• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python core.finfo函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.core.finfo函数的典型用法代码示例。如果您正苦于以下问题:Python finfo函数的具体用法?Python finfo怎么用?Python finfo使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了finfo函数的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_basic

 def test_basic(self):
     dts = list(zip(['f2', 'f4', 'f8', 'c8', 'c16'],
                    [np.float16, np.float32, np.float64, np.complex64,
                     np.complex128]))
     for dt1, dt2 in dts:
         for attr in ('bits', 'eps', 'epsneg', 'iexp', 'machar', 'machep',
                      'max', 'maxexp', 'min', 'minexp', 'negep', 'nexp',
                      'nmant', 'precision', 'resolution', 'tiny'):
             assert_equal(getattr(finfo(dt1), attr),
                          getattr(finfo(dt2), attr), attr)
     assert_raises(ValueError, finfo, 'i4')
开发者ID:Horta,项目名称:numpy,代码行数:11,代码来源:test_getlimits.py


示例2: polyfit


#.........这里部分代码省略.........
    values can add numerical noise to the result.

    Note that fitting polynomial coefficients is inherently badly conditioned
    when the degree of the polynomial is large or the interval of sample points
    is badly centered. The quality of the fit should always be checked in these
    cases. When polynomial fits are not satisfactory, splines may be a good
    alternative.

    References
    ----------
    .. [1] Wikipedia, "Curve fitting",
           http://en.wikipedia.org/wiki/Curve_fitting
    .. [2] Wikipedia, "Polynomial interpolation",
           http://en.wikipedia.org/wiki/Polynomial_interpolation

    Examples
    --------
    >>> x = np.array([0.0, 1.0, 2.0, 3.0,  4.0,  5.0])
    >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
    >>> z = np.polyfit(x, y, 3)
    >>> z
    array([ 0.08703704, -0.81349206,  1.69312169, -0.03968254])

    It is convenient to use `poly1d` objects for dealing with polynomials:

    >>> p = np.poly1d(z)
    >>> p(0.5)
    0.6143849206349179
    >>> p(3.5)
    -0.34732142857143039
    >>> p(10)
    22.579365079365115

    High-order polynomials may oscillate wildly:

    >>> p30 = np.poly1d(np.polyfit(x, y, 30))
    /... RankWarning: Polyfit may be poorly conditioned...
    >>> p30(4)
    -0.80000000000000204
    >>> p30(5)
    -0.99999999999999445
    >>> p30(4.5)
    -0.10547061179440398

    Illustration:

    >>> import matplotlib.pyplot as plt
    >>> xp = np.linspace(-2, 6, 100)
    >>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
    [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
    >>> plt.ylim(-2,2)
    (-2, 2)
    >>> plt.show()

    """
    order = int(deg) + 1
    x = NX.asarray(x) + 0.0
    y = NX.asarray(y) + 0.0

    # check arguments.
    if deg < 0 :
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2 :
        raise TypeError("expected 1D or 2D array for y")
    if x.shape[0] != y.shape[0] :
        raise TypeError("expected x and y to have same length")

    # set rcond
    if rcond is None :
        rcond = len(x)*finfo(x.dtype).eps

    # scale x to improve condition number
    scale = abs(x).max()
    if scale != 0 :
        x /= scale

    # solve least squares equation for powers of x
    v = vander(x, order)
    c, resids, rank, s = lstsq(v, y, rcond)

    # warn on rank reduction, which indicates an ill conditioned matrix
    if rank != order and not full:
        msg = "Polyfit may be poorly conditioned"
        warnings.warn(msg, RankWarning)

    # scale returned coefficients
    if scale != 0 :
        if c.ndim == 1 :
            c /= vander([scale], order)[0]
        else :
            c /= vander([scale], order).T

    if full :
        return c, resids, rank, s, rcond
    else :
        return c
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:101,代码来源:polynomial.py


示例3: test_instances

def test_instances():
    iinfo(10)
    finfo(3.0)
开发者ID:8ballbb,项目名称:ProjectRothar,代码行数:3,代码来源:test_getlimits.py


示例4: test_singleton

 def test_singleton(self,level=2):
     ftype = finfo(longdouble)
     ftype2 = finfo(longdouble)
     assert_equal(id(ftype), id(ftype2))
开发者ID:8ballbb,项目名称:ProjectRothar,代码行数:4,代码来源:test_getlimits.py


示例5: polyfit


#.........这里部分代码省略.........
    >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
    >>> z = np.polyfit(x, y, 3)
    >>> z
    array([ 0.08703704, -0.81349206,  1.69312169, -0.03968254])

    It is convenient to use `poly1d` objects for dealing with polynomials:

    >>> p = np.poly1d(z)
    >>> p(0.5)
    0.6143849206349179
    >>> p(3.5)
    -0.34732142857143039
    >>> p(10)
    22.579365079365115

    High-order polynomials may oscillate wildly:

    >>> p30 = np.poly1d(np.polyfit(x, y, 30))
    /... RankWarning: Polyfit may be poorly conditioned...
    >>> p30(4)
    -0.80000000000000204
    >>> p30(5)
    -0.99999999999999445
    >>> p30(4.5)
    -0.10547061179440398

    Illustration:

    >>> import matplotlib.pyplot as plt
    >>> xp = np.linspace(-2, 6, 100)
    >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
    >>> plt.ylim(-2,2)
    (-2, 2)
    >>> plt.show()

    """
    order = int(deg) + 1
    x = NX.asarray(x) + 0.0
    y = NX.asarray(y) + 0.0

    # check arguments.
    if deg < 0:
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2:
        raise TypeError("expected 1D or 2D array for y")
    if x.shape[0] != y.shape[0]:
        raise TypeError("expected x and y to have same length")

    # set rcond
    if rcond is None:
        rcond = len(x)*finfo(x.dtype).eps

    # set up least squares equation for powers of x
    lhs = vander(x, order)
    rhs = y

    # apply weighting
    if w is not None:
        w = NX.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError("expected a 1-d array for weights")
        if w.shape[0] != y.shape[0]:
            raise TypeError("expected w and y to have the same length")
        lhs *= w[:, NX.newaxis]
        if rhs.ndim == 2:
            rhs *= w[:, NX.newaxis]
        else:
            rhs *= w

    # scale lhs to improve condition number and solve
    scale = NX.sqrt((lhs*lhs).sum(axis=0))
    lhs /= scale
    c, resids, rank, s = lstsq(lhs, rhs, rcond)
    c = (c.T/scale).T  # broadcast scale coefficients

    # warn on rank reduction, which indicates an ill conditioned matrix
    if rank != order and not full:
        msg = "Polyfit may be poorly conditioned"
        warnings.warn(msg, RankWarning)

    if full:
        return c, resids, rank, s, rcond
    elif cov:
        Vbase = inv(dot(lhs.T, lhs))
        Vbase /= NX.outer(scale, scale)
        # Some literature ignores the extra -2.0 factor in the denominator, but
        #  it is included here because the covariance of Multivariate Student-T
        #  (which is implied by a Bayesian uncertainty analysis) includes it.
        #  Plus, it gives a slightly more conservative estimate of uncertainty.
        fac = resids / (len(x) - order - 2.0)
        if y.ndim == 1:
            return c, Vbase * fac
        else:
            return c, Vbase[:,:, NX.newaxis] * fac
    else:
        return c
开发者ID:mattbierbaum,项目名称:numpy,代码行数:101,代码来源:polynomial.py


示例6: polyfit

def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):

    import numpy.core.numeric as NX
    from numpy.core import isscalar, abs, dot
    from numpy.lib.twodim_base import diag, vander
    from numpy.linalg import eigvals, lstsq, inv
    try:
        from numpy.core import finfo # 1.7
    except:
        from numpy.lib.getlimits import finfo # 1.3 support for cluster

    order = int(deg) + 1
    x = NX.asarray(x) + 0.0
    y = NX.asarray(y) + 0.0

    # check arguments.
    if deg < 0 :
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2 :
        raise TypeError("expected 1D or 2D array for y")
    if x.shape[0] != y.shape[0] :
        raise TypeError("expected x and y to have same length")

    # set rcond
    if rcond is None :
        rcond = len(x)*finfo(x.dtype).eps

    # set up least squares equation for powers of x
    lhs = vander(x, order)
    rhs = y

    # apply weighting
    if w is not None:
        w = NX.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError, "expected a 1-d array for weights"
        if w.shape[0] != y.shape[0] :
            raise TypeError, "expected w and y to have the same length"
        lhs *= w[:, NX.newaxis]
        if rhs.ndim == 2:
            rhs *= w[:, NX.newaxis]
        else:
            rhs *= w

    # scale lhs to improve condition number and solve
    scale = NX.sqrt((lhs*lhs).sum(axis=0))
    lhs /= scale
    c, resids, rank, s = lstsq(lhs, rhs, rcond)
    c = (c.T/scale).T  # broadcast scale coefficients

    # warn on rank reduction, which indicates an ill conditioned matrix
    if rank != order and not full:
        msg = "Polyfit may be poorly conditioned"
        warnings.warn(msg, RankWarning)

    if full :
        return c, resids, rank, s, rcond
    elif cov :
        Vbase = inv(dot(lhs.T,lhs))
        Vbase /= NX.outer(scale, scale)
        # Some literature ignores the extra -2.0 factor in the denominator, but
        #  it is included here because the covariance of Multivariate Student-T
        #  (which is implied by a Bayesian uncertainty analysis) includes it.
        #  Plus, it gives a slightly more conservative estimate of uncertainty.
        fac = resids / (len(x) - order - 2.0)
        if y.ndim == 1:
            return c, Vbase * fac
        else:
            return c, Vbase[:,:,NX.newaxis] * fac
    else :
        return c
开发者ID:lindyblackburn,项目名称:gbuts,代码行数:75,代码来源:fit.py



注:本文中的numpy.core.finfo函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python core.hstack函数代码示例发布时间:2022-05-27
下一篇:
Python core.divide函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap