本文整理汇总了Python中numpy.polyint函数的典型用法代码示例。如果您正苦于以下问题:Python polyint函数的具体用法?Python polyint怎么用?Python polyint使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了polyint函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: measureBdRatefct
def measureBdRatefct(self, reference, processed):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average % saving in bitrate
between two rate-distortion curves [1].
R1,Q1 - RD points for curve 1
R2,Q2 - RD points for curve 2
adapted from code from: (c) 2010 Giuseppe Valenzise
"""
# numpy plays games with its exported functions.
# pylint: disable=no-member
# pylint: disable=too-many-locals
# pylint: disable=bad-builtin
R1 = [float(x[prX]) for x in reference]
Q1 = [float(x[prY]) for x in reference]
R2 = [float(x[prX]) for x in processed]
Q2 = [float(x[prY]) for x in processed]
#print(R1)
#print(Q1)
#print(R2)
#print(Q2)
log_R1 = map(math.log, R1)
log_R2 = map(math.log, R2)
log_R1 = numpy.log(R1)
log_R2 = numpy.log(R2)
#print(log_R1)
#print(log_R2)
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(Q1, log_R1, 3)
poly2 = numpy.polyfit(Q2, log_R2, 3)
# Integration interval.
min_int = max([min(Q1), min(Q2)])
max_int = min([max(Q1), max(Q2)])
# find integral
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_exp_diff = (int2 - int1) / (max_int - min_int)
# In really bad formed data the exponent can grow too large.
# clamp it.
if avg_exp_diff > 200:
avg_exp_diff = 200
# Convert to a percentage.
avg_diff = (math.exp(avg_exp_diff) - 1) * 100
return avg_diff
开发者ID:jfmcarreira,项目名称:python-helpers,代码行数:60,代码来源:AbstractGenerator.py
示例2: test_polyint_type
def test_polyint_type(self) :
"""Ticket #944"""
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=np.complex)
assert_(np.polyint(x).dtype == np.complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=np.int)
assert_(np.polyint(x).dtype == np.float, msg)
开发者ID:ArbiterGames,项目名称:BasicPythonLinearRegression,代码行数:8,代码来源:test_regression.py
示例3: test_polyint_type
def test_polyint_type(self):
# Ticket #944
msg = "Wrong type, should be complex"
x = np.ones(3, dtype=complex)
assert_(np.polyint(x).dtype == complex, msg)
msg = "Wrong type, should be float"
x = np.ones(3, dtype=int)
assert_(np.polyint(x).dtype == float, msg)
开发者ID:Horta,项目名称:numpy,代码行数:8,代码来源:test_regression.py
示例4: BdRate
def BdRate(group1, group2):
"""Compute the BD-rate between two score groups.
The returned object also contains the range of PSNR values used
to compute the result.
Bjontegaard's metric allows to compute the average % saving in bitrate
between two rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
adapted from code from: (c) 2010 Giuseppe Valenzise
copied from code by [email protected], [email protected]
"""
# pylint: disable=too-many-locals
metric_set1 = group1.dataPoints()
metric_set2 = group2.dataPoints()
# numpy plays games with its exported functions.
# pylint: disable=no-member
# pylint: disable=bad-builtin
psnr1 = [x[1] for x in metric_set1]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = map(math.log, [x[0] for x in metric_set1])
log_rate2 = map(math.log, [x[0] for x in metric_set2])
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
poly1 = numpy.polyfit(psnr1, log_rate1, 3)
poly2 = numpy.polyfit(psnr2, log_rate2, 3)
# Integration interval.
min_int = max([min(psnr1), min(psnr2)])
max_int = min([max(psnr1), max(psnr2)])
# find integral
p_int1 = numpy.polyint(poly1)
p_int2 = numpy.polyint(poly2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_exp_diff = (int2 - int1) / (max_int - min_int)
# In really bad formed data the exponent can grow too large.
# clamp it.
if avg_exp_diff > 200:
avg_exp_diff = 200
# Convert to a percentage.
avg_diff = (math.exp(avg_exp_diff) - 1) * 100
return {'difference': avg_diff, 'psnr':[min_int, max_int]}
开发者ID:google,项目名称:compare-codecs,代码行数:57,代码来源:graph_metrics.py
示例5: bdrate
def bdrate(metric_set1, metric_set2):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average % saving in bitrate
between two rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
adapted from code from: (c) 2010 Giuseppe Valenzise
"""
rate1 = [x[0] for x in metric_set1]
psnr1 = [x[1] for x in metric_set1]
rate2 = [x[0] for x in metric_set2]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = map(lambda x: math.log(x), rate1)
log_rate2 = map(lambda x: math.log(x), rate2)
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
p1 = numpy.polyfit(psnr1, log_rate1, 3)
p2 = numpy.polyfit(psnr2, log_rate2, 3)
# Integration interval.
min_int = max([min(psnr1),min(psnr2)])
max_int = min([max(psnr1),max(psnr2)])
# find integral
p_int1 = numpy.polyint(p1)
p_int2 = numpy.polyint(p2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_exp_diff = (int2 - int1) / (max_int - min_int)
# In really bad formed data the exponent can grow too large.
# clamp it.
if avg_exp_diff > 200 :
avg_exp_diff = 200
# Convert to a percentage.
avg_diff = (math.exp(avg_exp_diff) - 1) * 100
return avg_diff
开发者ID:Suvarna1488,项目名称:webm.contributor-guide,代码行数:48,代码来源:visual_metrics.py
示例6: _sweep_poly_phase
def _sweep_poly_phase(t, poly):
"""
Calculate the phase used by sweep_poly to generate its output. See
sweep_poly for a description of the arguments.
"""
# polyint handles lists, ndarrays and instances of poly1d automatically.
intpoly = polyint(poly)
phase = 2*pi * polyval(intpoly, t)
return phase
开发者ID:donaldson-lab,项目名称:Gene-Designer,代码行数:10,代码来源:waveforms.py
示例7: BDPSNR
def BDPSNR(PSNR1, BR1, PSNR2, BR2):
lBR1 = np.log10(BR1)
p1 = np.polyfit( lBR1, PSNR1, 3)
lBR2 = np.log10(BR2)
p2 = np.polyfit( lBR2, PSNR2, 3)
min_int = max(min(lBR1), min(lBR2))
max_int = min(max(lBR1), max(lBR2))
# find integral
p_int1 = np.polyint(p1)
p_int2 = np.polyint(p2)
int1 = np.polyval(p_int1, max_int) - np.polyval(p_int1, min_int)
int2 = np.polyval(p_int2, max_int) - np.polyval(p_int2, min_int)
# find avg diff
avg_diff = (int2-int1)/(max_int-min_int)
return avg_diff
开发者ID:ruil2,项目名称:CodecTools,代码行数:21,代码来源:BDRate.py
示例8: bdsnr
def bdsnr(metric_set1, metric_set2):
"""
BJONTEGAARD Bjontegaard metric calculation
Bjontegaard's metric allows to compute the average gain in psnr between two
rate-distortion curves [1].
rate1,psnr1 - RD points for curve 1
rate2,psnr2 - RD points for curve 2
returns the calculated Bjontegaard metric 'dsnr'
code adapted from code written by : (c) 2010 Giuseppe Valenzise
http://www.mathworks.com/matlabcentral/fileexchange/27798-bjontegaard-metric/content/bjontegaard.m
"""
rate1 = [x[0] for x in metric_set1]
psnr1 = [x[1] for x in metric_set1]
rate2 = [x[0] for x in metric_set2]
psnr2 = [x[1] for x in metric_set2]
log_rate1 = map(lambda x: math.log(x), rate1)
log_rate2 = map(lambda x: math.log(x), rate2)
# Best cubic poly fit for graph represented by log_ratex, psrn_x.
p1 = numpy.polyfit(log_rate1, psnr1, 3)
p2 = numpy.polyfit(log_rate2, psnr2, 3)
# Integration interval.
min_int = max([min(log_rate1),min(log_rate2)])
max_int = min([max(log_rate1),max(log_rate2)])
# Integrate p1, and p2.
p_int1 = numpy.polyint(p1)
p_int2 = numpy.polyint(p2)
# Calculate the integrated value over the interval we care about.
int1 = numpy.polyval(p_int1, max_int) - numpy.polyval(p_int1, min_int)
int2 = numpy.polyval(p_int2, max_int) - numpy.polyval(p_int2, min_int)
# Calculate the average improvement.
avg_diff = (int2 - int1) / (max_int - min_int)
return avg_diff
开发者ID:Suvarna1488,项目名称:webm.contributor-guide,代码行数:40,代码来源:visual_metrics.py
示例9: BDRate
def BDRate(PSNR1, BR1, PSNR2, BR2):
lBR1 = np.log(BR1)
p1 = np.polyfit( PSNR1, lBR1, 3)
lBR2 = np.log(BR2)
p2 = np.polyfit( PSNR2, lBR2, 3)
min_int = max(min(PSNR1), min(PSNR2))
max_int = min(max(PSNR1), max(PSNR2))
# find integral
p_int1 = np.polyint(p1)
p_int2 = np.polyint(p2)
int1 = np.polyval(p_int1, max_int) - np.polyval(p_int1, min_int)
int2 = np.polyval(p_int2, max_int) - np.polyval(p_int2, min_int)
# find avg diff
avg_exp_diff = (int2-int1)/(max_int-min_int)
avg_diff = (np.exp(avg_exp_diff)-1)*100
return avg_diff
开发者ID:ruil2,项目名称:CodecTools,代码行数:22,代码来源:BDRate.py
示例10: test_4
def test_4(self):
for type in classes:
for M in range(type[1],type[2]+1):
coll = getattr(pySDC.CollocationClasses, type[0])(M, t_start, t_end)
S = coll.Smat[1:,1:]
# as in TEST 1, create and integrate a polynomial with random coefficients, but now of degree M-1
poly_coeff = np.random.rand(M-1)
poly_vals = np.polyval(poly_coeff, coll.nodes)
poly_int_coeff = np.polyint(poly_coeff)
for i in range(1,M):
int_ex = np.polyval(poly_int_coeff, coll.nodes[i]) - np.polyval(poly_int_coeff, coll.nodes[i-1])
int_coll = np.dot(poly_vals, S[i,:])
assert abs(int_ex - int_coll)<1e-12, "For node type " + type[0] + ", partial quadrature rule from Smat failed to integrate polynomial of degree M-1 exactly for M = " + str(M)
开发者ID:lelou6666,项目名称:pySDC,代码行数:13,代码来源:test_collocation.py
示例11: chirp
def chirp(t,f0=0,t1=1,f1=100,method='linear',phi=0,qshape=None):
"""Frequency-swept cosine generator.
Inputs:
t -- array to evaluate waveform at
f0, f1, t1 -- frequency (in Hz) of waveform is f0 at t=0 and f1 at t=t1
Alternatively, if f0 is an array, then it forms the coefficients of
a polynomial (c.f. numpy.polval()) in t. The values in f1, t1,
method, and qshape are ignored.
method -- linear, quadratic, or logarithmic frequency sweep
phi -- optional phase in degrees
qshape -- shape parameter for quadratic curve: concave or convex
"""
# Convert to radians.
phi *= pi / 180
if size(f0) > 1:
# We were given a polynomial.
return cos(2*pi*polyval(polyint(f0),t)+phi)
if method in ['linear','lin','li']:
beta = (f1-f0)/t1
phase_angle = 2*pi * (f0*t + 0.5*beta*t*t)
elif method in ['quadratic','quad','q']:
if qshape == 'concave':
mxf = max(f0,f1)
mnf = min(f0,f1)
f1,f0 = mxf, mnf
elif qshape == 'convex':
mxf = max(f0,f1)
mnf = min(f0,f1)
f1,f0 = mnf, mxf
else:
raise ValueError("qshape must be either 'concave' or 'convex' but "
"a value of %r was given." % qshape)
beta = (f1-f0)/t1/t1
phase_angle = 2*pi * (f0*t + beta*t*t*t/3)
elif method in ['logarithmic','log','lo']:
if f1 <= f0:
raise ValueError(
"For a logarithmic sweep, f1=%f must be larger than f0=%f."
% (f1, f0))
beta = log10(f1-f0)/t1
phase_angle = 2*pi * (f0*t + pow(10,beta*t)/(beta*log(10)))
else:
raise ValueError("method must be 'linear', 'quadratic', or "
"'logarithmic' but a value of %r was given." % method)
return cos(phase_angle + phi)
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:49,代码来源:waveforms.py
示例12: f_evolution_element
def f_evolution_element(x, y):
root_real = 2.
roots = np.zeros((3,3))
if y < 0:
dP = np.poly([root0, root_real + y * j, root_real - y * j])
elif y > 0:
dP = np.poly([root0, root_real+y, root_real-y])
else:
dP = np.poly([root0, root_real, -root_real])
P = lamda*np.polyint(dP)
cplx_roots = np.roots(dP)
roots[:,0] = [_.real for _ in cplx_roots if _.real < max_x and _.real > min_x]
roots[:,0] = np.sort(roots[:,0])
z = np.polyval(P, x)
for i in xrange(roots.shape[0]):
roots[i,1] = y
roots[i,2] = np.polyval(P, roots[i,0])
return z,roots
开发者ID:bchretien,项目名称:Python-sandbox,代码行数:19,代码来源:poly_surface_extrema.py
示例13: calc_omega
def calc_omega(cp):
cp.insert
a=[]
for i in range(len(cp)):
ptmp = []
tmp = 0
for j in range(len(cp)):
if j != i:
row = []
row.insert(0,1/(cp[i]-cp[j]))
row.insert(1,-cp[j]/(cp[i]-cp[j]))
ptmp.insert(tmp,row)
tmp += 1
p=[1]
for j in range(len(cp)-1):
p = conv(p,ptmp[j])
pint = numpy.polyint(p)
arow = []
for j in range(len(cp)):
arow.append(numpy.polyval(pint,cp[j]))
a.append(arow)
return a
开发者ID:Juanlu001,项目名称:pyomo,代码行数:22,代码来源:colloc.py
示例14: test_1
def test_1(self):
for type in classes:
for M in range(type[1],type[2]+1):
coll = getattr(pySDC.CollocationClasses, type[0])(M, t_start, t_end)
# some basic consistency tests
assert np.size(coll.nodes)==np.size(coll.weights), "For node type " + type[0] + ", number of entries in nodes and weights is different"
assert np.size(coll.nodes)==M, "For node type " + type[0] + ", requesting M nodes did not produce M entries in nodes and weights"
# generate random set of polynomial coefficients
poly_coeff = np.random.rand(coll.order-1)
# evaluate polynomial at collocation nodes
poly_vals = np.polyval(poly_coeff, coll.nodes)
# use python's polyint function to compute anti-derivative of polynomial
poly_int_coeff = np.polyint(poly_coeff)
# Compute integral from 0.0 to 1.0
int_ex = np.polyval(poly_int_coeff, t_end) - np.polyval(poly_int_coeff, t_start)
# use quadrature rule to compute integral
int_coll = coll.evaluate(coll.weights, poly_vals)
# For large values of M, substantial differences from different round of error have to be considered
assert abs(int_ex - int_coll) < 1e-10, "For node type " + type[0] + ", failed to integrate polynomial of degree " + str(coll.order-1) + " exactly. Error: %5.3e" % abs(int_ex - int_coll)
开发者ID:lelou6666,项目名称:pySDC,代码行数:22,代码来源:test_collocation.py
示例15: f_evolution
def f_evolution(x, y):
z = np.zeros((x.size, y.size))
root_real = 2.
roots = np.zeros((3,y.size,3))
for k in xrange(y.size):
if y[k] < 0:
dP = np.poly([root0, root_real + y[k] * j, root_real - y[k] * j])
elif y[k] > 0:
dP = np.poly([root0, root_real + y[k], root_real-y[k]])
else:
dP = np.poly([root0, root_real, -root_real])
P = lamda*np.polyint(dP)
cplx_roots = np.roots(dP)
roots[:,k,0] = [_.real for _ in cplx_roots if _.real < max_x and _.real > min_x]
roots[:,k,0] = np.sort(roots[:,k,0])
for i in xrange(x.size):
z[i,k] = np.polyval(P, x[i])
for i in xrange(roots.shape[0]):
roots[i,k,1] = y[k]
roots[i,k,2] = np.polyval(P, roots[i,k,0])
return z,roots
开发者ID:bchretien,项目名称:Python-sandbox,代码行数:22,代码来源:poly_surface_extrema.py
示例16: __init__
def __init__(self):
d = 3 # Degree of interpolating polynomial
nk = 20 # Control discretization
tf = 10.0 # End time
h = tf/nk
tau_root = [0] + collocation_points(d, "radau") # Choose collocation points
C = NP.zeros((d+1,d+1)) # Coefficients of the collocation equation
D = NP.zeros(d+1) # Coefficients of the continuity equation
F = NP.zeros(d+1) # Coefficients of the quadrature function
T = NP.zeros((nk,d+1)) # All collocation time points
self.d = d
self.nk = nk # Control discretization
self.tf = tf # End time
self.h = h # Size of the finite elements
# Construct polynomial basis
for j in range(d+1):
# Construct Lagrange polynomials to get the polynomial basis at the collocation point
p = NP.poly1d([1])
for r in range(d+1):
if r != j:
p *= NP.poly1d([1, -tau_root[r]]) / (tau_root[j]-tau_root[r])
D[j] = p(1.0) # Evaluate the polynomial at the final time to get the coefficients of the continuity equation
pder = NP.polyder(p)
for r in range(d+1): # Evaluate the time derivative of the polynomial at all collocation points to get the coefficients of the continuity equation
C[j,r] = pder(tau_root[r])
# Evaluate the integral of the polynomial to get the coefficients of the quadrature function
pint = NP.polyint(p)
F[j] = pint(1.0)
for k in range(nk):
for j in range(d+1):
T[k,j] = h*(k + tau_root[j])
self.T = T; self.C = C; self.D = D; self.F= F;
开发者ID:mjm522,项目名称:myworks,代码行数:36,代码来源:vdp_collocationClass.py
示例17: w
def w(self, p_c, T = 293.15):
"""
Moisture content [kg/m3]
The capillary pressure p_c is required, and T is an optional argument
"""
if self.w_method == 'vangenuchten':
w = np.zeros(np.shape(p_c))
n = 1./(1-self.w_m)
for i in range(np.size(self.w_l)):
w += self.w_sat * self.w_l[i] * \
(1.+(self.w_alpha[i]*abs(p_c))**n[i])**(-self.w_m[i])
elif self.w_method == 'polynomial':
w = np.polyval(self.w_poly, ham.HR(p_c, T))
elif self.w_method == 'slope':
w = np.polyval(np.polyint(self.xi_poly), ham.HR(p_c, T))
return w
开发者ID:srouchier,项目名称:hamopy,代码行数:24,代码来源:classes.py
示例18: open
if user_args.e:
# Get experimental data
directory = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
filename = directory + "/experimental_results.txt"
with open(filename) as input:
data = zip(*(line.strip().split('\t') for line in input))
data_name = data[0][0] + data[1][0] + data[2][0]
exp_x = np.asfarray(data[0][1:])
exp_y = np.asfarray(data[1][1:])
# Error is given in % Rel Error
exp_error = np.asfarray(data[2][1:])*exp_y/100.0
print '\nLockwood Experimental'
exp_fit = np.poly1d(np.polyfit(FMR, exp_y, poly))
P = np.polyint(exp_fit)
exp_int = P(FMR[-1])*CSDA_R
print 'Integral using polyint = ', exp_int
x = np.linspace(0, FMR[-1], 1000)
y = np.zeros(1000)
for i in range(1000):
y[i] = exp_fit(x[i])
# plt.plot(x,y, color='b' )
print 'Integral using simpson rule = ', integrate.simps(y, x)*CSDA_R
# Plot the data
line0,err0,arg3, = ax0.errorbar(FMR, exp_y, yerr=exp_error, label="Lockwood (Exp.)", fmt="-s", markersize=5 )
markers = ["--v","-.o",":^","--<","-.>",":+","--x","-.1",":2","--3","-.4",":8","--p","-.P",":*","--h","-.H",":X","--D","-.d"]
开发者ID:lkersting,项目名称:frensie-tests,代码行数:31,代码来源:plot_results.py
示例19: getIntegral
def getIntegral(p,interval):
pint=np.polyint(p)
return pint(interval[1])-pint(interval[0])
开发者ID:keceli,项目名称:kiler,代码行数:3,代码来源:plotSIPsData.py
示例20: old_chirp
def old_chirp(t, f0=0, t1=1, f1=100, method='linear', phi=0, qshape=None):
"""Frequency-swept cosine generator.
Parameters
----------
t : ndarray
Times at which to evaluate the waveform.
f0 : float or ndarray, optional
Frequency (in Hz) of the waveform at time 0. If `f0` is an
ndarray, it specifies the frequency change as a polynomial in
`t` (see Notes below).
t1 : float, optional
Time at which `f1` is specified.
f1 : float, optional
Frequency (in Hz) of the waveform at time `t1`.
method : {'linear', 'quadratic', 'logarithmic'}, optional
Kind of frequency sweep.
phi : float
Phase offset, in degrees.
qshape : {'convex', 'concave'}
If method is 'quadratic', `qshape` specifies its shape.
Notes
-----
If `f0` is an array, it forms the coefficients of a polynomial in
`t` (see `numpy.polval`). The polynomial determines the waveform
frequency change in time. In this case, the values of `f1`, `t1`,
`method`, and `qshape` are ignored.
This function is deprecated. It will be removed in SciPy version 0.9.0.
It exists so that during in version 0.8.0, the new chirp function can
call this function to preserve the old behavior of the quadratic chirp.
"""
warnings.warn("The function old_chirp is deprecated, and will be removed in "
"SciPy 0.9", DeprecationWarning)
# Convert to radians.
phi *= pi / 180
if size(f0) > 1:
# We were given a polynomial.
return cos(2*pi*polyval(polyint(f0),t)+phi)
if method in ['linear','lin','li']:
beta = (f1-f0)/t1
phase_angle = 2*pi * (f0*t + 0.5*beta*t*t)
elif method in ['quadratic','quad','q']:
if qshape == 'concave':
mxf = max(f0,f1)
mnf = min(f0,f1)
f1,f0 = mxf, mnf
elif qshape == 'convex':
mxf = max(f0,f1)
mnf = min(f0,f1)
f1,f0 = mnf, mxf
else:
raise ValueError("qshape must be either 'concave' or 'convex' but "
"a value of %r was given." % qshape)
beta = (f1-f0)/t1/t1
phase_angle = 2*pi * (f0*t + beta*t*t*t/3)
elif method in ['logarithmic','log','lo']:
if f1 <= f0:
raise ValueError(
"For a logarithmic sweep, f1=%f must be larger than f0=%f."
% (f1, f0))
beta = log10(f1-f0)/t1
phase_angle = 2*pi * (f0*t + (pow(10,beta*t)-1)/(beta*log(10)))
else:
raise ValueError("method must be 'linear', 'quadratic', or "
"'logarithmic' but a value of %r was given." % method)
return cos(phase_angle + phi)
开发者ID:dagss,项目名称:private-scipy-refactor,代码行数:69,代码来源:waveforms.py
注:本文中的numpy.polyint函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论