本文整理汇总了Python中numpy.var函数的典型用法代码示例。如果您正苦于以下问题:Python var函数的具体用法?Python var怎么用?Python var使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了var函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _call
def _call(self, dataset):
"""Computes featurewise scores."""
attrdata = dataset.sa[self.__attr].value
if np.issubdtype(attrdata.dtype, 'c'):
raise ValueError("Correlation coefficent measure is not meaningful "
"for datasets with literal labels.")
samples = dataset.samples
pvalue_index = self.__pvalue
result = np.empty((dataset.nfeatures,), dtype=float)
for ifeature in xrange(dataset.nfeatures):
samples_ = samples[:, ifeature]
corr = pearsonr(samples_, attrdata)
corrv = corr[pvalue_index]
# Should be safe to assume 0 corr_coef (or 1 pvalue) if value
# is actually NaN, although it might not be the case (covar of
# 2 constants would be NaN although should be 1)
if np.isnan(corrv):
if np.var(samples_) == 0.0 and np.var(attrdata) == 0.0 \
and len(samples_):
# constant terms
corrv = 1.0 - pvalue_index
else:
corrv = pvalue_index
result[ifeature] = corrv
return Dataset(result[np.newaxis])
开发者ID:arnaudsj,项目名称:PyMVPA,代码行数:29,代码来源:corrcoef.py
示例2: r2_score
def r2_score(y_true, y_pred, round_to=2):
R"""R-squared for Bayesian regression models. Only valid for linear models.
http://www.stat.columbia.edu/%7Egelman/research/unpublished/bayes_R2.pdf
Parameters
----------
y_true: : array-like of shape = (n_samples) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)
Estimated target values.
round_to : int
Number of decimals used to round results (default 2).
Returns
-------
`namedtuple` with the following elements:
R2_median: median of the Bayesian R2
R2_mean: mean of the Bayesian R2
R2_std: standard deviation of the Bayesian R2
"""
dimension = None
if y_true.ndim > 1:
dimension = 1
var_y_est = np.var(y_pred, axis=dimension)
var_e = np.var(y_true - y_pred, axis=dimension)
r2 = var_y_est / (var_y_est + var_e)
r2_median = np.around(np.median(r2), round_to)
r2_mean = np.around(np.mean(r2), round_to)
r2_std = np.around(np.std(r2), round_to)
r2_r = namedtuple('r2_r', 'r2_median, r2_mean, r2_std')
return r2_r(r2_median, r2_mean, r2_std)
开发者ID:zaxtax,项目名称:pymc3,代码行数:33,代码来源:stats.py
示例3: average_data
def average_data(data):
"""
Find mean and std. deviation of data returned by ``simulate``.
"""
numnodes = data['nodes']
its = data['its']
its_mean = numpy.average(its)
its_std = math.sqrt(numpy.var(its))
dead = data['dead']
dead_mean = 100.0*numpy.average(dead)/numnodes
dead_std = 100.0*math.sqrt(numpy.var(dead))/numnodes
immune = data['immune']
immune_mean = 100.0*numpy.average(immune)/numnodes
immune_std = 100.0*math.sqrt(numpy.var(immune))/numnodes
max_contam = data['max_contam']
max_contam_mean = 100.0*numpy.average(max_contam)/numnodes
max_contam_std = 100.0*math.sqrt(numpy.var(max_contam))/numnodes
normal = data['normal']
normal_mean = 100.0*numpy.average(normal)/numnodes
normal_std = 100.0*math.sqrt(numpy.var(normal))/numnodes
return {'its': (its_mean, its_std),
'nodes': numnodes,
'dead': (dead_mean, dead_std),
'immune': (immune_mean, immune_std),
'max_contam': (max_contam_mean, max_contam_std),
'normal': (normal_mean, normal_std)}
开发者ID:3lectrologos,项目名称:sna,代码行数:26,代码来源:diffuse.py
示例4: _get_likelihood
def _get_likelihood(self, model):
"""Compute the marginal likelihood of the linear model with a g-prior on betas.
Parameters
----------
model : np.ndarray in R^ndim
vector of variable inclusion indicators
Returns
-------
float
log marginal likelihood
"""
X = self.X[:, model == 1]
y = self.y
nobs, ndim = X.shape
design = np.hstack((np.ones((nobs, 1)), X))
mle = np.linalg.solve(np.dot(design.T, design), np.dot(design.T, y))
residuals = y - np.dot(design, mle)
rsquared = 1 - np.var(residuals) / np.var(y)
return (log_gamma((nobs - 1) / 2)
- (nobs - 1) / 2 * np.log(np.pi)
- 0.5 * np.log(nobs)
- (nobs - 1) / 2 * np.log(np.dot(residuals, residuals))
+ (nobs - ndim - 1) / 2 * np.log(1 + self.par["penalty"])
- (nobs - 1) / 2 * np.log(1 + self.par["penalty"] * (1 - rsquared)))
开发者ID:martinaragoneses,项目名称:bma,代码行数:29,代码来源:linear_averaging.py
示例5: test_bernoulli_extract
def test_bernoulli_extract(self):
fit = self.fit
extr = fit.extract(permuted=True)
assert -7.4 < np.mean(extr['lp__']) < -7.0
assert 0.1 < np.mean(extr['theta']) < 0.4
assert 0.01 < np.var(extr['theta']) < 0.02
# use __getitem__
assert -7.4 < np.mean(fit['lp__']) < -7.0
assert 0.1 < np.mean(fit['theta']) < 0.4
assert 0.01 < np.var(fit['theta']) < 0.02
# permuted=False
extr = fit.extract(permuted=False)
self.assertEqual(extr.shape, (1000, 4, 2))
self.assertTrue(0.1 < np.mean(extr[:, 0, 0]) < 0.4)
# permuted=True
extr = fit.extract('lp__', permuted=True)
assert -7.4 < np.mean(extr['lp__']) < -7.0
extr = fit.extract('theta', permuted=True)
assert 0.1 < np.mean(extr['theta']) < 0.4
assert 0.01 < np.var(extr['theta']) < 0.02
extr = fit.extract('theta', permuted=False)
assert extr.shape == (1000, 4, 2)
assert 0.1 < np.mean(extr[:, 0, 0]) < 0.4
开发者ID:Aleyasen,项目名称:pystan,代码行数:26,代码来源:test_basic.py
示例6: bhattacharyya_dist
def bhattacharyya_dist (X, y):
classes = np.unique(y)
n_class = len(classes)
n_feats = X.shape[1]
b = np.zeros(n_feats)
for i in np.arange(n_class):
for j in np.arange(i+1, n_class):
if j > i:
xi = X[y == i, :]
xj = X[y == j, :]
mi = np.mean (xi, axis=0)
mj = np.mean (xj, axis=0)
vi = np.var (xi, axis=0)
vj = np.var (xj, axis=0)
si = np.std (xi, axis=0)
sj = np.std (xj, axis=0)
d = 0.25 * (np.square(mi - mj) / (vi + vj)) + 0.5 * (np.log((vi + vj) / (2*si*sj)))
d[np.isnan(d)] = 0
d[np.isinf(d)] = 0
b = np.maximum(b, d)
return b
开发者ID:borjaayerdi,项目名称:oasis_feets,代码行数:29,代码来源:do_classification.py
示例7: curv_fit
def curv_fit(x=None, y=None, model=None):
x = np.array(x)
y = np.array(y)
params = lmfit.Parameters()
if model == 'gaussian':
mod = lmfit.models.GaussianModel()
params = mod.guess(y, x=x)
out = mod.fit(y,params, x=x)
r_sq = 1 - out.residual.var()/np.var(y)
elif model == '4PL':
mod = lmfit.Model(logistic_4p)
params.add('la', value=1.0)
params.add('gr', value=120.0, vary=False)
params.add('ce', value=150.0)
params.add('ua', value=3.0)
out = mod.fit(y, params,x=x)
r_sq = 1 - out.residual.var()/np.var(y)
elif model == '5PL':
mod = lmfit.Model(logistic_5p)
params.add('la', value=1.0)
params.add('gr', value=1.0)
params.add('ce', value=1.0)
params.add('ua', value=1.0)
params.add('sy', value=1.0)
out = mod.fit(y, params, x=x)
r_sq = 1 - out.residual.var()/np.var(y)
out.R_sq = r_sq
return out
开发者ID:rvalenzuelar,项目名称:tta_climatology,代码行数:33,代码来源:curve_fitting.py
示例8: AsianCallSimPrice
def AsianCallSimPrice(S0, K, T, r, sigma, M, I, CV=False):
dt = T / M
S = np.zeros((M + 1, I))
z = np.random.standard_normal((M + 1, I)) # pseudorandom numbers
Savg = np.zeros(I)
S[0] = S0
S = S0 * np.exp(np.cumsum((r - 0.5 * sigma ** 2) * dt + sigma * np.sqrt(dt) * z, axis=0))
Savg = np.average(S, axis=0)
if CV == False:
price = np.exp(-r * T) * np.sum(np.maximum(Savg - K, 0)) / I
error = math.sqrt(np.var(np.maximum(Savg - K, 0))) / math.sqrt(I)
result = (price, error)
else:
Tvector = np.arange(dt, T + dt, dt)
T_avg = Tvector.mean()
i_vector = np.arange(1, 2 * M + 1, 2)
sigma_avg = math.sqrt(sigma ** 2 / (M ** 2 * T_avg) * np.dot(i_vector, Tvector[::-1]))
delta = 0.5 * (sigma ** 2 - sigma_avg ** 2)
d = (math.log(S0 / K) + (r - delta + 0.5 * sigma_avg ** 2) * T_avg) / (sigma_avg * math.sqrt(T_avg))
GeomAsianCall = np.exp(-delta * T_avg) * S0 * scipy.stats.norm.cdf(d) - np.exp(
-r * T_avg
) * K * scipy.stats.norm.cdf(d - sigma_avg * math.sqrt(T_avg))
S_CV = scipy.stats.mstats.gmean(S, axis=0)
X = np.exp(-r * T) * np.maximum(S_CV - K, 0)
Y = np.exp(-r * T) * np.maximum(Savg - K, 0)
b = np.cov(X, Y)[0][1] / X.var()
price = Y.mean() - b * (X.mean() - GeomAsianCall)
error = math.sqrt(np.var(Y - b * X)) / math.sqrt(I)
rho = np.corrcoef(X, Y)[0][1]
result = (price, error, rho)
return result
开发者ID:ikromanov,项目名称:python_for_finance,代码行数:31,代码来源:bsm_mcs_asian.py
示例9: calc_com
def calc_com(mask):
pts = index_to_zyx( mask )
z = pts[0,:].astype(float).mean()
# Correct Center of Mass for reentrant domain
y1 = pts[1,:].astype(float)
x1 = pts[2,:].astype(float)
y2 = (y1 < ny/2.)*y1 + (y1>= ny/2.)*(y1 - ny)
x2 = (x1 < nx/2.)*x1 + (x1>= nx/2.)*(x1 - nx)
y1m = y1.mean()
y2m = y2.mean()
x1m = x1.mean()
x2m = x2.mean()
if numpy.var(y2 - y2m) > numpy.var(y1 - y1m):
y = y1m
else:
y = (y2m + .5)%ny - .5
if numpy.var(x2 - x2m) > numpy.var(x1 - x1m):
x = x1m
else:
x = (x2m + .5)%nx - .5
return numpy.array((z, y, x))
开发者ID:phaustin,项目名称:cloud_tracker,代码行数:25,代码来源:model_param.py
示例10: log_evidence
def log_evidence(X, y, g):
"""Compute the model's log evidence (a.k.a. marginal likelihood).
Parameters
----------
X : np.ndarray in R^(nobs x ndim)
feature matrix
y : np.ndarray in R^nobs
target vector
g : float (0, inf)
dimensionality penalty
Returns
-------
float
log evidence
"""
n, d = X.shape
X_int = np.hstack((np.ones((n, 1)), X))
mle = np.linalg.solve(np.dot(X_int.T, X_int), np.dot(X_int.T, y))
resid = y - np.dot(X_int, mle)
rsq = (d > 0 and 1 - np.var(resid) / np.var(y)) or 0
return (log_gamma((n - 1) / 2)
- (n - 1) / 2 * np.log(np.pi)
- 0.5 * np.log(n)
- (n - 1) / 2 * np.log(np.dot(resid, resid))
+ (n - d - 1) / 2 * np.log(1 + 1 / g)
- (n - 1) / 2 * np.log(1 + 1 / g * (1 - rsq)))
开发者ID:timsf,项目名称:bma,代码行数:31,代码来源:linear_regression.py
示例11: main
def main():
images, labels = load_labeled_training(flatten=True)
images = standardize(images)
unl = load_unlabeled_training(flatten=True)
unl = standardize(unl)
test = load_public_test(flatten=True)
test = standardize(test)
shuffle_in_unison(images, labels)
#d = DictionaryLearning().fit(images)
d = MiniBatchDictionaryLearning(n_components=500, n_iter=500, verbose=True).fit(images)
s = SparseCoder(d.components_)
proj_test = s.transform(images)
pt = s.transform(test)
#kpca = KernelPCA(kernel="rbf")
#kpca.fit(unl)
#test_proj = kpca.transform(images)
#pt = kpca.transform(test)
#spca = SparsePCA().fit(unl)
#test_proj = spca.transform(images)
#pt = spca.transform(test)
svc = SVC()
scores = cross_validation.cross_val_score(svc, proj_test, labels, cv=10)
print scores
print np.mean(scores)
print np.var(scores)
svc.fit(proj_test, labels)
pred = svc.predict(pt)
write_results(pred, '../svm_res.csv')
开发者ID:deepxkn,项目名称:facial-expression-recognition-1,代码行数:28,代码来源:pca_sparse_svm.py
示例12: classify_2d
def classify_2d(data_a, data_b, x):
x1 = x[0]
x2 = x[1]
probability_a = data_a.shape[1] / (data_a.shape[1] + data_b.shape[1])
probability_b = data_b.shape[1] / (data_a.shape[1] + data_b.shape[1])
mean_x1_a = np.mean(data_a[0,:])
mean_x2_a = np.mean(data_a[1,:])
mean_x1_b = np.mean(data_b[0,:])
mean_x2_b = np.mean(data_b[1,:])
variance_x1_a = np.var(data_a[0,:])
variance_x2_a = np.var(data_a[1,:])
variance_x1_b = np.var(data_b[0,:])
variance_x2_b = np.var(data_b[1,:])
pd_x1_given_a = mlab.normpdf(x1, mean_x1_a, variance_x1_a)
pd_x2_given_a = mlab.normpdf(x2, mean_x2_a, variance_x2_a)
pd_x1_given_b = mlab.normpdf(x1, mean_x1_b, variance_x1_b)
pd_x2_given_b = mlab.normpdf(x2, mean_x2_b, variance_x2_b)
posterior_numerator_a = probability_a * pd_x1_given_a * pd_x2_given_a
posterior_numerator_b = probability_b * pd_x1_given_b * pd_x2_given_b
posterior_numerators = { 'A': posterior_numerator_a, 'B': posterior_numerator_b }
return max(posterior_numerators.iterkeys(), key=(lambda k: posterior_numerators[k]))
开发者ID:thomasbrus,项目名称:machine-learning,代码行数:30,代码来源:assignment-7_2a.py
示例13: findvdisp3
def findvdisp3(self,r,v,mags,r200,maxv):
"use red sequence to find members"
binedge = np.arange(0,r200+1,0.3)
rin = r
vin = v
colin = mags.T[1] - mags.T[2]
avg_c = np.average(colin)
vfinal = np.array([])
for i in range(binedge.size-1):
i += 1
x = rin[np.where((rin>binedge[i-1]) & (rin<binedge[i]))]
y = vin[np.where((rin>binedge[i-1]) & (rin<binedge[i]))]
c = colin[np.where((rin>binedge[i-1]) & (rin<binedge[i]))]
for k in range(6):
y2 = y
x2 = x
c2 = c
stv = 3.5 * np.std(y2)
y = y2[np.where((y2 > -stv) & (y2 < stv) | ((c2<avg_c+0.04) & (c2>avg_c-0.04)))]
x = x2[np.where((y2 > -stv) & (y2 < stv) | ((c2<avg_c+0.04) & (c2>avg_c-0.04)))]
c = c2[np.where((y2 > -stv) & (y2 < stv) | ((c2<avg_c+0.04) & (c2>avg_c-0.04)))]
vstd2 = np.std(y)
vvar2 = np.var(y)
print 'standard dev of zone %i = %f' % (i,vstd2)
vfinal = np.append(y[np.where((y<vvar2) & (y>-vvar2))],vfinal)
return np.var(vfinal)
开发者ID:nkern,项目名称:Caustic,代码行数:26,代码来源:flux_caustics_ideal.py
示例14: _tTest
def _tTest(x, y, exclude=95):
"""Compute a one-sided Welsh t-statistic."""
with np.errstate(all="ignore"):
def cappedSlog(v):
q = np.percentile(v, exclude)
v2 = v.copy()
v2 = v2[~np.isnan(v2)]
v2[v2 > q] = q
v2[v2 <= 0] = 1. / (75 + 1)
return np.log(v2)
x1 = cappedSlog(x)
x2 = cappedSlog(y)
sx1 = np.var(x1) / len(x1)
sx2 = np.var(x2) / len(x2)
totalSE = np.sqrt(sx1 + sx2)
if totalSE == 0:
stat = 0
else:
stat = (np.mean(x1) - np.mean(x2)) / totalSE
#df = (sx1 + sx2)**2 / (sx1**2/(len(x1)-1) + sx2**2/(len(x2) - 1))
#pval = 1 - scidist.t.cdf(stat, df)
# Scipy's t distribution CDF implementaton has inadequate
# precision. We have switched to the normal distribution for
# better behaved p values.
pval = 0.5 * erfc(stat / sqrt(2))
return {'testStatistic': stat, 'pvalue': pval}
开发者ID:PacificBiosciences,项目名称:kineticsTools,代码行数:29,代码来源:KineticWorker.py
示例15: calc_twosample_ts
def calc_twosample_ts(propGroup1, propGroup2):
n1 = len(propGroup1[0])
n2 = len(propGroup2[0])
numFeatures = len(propGroup1)
T_statistics = []
effectSizes = []
notes = []
for r in xrange(0, numFeatures):
meanG1 = float(sum(propGroup1[r])) / n1
varG1 = var(propGroup1[r], ddof=1)
stdErrG1 = varG1 / n1
meanG2 = float(sum(propGroup2[r])) / n2
varG2 = var(propGroup2[r], ddof=1)
stdErrG2 = varG2 / n2
dp = meanG1 - meanG2
effectSizes.append(dp * 100)
denom = math.sqrt(stdErrG1 + stdErrG2)
if denom == 0:
notes.append("degenerate case: zero variance for both groups; variance set to 1e-6.")
T_statistics.append(dp / 1e-6)
else:
notes.append("")
T_statistics.append(dp / denom)
return T_statistics, effectSizes, notes
开发者ID:jnesme,项目名称:STAMP,代码行数:30,代码来源:White.py
示例16: XDapogee
def XDapogee(options,args):
#First load the chains
savefile= open(args[0],'rb')
thesesamples= pickle.load(savefile)
savefile.close()
vcs= numpy.array([s[0] for s in thesesamples])*_APOGEEREFV0/_REFV0
dvcdrs= numpy.array([s[6] for s in thesesamples])*30. #To be consistent with this project's dlnvcdlnr
print numpy.mean(vcs)
print numpy.mean(dvcdrs)
#Now fit XD to the 2D PDFs
ydata= numpy.zeros((len(vcs),2))
ycovar= numpy.zeros((len(vcs),2))
ydata[:,0]= numpy.log(vcs)
ydata[:,1]= dvcdrs
vcxamp= numpy.ones(options.g)/options.g
vcxmean= numpy.zeros((options.g,2))
vcxcovar= numpy.zeros((options.g,2,2))
for ii in range(options.g):
vcxmean[ii,:]= numpy.mean(ydata,axis=0)+numpy.std(ydata,axis=0)*numpy.random.normal(size=(2))/4.
vcxcovar[ii,0,0]= numpy.var(ydata[:,0])
vcxcovar[ii,1,1]= numpy.var(ydata[:,1])
extreme_deconvolution.extreme_deconvolution(ydata,ycovar,
vcxamp,vcxmean,vcxcovar)
save_pickles(options.plotfile,
vcxamp,vcxmean,vcxcovar)
print vcxamp
print vcxmean[:,0]
print vcxmean[:,1]
return None
开发者ID:jobovy,项目名称:segue-maps,代码行数:29,代码来源:XDapogee.py
示例17: explained_variance_score
def explained_variance_score(y_true, y_pred):
"""Explained variance regression score function
Best possible score is 1.0, lower values are worse.
Note: the explained variance is not a symmetric function.
return the explained variance
Parameters
----------
y_true : array-like
y_pred : array-like
"""
y_true, y_pred = check_arrays(y_true, y_pred)
numerator = np.var(y_true - y_pred)
denominator = np.var(y_true)
if denominator == 0.0:
if numerator == 0.0:
return 1.0
else:
# arbitary set to zero to avoid -inf scores, having a constant
# y_true is not interesting for scoring a regression anyway
return 0.0
return 1 - numerator / denominator
开发者ID:buhrmann,项目名称:scikit-learn,代码行数:27,代码来源:metrics.py
示例18: calc_error
def calc_error(data):
"""
Error estimation for time series of simulation observables and take into
account that these series are to some kind degree correlated (which
enhances the estimated statistical error).
"""
# calculate the normalized autocorrelation function of data
acf = autocorrelation(data)
# calculate the integrated correlation time tau_int
# (Janke, Wolfhard. "Statistical analysis of simulations: Data correlations
# and error estimation." Quantum Simulations of Complex Many-Body Systems:
# From Theory to Algorithms 10 (2002): 423-445.)
tau_int = 0.5
for i in range(len(acf)):
tau_int += acf[i]
if ( i >= 6 * tau_int ):
break
# mean value of the time series
data_mean = np.mean(data)
# calculate the so called effective length of the time series N_eff
if (tau_int > 0.5):
N_eff = len(data) / (2.0 * tau_int)
# finally the error is sqrt(var(data)/N_eff)
stat_err = np.sqrt(np.var(data) / N_eff)
else:
stat_err = np.sqrt(np.var(data) / len(data))
return data_mean, stat_err
开发者ID:KaiSzuttor,项目名称:kaipy,代码行数:27,代码来源:statistic.py
示例19: welch_ttest
def welch_ttest (X, y):
classes = np.unique(y)
n_class = len(classes)
n_feats = X.shape[1]
b = np.zeros(n_feats)
for i in np.arange(n_class):
for j in np.arange(i+1, n_class):
if j > i:
xi = X[y == i, :]
xj = X[y == j, :]
yi = y[y == i]
yj = y[y == j]
mi = np.mean (xi, axis=0)
mj = np.mean (xj, axis=0)
vi = np.var (xi, axis=0)
vj = np.var (xj, axis=0)
n_subjsi = len(yi)
n_subjsj = len(yj)
t = (mi - mj) / np.sqrt((np.square(vi) / n_subjsi) + (np.square(vj) / n_subjsj))
t[np.isnan(t)] = 0
t[np.isinf(t)] = 0
b = np.maximum(b, t)
return b
开发者ID:borjaayerdi,项目名称:oasis_feets,代码行数:31,代码来源:do_classification.py
示例20: test_pairwise_distances_data_derived_params
def test_pairwise_distances_data_derived_params(n_jobs, metric, dist_function,
y_is_x):
# check that pairwise_distances give the same result in sequential and
# parallel, when metric has data-derived parameters.
with config_context(working_memory=1): # to have more than 1 chunk
rng = np.random.RandomState(0)
X = rng.random_sample((1000, 10))
if y_is_x:
Y = X
expected_dist_default_params = squareform(pdist(X, metric=metric))
if metric == "seuclidean":
params = {'V': np.var(X, axis=0, ddof=1)}
else:
params = {'VI': np.linalg.inv(np.cov(X.T)).T}
else:
Y = rng.random_sample((1000, 10))
expected_dist_default_params = cdist(X, Y, metric=metric)
if metric == "seuclidean":
params = {'V': np.var(np.vstack([X, Y]), axis=0, ddof=1)}
else:
params = {'VI': np.linalg.inv(np.cov(np.vstack([X, Y]).T)).T}
expected_dist_explicit_params = cdist(X, Y, metric=metric, **params)
dist = np.vstack(tuple(dist_function(X, Y,
metric=metric, n_jobs=n_jobs)))
assert_allclose(dist, expected_dist_explicit_params)
assert_allclose(dist, expected_dist_default_params)
开发者ID:scikit-learn,项目名称:scikit-learn,代码行数:29,代码来源:test_pairwise.py
注:本文中的numpy.var函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论