• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numpy.put函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.put函数的典型用法代码示例。如果您正苦于以下问题:Python put函数的具体用法?Python put怎么用?Python put使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了put函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _select_mono

    def _select_mono(self, chunk):
        keep_monomorphic = self.keep_monomorphic

        gts = chunk[GT_FIELD]
        if is_dataset(gts):
            gts = gts[:]

        shape = gts.shape

        # we count how many different alleles are per row
        # we do it adding a complex part to each number. The complex part is
        # related with the row. Then we use unique
        weight = 1j * numpy.arange(0, shape[0])
        weight = numpy.repeat(weight, shape[1] * shape[2]).reshape(shape)
        b = gts + weight
        _, ind = numpy.unique(b, return_index=True)
        b = numpy.zeros_like(gts)
        c = numpy.ones_like(gts)
        numpy.put(b, ind, c.flat[ind])
        c = numpy.sum(b, axis=(2, 1))

        # we remove the missing values from the count
        rows_with_missing = numpy.any(gts == -1, axis=(1, 2))
        c -= rows_with_missing

        if keep_monomorphic:
            selected_rows = (c <= 2)
        else:
            selected_rows = (c == 2)
        return selected_rows
开发者ID:JoseBlanca,项目名称:variation,代码行数:30,代码来源:filters.py


示例2: _inverse_permutation

def _inverse_permutation(p):
    """inverse permutation p"""
    n = p.size
    s = np.zeros(n, dtype=np.int32)
    i = np.arange(n, dtype=np.int32)
    np.put(s, p, i)  # s[p] = i
    return s
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:7,代码来源:rcv1.py


示例3: basic_mutation

 def basic_mutation(self_individual, individual):
     """Performs a basic mutation where one value in the chromosome is replaced by another valid value."""
     idx = numpy.random.randint(0, len(individual.genotype))
     value = numpy.random.uniform(low=-100.0, high=100.0)
     numpy.put(individual.genotype, [idx], [value])
     individual.fitness = individual.fitness_evaluator.evaluate(individual)
     return individual
开发者ID:fberanizo,项目名称:sin5006,代码行数:7,代码来源:individual_factory.py


示例4: _process

	def _process(self, X, column, model_class):
		# Remove values that are in mask
		mask = np.array(self._get_mask(X)[:, column].T)[0]
		mask_indices = np.where(mask==True)[0]
		X_data = np.delete(X, mask_indices, 0)

		# Instantiate the model
		model = model_class()

		# Slice out the column to predict and delete the column.
		y_data = X[:, column]
		X_data = np.delete(X_data, column, 1)

		# Split training and test data
		X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.33, random_state=42)

		# Fit the model
		model.fit(X_train, y_train)

		# Score the model
		scores = model.score(X_test, y_test)

		# Predict missing vars
		X_predict = np.delete(X, column, 1)
		y = model.predict(X_predict)

		# Replace values in X with their predictions
		predict_indices = np.where(mask==False)[0]
		np.put(X, predict_indicies, np.take(y, predict_indices))
	
		# Return model and scores
		return (model, scores)
开发者ID:Ouwen,项目名称:scikit-mice,代码行数:32,代码来源:skmice.py


示例5: getPattern

  def getPattern(self, idx, sparseBinaryForm=False, cat=None):
    """Return a training pattern either by index or category number

    Parameters:
    ------------------------------------------------------------------------
    idx:                Index of the training pattern
    sparseBinaryForm:   If true, return only a list of the non-zeros in the
                          training pattern
    cat:                If not None, get the first pattern belonging to category
                          cat. If this is specified, idx must be None

    """

    if cat is not None:
      assert idx is None
      idx = self._categoryList.index(cat)

    if not self.useSparseMemory:
      pattern = self._Memory[idx]
      if sparseBinaryForm:
        pattern = pattern.nonzero()[0]

    else:
      (nz, values) = self._Memory.rowNonZeros(idx)
      if not sparseBinaryForm:
        pattern = numpy.zeros(self._Memory.nCols())
        numpy.put(pattern, nz, 1)
      else:
        pattern = nz

      return pattern
开发者ID:AlexWD,项目名称:nupic,代码行数:31,代码来源:KNNClassifier.py


示例6: fit_final_model

 def fit_final_model(self):
     final_model = RandomForestClassifier(n_estimators = self.ntrees, criterion = self.criterion)
     ws = np.zeros(len(self.y))
     np.put(ws, np.nonzero(self.y == 1)[0], self.params["weight"])
     np.put(ws, np.nonzero(self.y == 0)[0], 1 - self.params["weight"])
     final_model.fit(self.X[:, self.params["var_subset"]], self.y, sample_weight = ws)
     return final_model
开发者ID:btcross26,项目名称:Data-Mining-Capstone-Project,代码行数:7,代码来源:RandomForestAnalysis.py


示例7: sortedlist

def sortedlist(leng):
    counter=0
    aray=np.random.randint(1,1000,leng)
    for i in range(0,leng):
        ini=0
        ini1=1
        for i in aray:
            i2=aray[ini1]
            if i>i2:
                np.put(aray,ini1,i)
                np.put(aray,ini,i2)
                counter=counter+1
                print(aray)
                ini1=ini1+1
                ini=ini+1
                if ini1==len(aray):
                    break
            else:
                ini1=ini1+1
                ini=ini+1
                if ini1==len(aray):
                    break
    
    print"the number of shifts that occured are: ",counter-1
    return(aray)
    
开发者ID:AIBadGuy,项目名称:List-Sort,代码行数:25,代码来源:Sort+Random+List.py


示例8: __init__

    def __init__(self, data) :

        if type(data) == type('') :
            print 'file name:', data            
            data = datafunc.PyVectorDataSet(data, idColumn = 0, headerRow = True, hint = 'csv')

        self.data = data
        self.idDict = misc.list2dict(data.labels.patternID,
                                     range(len(data)))

        print numpy.shape(data.X)
        self.mean = numpy.mean(data.X, 1)
        self.std = std(data.X, 1)
        eps = 1e-5
        I = numpy.nonzero(numpy.less(self.std, eps))[0]
        print 'num zeros:',len(I)
        numpy.put(self.std, I, 1)
        
        self.numCorrelations = 10000
        correlations = numpy.zeros(self.numCorrelations, numpy.float)
        
        for i in range(self.numCorrelations) :
            i1 = random.randrange(0, len(data))
            i2 = random.randrange(0, len(data))
            correlations[i] = self._corrcoef(i1, i2)
        self.meanCorrelation = numpy.mean(correlations)
        self.numCorrelations = 1000        
开发者ID:bpartridge,项目名称:PyML,代码行数:27,代码来源:preproc.py


示例9: expand

    def expand( self, prof, mask, default ):
        """
        Expand profile to have a value also for masked positions.

        :param prof: input profile
        :type  prof: list OR array
        :param mask: atom mask
        :type  mask: [int]
        :param default: default value
        :type  default: any
        
        :return: profile
        :rtype: list OR array
        """
        if mask is not None:

            ## optimized variant for arrays
            if isinstance( prof, N.ndarray ):
                p = N.resize( prof, (len(mask), ) )
                p[:] = default
                N.put( p, N.nonzero( mask )[0], prof )
                return p

            p = [ default ] * len( mask )
            prof.reverse()
            for i in N.nonzero( mask )[0]:
                p[i] = prof.pop()
            return p

        return prof
开发者ID:graik,项目名称:biskit,代码行数:30,代码来源:profileCollection.py


示例10: shift

 def shift(x):
     x_shape = np.shape(x)        
     total_elements = x_shape[0] * x_shape[1]
     elements_to_roll = total_elements - (x_shape[1] * time_step)
     x = np.roll(AA(x, dtype=PRECISION_TO_TYPE[precision]), elements_to_roll)
     np.put(x, range(elements_to_roll, total_elements), default_value)
     return x
开发者ID:1132520084,项目名称:CNTK,代码行数:7,代码来源:recurrent_test.py


示例11: _untransform_params

    def _untransform_params(self, x):
        """
        The transformation required for _set_params_transformed.

        This moves the vector x seen by the optimiser (unconstrained) to the
        valid parameter vector seen by the model

        Note:
          - This function is separate from _set_params_transformed for downstream flexibility
        """
        # work out how many places are fixed, and where they are. tricky logic!
        fix_places = self.fixed_indices + [t[1:] for t in self.tied_indices]
        if len(fix_places):
            fix_places = np.hstack(fix_places)
            Nfix_places = fix_places.size
        else:
            Nfix_places = 0

        free_places = np.setdiff1d(np.arange(Nfix_places + x.size, dtype=np.int), fix_places)

        # put the models values in the vector xx
        xx = np.zeros(Nfix_places + free_places.size, dtype=np.float64)

        xx[free_places] = x
        [np.put(xx, i, v) for i, v in zip(self.fixed_indices, self.fixed_values)]
        [np.put(xx, i, v) for i, v in [(t[1:], xx[t[0]]) for t in self.tied_indices] ]

        [np.put(xx, i, t.f(xx[i])) for i, t in zip(self.constrained_indices, self.constraints)]
        if hasattr(self, 'debug'):
            stop # @UndefinedVariable

        return xx
开发者ID:Dalar,项目名称:GPy,代码行数:32,代码来源:parameterized.py


示例12: _add_ids

    def _add_ids(self, ids):
        n = len(ids)
        if n == 0:
            return

        id_max = max(ids)
        id_max_old = len(self._inds)-1
        n_array_old = len(self)

        ids_existing = np.take(ids, np.flatnonzero(np.less(ids, id_max_old)))
        # print '  ids',ids,'id_max_old',id_max_old,'ids_existing',ids_existing

        # check here if ids are still available
        # if np.sometrue(  np.not_equal( np.take(self._inds, ids_existing), -1)  ):
        #    print 'WARNING in create_ids: some ids already in use',ids_existing
        #    return np.zeros(0,int)

        # extend index map with -1 as necessary
        if id_max > id_max_old:
            # print 'ext',-1*ones(id_max-id_max_old)
            self._inds = np.concatenate((self._inds, -1*np.ones(id_max-id_max_old, int)))

        # assign n new indexes to new ids
        ind_new = np.arange(n_array_old, n_array_old+n, dtype=np.int32)

        # print 'ind_new',ind_new
        np.put(self._inds, ids, ind_new)

        # print '  concat ids..',self._ids,ids
        self._ids = np.concatenate((self._ids, ids))
开发者ID:behrisch,项目名称:sumo,代码行数:30,代码来源:arrayman.py


示例13: testAntisymmetric

def testAntisymmetric(matrix):
    size = matrix.shape 
    if size[0] != size [1]:
        return False
    if size[0] == size[1]:

        inputArray = numpy.array(matrix)
        transposeArray = inputArray.T
        transposeMatrix = numpy.matrix(transposeArray)
        identityArray = numpy.identity(size[0])
        identityMatrix = numpy.matrix(identityArray)
        finalProduct = numpy.arange(size[0] ** 2)
        topVal = size[0] ** 2
        counter = 0
        
        while (counter < topVal):
            replaceVal = finalProduct.item(counter)
            if matrix.item(counter) == 1 and transposeMatrix.item(counter) == 1:
                numpy.put(finalProduct, [replaceVal], [1])
            else:
                numpy.put(finalProduct, [replaceVal], [0])
            counter += 1
            
        finalMatrix = numpy.matrix(finalProduct)
                
        
        if lessThanOrEqual(finalMatrix, identityMatrix, size[0]):
            return True
        return False
开发者ID:piresjo,项目名称:Mathematical-Relations-Library,代码行数:29,代码来源:Relations.py


示例14: python_metropolis

    def python_metropolis(self):
        """Implentation of the Metropolis alogrithm."""
        energy = cy_potts_model.calculate_lattice_energy(self.lattice, self.lattice_size, self.bond_energy)
        magnetization = self.potts_order_parameter()
        for t in range(self.sweeps):
            # Measurement every sweep.
            np.put(self.energy_history, t, energy)
            np.put(self.magnetization_history, t, magnetization)
            for k in range(self.lattice_size**2):
                states = [0, 1, 2]
                # Pick a random location on the lattice.
                rand_y = np.random.randint(0, self.lattice_size)
                rand_x = np.random.randint(0, self.lattice_size)

                spin = self.lattice[rand_y, rand_x]  # Get spin at the random location.
                # Remove the state that the spin at the random location currently occupies.
                states.remove(spin)
                temp_lattice = copy.deepcopy(self.lattice)
                random_new_spin = np.random.choice(states)
                temp_lattice[rand_y, rand_x] = random_new_spin
                assert temp_lattice[rand_y, rand_x] != self.lattice[rand_y, rand_x]
                new_energy = cy_potts_model.calculate_lattice_energy(temp_lattice, self.lattice_size, self.bond_energy)
                energy_delta = new_energy - energy

                # Energy may always be lowered.
                if energy_delta <= 0:
                    acceptance_probability = 1
                # Energy is increased with probability proportional to Boltzmann distribution.
                else:
                    acceptance_probability = np.exp(-self.beta * energy_delta)
                if np.random.random() <= acceptance_probability:
                    # Flip the spin and change the energy.
                    self.lattice[rand_y, rand_x] = random_new_spin
                    energy += energy_delta
                    magnetization = self.potts_order_parameter()
开发者ID:teunzwart,项目名称:bachelor-project,代码行数:35,代码来源:potts_model.py


示例15: tip_distances

def tip_distances(a, bound_indices, tip_indices):
    """Sets each tip to its distance from the root."""
    for i, s in bound_indices:
        i += s
    mask = zeros(len(a))
    put(mask, tip_indices, 1)
    a *= mask[:,newaxis]
开发者ID:GavinHuttley,项目名称:pycogent,代码行数:7,代码来源:fast_tree.py


示例16: intersect

    def intersect(self, spec):
        """Intersect with the region specification.

        'spec' is a region specification of the form defined in the grid module.

        Returns (mask, indexspecs) where
        'mask' is the mask of the result grid AFTER self and region spec are interested.
        'indexspecs' is a dictionary of index specifications suitable for slicing a
          variable with the given grid.
        """

        ncell = self.shape
        index = self.getIndex()
        latspec = spec[CoordTypeToLoc[LatitudeType]]
        lonspec = spec[CoordTypeToLoc[LongitudeType]]
        latlin = numpy.ma.filled(self._lataxis_)
        lonlin = numpy.ma.filled(self._lonaxis_)
        lonlin = numpy.ma.where(numpy.ma.greater_equal(lonlin,360.0), lonlin-360.0, lonlin)
        points = bindex.intersectHorizontalGrid(latspec, lonspec, latlin, lonlin, index)
        if len(points)==0:
            raise CDMSError, 'No data in the specified region, longitude=%s, latitude=%s'%(`lonspec`, `latspec`)

        fullmask = numpy.ones(ncell)
        numpy.put(fullmask, points, 0)
        
        imin, imax  = (min(points), max(points)+1)
        submask = fullmask[imin:imax]

        cellid = self.getAxis(0).id
        indexspecs = {cellid:slice(imin,imax)}

        return submask, indexspecs
开发者ID:AZed,项目名称:uvcdat,代码行数:32,代码来源:gengrid.py


示例17: cluster_sanity

def cluster_sanity(sres):

    def clusters_intersect(c1, c2):
        s1 = set( c1.voxels )
        s2 = set( c2.voxels )
        return len(s1.intersection(s2)) > 0

    mn_pt = 1e10
    mx_nt = -1e10
    g, m = calc_grid_and_map(sres.vox_idx)
    img = np.zeros(g)
    for i, clist in enumerate((sres.ptail_clusters, sres.ntail_clusters)):
        for t in xrange(sres.t.shape[1]):
            for f in xrange(sres.t.shape[2]):
                np.put(img, m, sres.t[:,t,f])
                c_tf = clist[t][f]
                for c in c_tf:
                    cvals = np.take(img, c.voxels)
                    if i==1 and cvals.max() > mx_nt:
                        mx_nt = cvals.max()
                    if i==0 and cvals.min() < mn_pt:
                        mn_pt = cvals.min()
                    
                if len(c_tf) > 1:
                    for c1, c2 in zip(c_tf[:-1], c_tf[1:]):
                        assert not clusters_intersect(c1, c2), \
                               'Cluster intersection at tf=(%d,%d)'%(t,f)
    print 'estimated ntail cutoff: %1.3f, estimated ptail cutoff: %1.3f'%(mx_nt, mn_pt)
开发者ID:christandiono,项目名称:nutmeg-py,代码行数:28,代码来源:test_tfstats_results.py


示例18: test_get_strain_state_dict

 def test_get_strain_state_dict(self):
     strain_inds = [(0,), (1,), (2,), (1, 3), (1, 2, 3)]
     vecs = {}
     strain_states = []
     for strain_ind in strain_inds:
         ss = np.zeros(6)
         np.put(ss, strain_ind, 1)
         strain_states.append(tuple(ss))
         vec = np.zeros((4, 6))
         rand_values = np.random.uniform(0.1, 1, 4)
         for i in strain_ind:
             vec[:, i] = rand_values
         vecs[strain_ind] = vec
     all_strains = [Strain.from_voigt(v).zeroed() for vec in vecs.values()
                    for v in vec]
     random.shuffle(all_strains)
     all_stresses = [Stress.from_voigt(np.random.random(6)).zeroed()
                     for s in all_strains]
     strain_dict = {k.tostring():v for k,v in zip(all_strains, all_stresses)}
     ss_dict = get_strain_state_dict(all_strains, all_stresses, add_eq=False)
     # Check length of ss_dict
     self.assertEqual(len(strain_inds), len(ss_dict))
     # Check sets of strain states are correct
     self.assertEqual(set(strain_states), set(ss_dict.keys()))
     for strain_state, data in ss_dict.items():
         # Check correspondence of strains/stresses
         for strain, stress in zip(data["strains"], data["stresses"]):
             self.assertArrayAlmostEqual(Stress.from_voigt(stress), 
                                         strain_dict[Strain.from_voigt(strain).tostring()])
开发者ID:czhengsci,项目名称:pymatgen,代码行数:29,代码来源:test_elastic.py


示例19: koskinon

def koskinon(n):
    flags = resize((0,1,0,0,0,1), (n**2,))
    put(flags, (0,2,3), 1)
    for i in arange(5,n,2):
        if flags[i]:
            flags[i*i::i] = 0
    return flatnonzero(flags)[2:]
开发者ID:bytemask,项目名称:solutions,代码行数:7,代码来源:23.py


示例20: optimizer_array

    def optimizer_array(self, p):
        """
        Make sure the optimizer copy does not get touched, thus, we only want to
        set the values *inside* not the array itself.

        Also we want to update param_array in here.
        """
        f = None
        if self.has_parent() and self.constraints[__fixed__].size != 0:
            f = np.ones(self.size).astype(bool)
            f[self.constraints[__fixed__]] = FIXED
        elif self._has_fixes():
            f = self._fixes_
        if f is None:
            self.param_array.flat = p
            [np.put(self.param_array, ind, c.f(self.param_array.flat[ind]))
             #py3 fix
             #for c, ind in self.constraints.iteritems() if c != __fixed__]
             for c, ind in self.constraints.items() if c != __fixed__]
        else:
            self.param_array.flat[f] = p
            [np.put(self.param_array, ind[f[ind]], c.f(self.param_array.flat[ind[f[ind]]]))
             #py3 fix
             #for c, ind in self.constraints.iteritems() if c != __fixed__]
             for c, ind in self.constraints.items() if c != __fixed__]
        #self._highest_parent_.tie.propagate_val()

        self._optimizer_copy_transformed = False
        self.trigger_update()
开发者ID:sods,项目名称:paramz,代码行数:29,代码来源:parameter_core.py



注:本文中的numpy.put函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numpy.putmask函数代码示例发布时间:2022-05-27
下一篇:
Python numpy.ptp函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap