, min_size,
max_size=None,
in_place=False, bin_out=False):
"""
Copied from lazyflow.operators.opFilterLabels.py
Originally adapted from http://github.com/jni/ray/blob/develop/ray/morpho.py
(MIT License)
"""
original_dtype = a.dtype
if not in_place:
a = a.copy()
if min_size == 0 and (max_size is None or max_size > np.prod(a.shape)): # shortcut for efficiency
if (bin_out):
np.place(a,a,1)
return a
try:
component_sizes = np.bincount( a.ravel() )
except TypeError:
# On 32-bit systems, must explicitly convert from uint32 to int
# (This fix is just for VM testing.)
component_sizes = np.bincount( np.asarray(a.ravel(), dtype=int) )
bad_sizes = component_sizes < min_size
if max_size is not None:
np.logical_or( bad_sizes, component_sizes > max_size, out=bad_sizes )
bad_locations = bad_sizes[a]
a[bad_locations] = 0
if (bin_out):
# Replace non-zero values with 1
np.place(a,a,1)
return np.array(a, dtype=original_dtype)
开发者ID:constantinpape,项目名称:DenseReconstruction,代码行数:33,代码来源:dense_reconstruction.py
示例10: matrixDiscreteMaker
def matrixDiscreteMaker(t):
'''
this function converts the frequencies matrix t into an integer valued-matrix
rules used:
less than 1% or nan --> nan
between 1% and 5% --> 1
between 5% and 10% --> 2
between 10% and 20% --> 3
more than 20% --> 4
'''
# nan, convert to 0 to avoid numerical warnings
numpy.place(t,numpy.isnan(t),0)
# between 1% and 5% --> 1
t[numpy.where(numpy.logical_and(t>=0.01, t<0.05))]=1
# between 5% and 10% --> 2
t[numpy.where(numpy.logical_and(t>=0.05, t<0.1))]=2
# between 10% and 20% --> 3
t[numpy.where(numpy.logical_and(t>=0.1, t<0.2))]=3
# more than 20% --> 4
t[numpy.where(numpy.logical_and(t>=0.2, t<1-1e-10))]=4
# less than 1% or nan --> nan, which maps as white. this line should be last in order to avoid numerical warnings
numpy.place(t,t<0.01,float('nan'))
return t
开发者ID:adelomana,项目名称:erebus,代码行数:32,代码来源:abundancesGrapher.py
示例11: sdprint
def sdprint(self):
if self.doBoth==1:
subplot(1,2,2)
fs=12
else:
fs=15
self.c1=self.data1.copy() #for copying histogram value
data2=np.isfinite(self.data1)
data3=self.data1[data2]
mean=np.mean(data3)
sd=np.std(data3)
nn=str(self.lineEdit_4.text())
b=nn.split(',')
if len(b)==1:
m=int(b[0])
n=int(b[0])
else:
m=int(b[0])
n=int(b[1])
low=mean-m*sd
high=mean+n*sd
## print sd,mean,low,high
datal = np.where(data3 < low ,low,data3)
datah = np.where(datal > high ,high,datal)
np.place(self.c1,data2,datah)
if self.checkBox.isChecked(): # for Fix-Legend
self.c1[0][0]=self.maxdata
self.c1[0][1]=self.mindata
plt.imshow(self.c1,cmap=get_cmap(self.colormap),extent=[self.originX,self.lastX,self.lastY,self.originY])
plt.text(79.2,31,self.image,fontsize=fs)
plt.title('Standard Deviation')
plt.colorbar()
开发者ID:adityacp,项目名称:Time_Series_Satellite_Data_Visualizer,代码行数:32,代码来源:TSSDV.py
示例12: IDCTnDequantize
def IDCTnDequantize(prop):
#To dequantize
img3 = prop.image
iHeight, iWidth = img3.shape[:2]
img2 = np.zeros((iHeight,iWidth,3), np.uint8)
#print img2.dtype
for startY in range(0, iHeight, 8):
for startX in range(0, iWidth, 8):
for c in range(0, 3):
block = img3[startY:startY+8, startX:startX+8, c:c+1].reshape(8,8)
blockf = np.float32(block) # float conversion
dst = cv2.idct(blockf) # inverse dct
np.place(dst, dst>255.0, 255.0) # saturation
np.place(dst, dst<0.0, 0.0) # grounding
block = np.uint8(np.around(dst))
# store the results
for y in range(8):
for x in range(8):
img2[startY+y, startX+x, c] = block[y, x]
# convert to BGR
img2 = cv2.cvtColor(img2, cv2.COLOR_YCR_CB2BGR)
prop.image = img2
开发者ID:riddhishb,项目名称:ImageProcessing_Tools,代码行数:27,代码来源:JSteg.py
示例13: micro_step
def micro_step(self):
""" Defining microphysical step """
print "qc min, max przed mikro", self.state["rc"].min(), self.state["rc"].max()
print "nc min, max przed mikro", self.state["nc"].min(), self.state["nc"].max()
# dot_ variables have to be zero before rhs_cellwise
for k in ("dot_th_d", "dot_rv", "dot_rc", "dot_nc", "dot_rr", "dot_nr"):
self.state_dot[k] *= 0.
#pdb.set_trace()
libcl.blk_2m.rhs_cellwise(self.opts,
self.state_dot["dot_th_d"], self.state_dot["dot_rv"],
self.state_dot["dot_rc"], self.state_dot["dot_nc"],
self.state_dot["dot_rr"], self.state_dot["dot_nr"],
self.state["rho_d"], self.state["th_d"],
self.state["rv"], self.state["rc"], self.state["nc"],
self.state["rr"], self.state["nr"], self.dt)
print "qc min, max po mikro", self.state["rc"].min(), self.state["rc"].max()
print "nc min, max po mikro", self.state["nc"].min(), self.state["nc"].max()
for k in ("th_d", "rv", "rc", "nc", "rr", "nr"):
self.state[k] += self.state_dot["dot_"+k] * self.dt
# rc, nc can be sometimes smaller than zero -- TODO!!
np.place(self.state["rc"], self.state["rc"]<0, 0)
np.place(self.state["nc"], self.state["nc"]<0, 0)
print "qc min, max po place", self.state["rc"].min(), self.state["rc"].max()
print "nc min, max po place", self.state["nc"].min(), self.state["nc"].max()
开发者ID:djarecka,项目名称:cloudtest,代码行数:27,代码来源:oop_2mom_adv_hor.py
示例14: generate
def generate(input):
""" Testing function, all parameters are in a single tuple """
seed,gen,p0,p1,n,method,MCsize= input
npran.seed(seed)
if gen.lower() == "ising":
X = ising_X(p1+p0,n)
ynor = norm_y(X,p1)
elif gen.lower() == "genetic":
genes = np.genfromtxt('data/SNPdata.txt', delimiter=',')
np.place(genes,genes!=0,1)
X = given_X(p1+p0,n,genes)
ybin = bern_y(X,p1)
ynor = norm_y(X,p1)
# Logit
bin_logit = ko.knockoff_logit(ybin,X,.2,
knockoff='binary',
method=method,
MCsize=MCsize,
intercept=True
)
bin_logit.fit()
ori_logit = ko.knockoff_logit(ybin,X,.2,
knockoff='original',
intercept=False
)
ori_logit.fit()
trueS = (np.arange(p0+p1)<p1).astype(int)
bin_FDR = np.dot(bin_logit.S,1-trueS)/max(np.sum(bin_logit.S),1)
bin_power = np.dot(bin_logit.S,trueS) /max(p1,1)
ori_FDR = np.dot(ori_logit.S,1-trueS)/max(np.sum(ori_logit.S),1)
ori_power = np.dot(ori_logit.S,trueS) /max(p1,1)
corr = np.corrcoef(ori_logit.S,bin_logit.S)[0,1]
ko_corr = [cor for cor in bin_logit.emp_ko_corr if not np.isnan(cor)]
with open('data/logit_test_'+str(p0+p1)+'_w_n.txt','a') as f:
f.write("%d\t%s\t%d\t%d\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\n" % (seed, gen, p1, n, bin_logit.M_distortion, np.mean(ko_corr), bin_FDR, bin_power, np.mean(ori_logit.emp_ko_corr), ori_FDR, ori_power, corr))
# LASSO
bin_lasso = ko.knockoff_lasso(ynor,X,.2,
knockoff='binary',
method=method,
MCsize=MCsize,
intercept=True
)
bin_lasso.fit(bin_logit.X_lrg)
ori_lasso = ko.knockoff_lasso(ynor,X,.2,
knockoff='original',
intercept=False
)
ori_lasso.fit()
trueS = (np.arange(p0+p1)<p1).astype(int)
bin_FDR = np.dot(bin_lasso.S,1-trueS)/max(np.sum(bin_lasso.S),1)
bin_power = np.dot(bin_lasso.S,trueS) /max(p1,1)
ori_FDR = np.dot(ori_lasso.S,1-trueS)/max(np.sum(ori_lasso.S),1)
ori_power = np.dot(ori_lasso.S,trueS) /max(p1,1)
corr = np.corrcoef(ori_lasso.S,bin_lasso.S)[0,1]
with open('data/lasso_test_'+str(p0+p1)+'_w_n.txt','a') as f:
f.write("%d\t%s\t%d\t%d\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\t%.5f\n" % (seed, gen, p1, n, bin_logit.M_distortion, np.mean(ko_corr), bin_FDR, bin_power, np.mean(ori_lasso.emp_ko_corr), ori_FDR, ori_power, corr))
开发者ID:ajmaurer,项目名称:Chicago-Course-Work,代码行数:60,代码来源:compare.py
示例15: equalise_histogram
def equalise_histogram(image):
histo = generate_histogram(image)
new_image = np.zeros(image.shape)
height, width = image.shape
total_pixels = height * width
freq_sum = np.sum(histo)
for i, freq in enumerate(reversed(histo)):
intensity = 255 - i
new_intensity = round(255 * freq_sum / total_pixels)
temp = image.copy()
np.place(temp, temp != intensity, 0)
np.place(temp, temp == intensity, new_intensity)
new_image += temp
freq_sum -= freq
new_image = np.array(new_image, dtype=np.uint8)
new_histo = generate_histogram(new_image)
plot_histogram(new_histo)
return new_image
开发者ID:gautamabhishek46,项目名称:IVP_Assignment_2,代码行数:26,代码来源:main.py
示例16: logsumexp_array
def logsumexp_array(x, axis=None):
"""
Compute log(sum(exp(x))) along a particular axis for Numpy arrays.
"""
# This implementation hasn't been tested on arrays with dimension > 2!
if axis is None:
max_ent = x.max()
bias = max_ent
else:
max_ent = x.max(axis)
bias = max_ent if axis == 0 else max_ent[:, numpy.newaxis]
# In the no-axis case, if -Inf is the max value, it means *all* the entries
# were -Inf, so we already know what's going to happen and we can skip doing
# real work.
if axis is None and max_ent == LOG_ZERO:
return LOG_ZERO
# Otherwise, there's a bit of trickiness here - subtracting -Inf results in
# Nan, so we never want to use that as a bias.
mask = (max_ent == LOG_ZERO)
if mask.any():
# If some rows or columns have only -Inf values, use a bias of 0 in just
# those rows or cols.
numpy.place(max_ent, mask, 0.0)
numpy.place(bias, bias == LOG_ZERO, 0.0)
return max_ent + quiet_log(numpy.sum(numpy.exp(x - bias), axis=axis))
开发者ID:d-unknown-processor,项目名称:speechAD,代码行数:27,代码来源:mathutils.py
示例17: testDropNegatives
def testDropNegatives(self):
# Note: the test is done by replacing segment_ids with 8 to -1
# for index and replace values generated by numpy with 0.
dtypes = [
dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.int64,
dtypes_lib.int32, dtypes_lib.complex64, dtypes_lib.complex128
]
indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3])
num_segments = 12
for indices in indices_flat, indices_flat.reshape(5, 2):
shape = indices.shape + (2,)
for dtype in dtypes:
with self.test_session(use_gpu=True):
tf_x, np_x = self._input(shape, dtype=dtype)
np_ans = self._segmentReduce(
indices, np_x, np.add, op2=None, num_segments=num_segments)
# Replace np_ans[8] with 0 for the value
np_ans[8:] = 0
# Replace 8 with -1 in indices
np.place(indices, indices == 8, [-1])
s = math_ops.unsorted_segment_sum(
data=tf_x, segment_ids=indices, num_segments=num_segments)
tf_ans = s.eval()
self.assertAllClose(np_ans, tf_ans)
self.assertShapeEqual(np_ans, s)
开发者ID:AbhinavJain13,项目名称:tensorflow,代码行数:25,代码来源:segment_reduction_ops_test.py
示例18: get_normalized_data
def get_normalized_data():
print("Reading in and transforming data...")
if not os.path.exists('../large_files/train.csv'):
print('Looking for ../large_files/train.csv')
print('You have not downloaded the data and/or not placed the files in the correct location.')
print('Please get the data from: https://www.kaggle.com/c/digit-recognizer')
print('Place train.csv in the folder large_files adjacent to the class folder')
exit()
df = pd.read_csv('../large_files/train.csv')
data = df.values.astype(np.float32)
np.random.shuffle(data)
X = data[:, 1:]
Y = data[:, 0]
Xtrain = X[:-1000]
Ytrain = Y[:-1000]
Xtest = X[-1000:]
Ytest = Y[-1000:]
# normalize the data
mu = Xtrain.mean(axis=0)
std = Xtrain.std(axis=0)
np.place(std, std == 0, 1)
Xtrain = (Xtrain - mu) / std
Xtest = (Xtest - mu) / std
return Xtrain, Xtest, Ytrain, Ytest
开发者ID:cmagnusb,项目名称:machine_learning_examples,代码行数:29,代码来源:util.py
示例19: solve_tangency
def solve_tangency(R, C, rf, fit_func=lambda mean, var, rf: mean-rf/(var**.5)):
"""Calculates the tangency portfolio given a set of expected returns (R), covariances (C),
risk-free rate (rf), and a fitness function (fit_func) which defaults to the Sharpe ratio.
Returns the weights of the tangency portfolio.
"""
n = len(R)
#Begin with equal weights
W = np.ones([n])/n
# Replace expected returns that are less than rf with rf + a super small value
# since if it's less than rf, the sharpe ratio is negative, which ruins minimization
np.place(R, R<rf, rf+0.00001)
# Set boundaries on weights - no shorting or leverage allowed. Can probably incorporate
# this functionality easily, though.
bounds = [(0., 1.) for i in xrange(n)]
# Set constraints as defined in SciPy's documentation for minimize. 'fun' forces the weights to sum to 1
constraints = ({'type':'eq',
'fun': lambda W: sum(W)-1.})
# Minimize fitness by changing W with (R, C, rf, fit_func) as given using the SLQSP method
# based on the above defined constraints and bounds
tangency = spo.minimize(fun=fitness,
x0=W,
args=(R, C, rf, fit_func),
method='SLSQP',
constraints=constraints,
bounds=bounds)
if not tangency.success:
raise BaseException(tangency.message)
return tangency.x
开发者ID:a-phillips,项目名称:pyfi,代码行数:33,代码来源:mvo.py
示例20: get_iris
def get_iris(catagory):
data=np.loadtxt('iris.txt')
np.place(data[:,0],data[:,0]!=catagory,-1)
np.place(data[:,0],data[:,0]==catagory,1)
return [np.concatenate((data[0:25],data[75:125])), np.concatenate((data[25:75],data[125:150]))]
开发者ID:matthew-norton,项目名称:SVM-Kernel-Selection,代码行数:7,代码来源:getdata.py
注:本文中的numpy.place函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论