本文整理汇总了Python中numpy.core.numeric.asanyarray函数的典型用法代码示例。如果您正苦于以下问题:Python asanyarray函数的具体用法?Python asanyarray怎么用?Python asanyarray使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了asanyarray函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: tril
def tril(m, k=0):
"""
Lower triangle of an array.
Return a copy of an array with elements above the `k`-th diagonal zeroed.
Parameters
----------
m : array_like, shape (M, N)
Input array.
k : int, optional
Diagonal above which to zero elements. `k = 0` (the default) is the
main diagonal, `k < 0` is below it and `k > 0` is above.
Returns
-------
tril : ndarray, shape (M, N)
Lower triangle of `m`, of same shape and data-type as `m`.
See Also
--------
triu : same thing, only for the upper triangle
Examples
--------
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],
[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])
"""
m = asanyarray(m)
out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype),m)
return out
开发者ID:RJSSimpson,项目名称:numpy,代码行数:35,代码来源:twodim_base.py
示例2: triu
def triu(m, k=0):
"""
Upper triangle of an array.
Return a copy of a matrix with the elements below the `k`-th diagonal
zeroed.
Please refer to the documentation for `tril` for further details.
See Also
--------
tril : lower triangle of an array
Examples
--------
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = asanyarray(m)
mask = tri(*m.shape[-2:], k=k-1, dtype=bool)
return where(mask, zeros(1, m.dtype), m)
开发者ID:AlerzDev,项目名称:Brazo-Proyecto-Final,代码行数:26,代码来源:twodim_base.py
示例3: _mean
def _mean(a, axis=None, dtype=None, out=None, keepdims=False):
arr = asanyarray(a)
is_float16_result = False
rcount = _count_reduce_items(arr, axis)
# Make this warning show up first
if rcount == 0:
warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None:
if issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
elif issubclass(arr.dtype.type, nt.float16):
dtype = mu.dtype('f4')
is_float16_result = True
ret = umr_sum(arr, axis, dtype, out, keepdims)
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
if is_float16_result and out is None:
ret = arr.dtype.type(ret)
elif hasattr(ret, 'dtype'):
if is_float16_result:
ret = arr.dtype.type(ret / rcount)
else:
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
开发者ID:AlerzDev,项目名称:Brazo-Proyecto-Final,代码行数:32,代码来源:_methods.py
示例4: kron
def kron(a,b):
"""kronecker product of a and b
Kronecker product of two arrays is block array
[[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b ],
[ ... ... ],
[ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b ]]
"""
wrapper = get_array_wrap(a, b)
b = asanyarray(b)
a = array(a,copy=False,subok=True,ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
return _nx.multiply(a,b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
a = reshape(a, as_)
if not b.flags.contiguous:
b = reshape(b, bs)
nd = ndb
if (ndb != nda):
if (ndb > nda):
as_ = (1,)*(ndb-nda) + as_
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
result = outer(a,b).reshape(as_+bs)
axis = nd-1
for _ in xrange(nd):
result = concatenate(result, axis=axis)
if wrapper is not None:
result = wrapper(result)
return result
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:34,代码来源:shape_base.py
示例5: triu
def triu(m, k=0):
"""
Upper triangle of an array.
Return a copy of a matrix with the elements below the `k`-th diagonal
zeroed.
Please refer to the documentation for `tril` for further details.
See Also
--------
tril : lower triangle of an array
Examples
--------
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = asanyarray(m)
out = multiply((1 - tri(m.shape[0], m.shape[1], k - 1, dtype=m.dtype)), m)
return out
开发者ID:RJSSimpson,项目名称:numpy,代码行数:25,代码来源:twodim_base.py
示例6: triu
def triu(m, k=0):
""" returns the elements on and above the k-th diagonal of m. k=0 is the
main diagonal, k > 0 is above and k < 0 is below the main diagonal.
"""
m = asanyarray(m)
out = multiply((1-tri(m.shape[0], m.shape[1], k-1, int)),m)
return out
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:7,代码来源:twodim_base.py
示例7: imag
def imag(val):
"""
Return the imaginary part of the elements of the array.
Parameters
----------
val : array_like
Input array.
Returns
-------
out : ndarray
Output array. If `val` is real, the type of `val` is used for the
output. If `val` has complex elements, the returned type is float.
See Also
--------
real, angle, real_if_close
Examples
--------
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
array([ 2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
array([ 1. +8.j, 3.+10.j, 5.+12.j])
"""
return asanyarray(val).imag
开发者ID:8ballbb,项目名称:ProjectRothar,代码行数:30,代码来源:type_check.py
示例8: tril
def tril(m, k=0):
""" returns the elements on and below the k-th diagonal of m. k=0 is the
main diagonal, k > 0 is above and k < 0 is below the main diagonal.
"""
m = asanyarray(m)
out = multiply(tri(m.shape[0], m.shape[1], k=k, dtype=int),m)
return out
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:7,代码来源:twodim_base.py
示例9: diff
def diff(a, n=1, axis=-1, skip=1):
if n == 0:
return a
if n < 0:
raise ValueError(
"order must be non-negative but got " + repr(n))
a = asanyarray(a)
nd = len(a.shape)
# print 'nd', nd
slice1 = [slice(None)]*nd
# print '1st slice1', slice1
slice2 = [slice(None)]*nd
# print '1st slice2', slice2
slice1[axis] = slice(skip, None)
# print '2nd slice1', slice1
slice2[axis] = slice(None, -skip)
# print '2nd slice2', slice2
slice1 = tuple(slice1)
# print '3rd slice1', slice1
slice2 = tuple(slice2)
# print '3rd slice2', slice2
if n > 1:
# print 'n>1: a[slice1] = ', a[slice1]
# print 'n>1: a[slice2] = ', a[slice2]
# print 'n>1: a[slice1]-a[slice2] = ', a[slice1]-a[slice2]
return diff(a[slice1]-a[slice2], n-1, axis=axis)
else:
# print 'n <= 1: a[slice1] = ', a[slice1]
# print 'n <= 1: a[slice2] = ', a[slice2]
# print 'n <= 1: a[slice1]-a[slice2] = ', a[slice1]-a[slice2]
return a[slice1]-a[slice2]
开发者ID:wrightm,项目名称:NumpyCookbook,代码行数:32,代码来源:test_create_ufunc.py
示例10: real
def real(val):
"""
Return the real part of the elements of the array.
Parameters
----------
val : array_like
Input array.
Returns
-------
out : ndarray
Output array. If `val` is real, the type of `val` is used for the
output. If `val` has complex elements, the returned type is float.
See Also
--------
real_if_close, imag, angle
Examples
--------
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
array([ 1., 3., 5.])
>>> a.real = 9
>>> a
array([ 9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])
>>> a
array([ 9.+2.j, 8.+4.j, 7.+6.j])
"""
return asanyarray(val).real
开发者ID:8ballbb,项目名称:ProjectRothar,代码行数:33,代码来源:type_check.py
示例11: log2
def log2(x, y=None):
"""
Return the base 2 logarithm of the input array, element-wise.
Parameters
----------
x : array_like
Input array.
y : array_like
Optional output array with the same shape as `x`.
Returns
-------
y : ndarray
The logarithm to the base 2 of `x` element-wise.
NaNs are returned where `x` is negative.
See Also
--------
log, log1p, log10
Examples
--------
>>> np.log2([-1, 2, 4])
array([ NaN, 1., 2.])
"""
x = nx.asanyarray(x)
if y is None:
y = nx.log(x)
else:
nx.log(x, y)
y /= _log2
return y
开发者ID:DDRBoxman,项目名称:Spherebot-Host-GUI,代码行数:34,代码来源:ufunclike.py
示例12: iscomplex
def iscomplex(x):
"""
Returns a bool array, where True if input element is complex.
What is tested is whether the input has a non-zero imaginary part, not if
the input type is complex.
Parameters
----------
x : array_like
Input array.
Returns
-------
out : ndarray of bools
Output array.
See Also
--------
isreal
iscomplexobj : Return True if x is a complex type or an array of complex
numbers.
Examples
--------
>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([ True, False, False, False, False, True])
"""
ax = asanyarray(x)
if issubclass(ax.dtype.type, _nx.complexfloating):
return ax.imag != 0
res = zeros(ax.shape, bool)
return res[()] # convert to scalar if needed
开发者ID:Horta,项目名称:numpy,代码行数:34,代码来源:type_check.py
示例13: _var
def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
arr = asanyarray(a)
rcount = _count_reduce_items(arr, axis)
# Make this warning show up on top.
if ddof >= rcount:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning,
stacklevel=2)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool_)):
dtype = mu.dtype('f8')
# Compute the mean.
# Note that if dtype is not of inexact type then arraymean will
# not be either.
arrmean = umr_sum(arr, axis, dtype, keepdims=True)
if isinstance(arrmean, mu.ndarray):
arrmean = um.true_divide(
arrmean, rcount, out=arrmean, casting='unsafe', subok=False)
else:
arrmean = arrmean.dtype.type(arrmean / rcount)
# Compute sum of squared deviations from mean
# Note that x may not be inexact and that we need it to be an array,
# not a scalar.
x = asanyarray(arr - arrmean)
if issubclass(arr.dtype.type, (nt.floating, nt.integer)):
x = um.multiply(x, x, out=x)
else:
x = um.multiply(x, um.conjugate(x), out=x).real
ret = umr_sum(x, axis, dtype, out, keepdims)
# Compute degrees of freedom and make sure it is not negative.
rcount = max([rcount - ddof, 0])
# divide by degrees of freedom
if isinstance(ret, mu.ndarray):
ret = um.true_divide(
ret, rcount, out=ret, casting='unsafe', subok=False)
elif hasattr(ret, 'dtype'):
ret = ret.dtype.type(ret / rcount)
else:
ret = ret / rcount
return ret
开发者ID:gerritholl,项目名称:numpy,代码行数:47,代码来源:_methods.py
示例14: fliplr
def fliplr(m):
""" returns an array m with the rows preserved and columns flipped
in the left/right direction. Works on the first two dimensions of m.
"""
m = asanyarray(m)
if m.ndim < 2:
raise ValueError, "Input must be >= 2-d."
return m[:, ::-1]
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:8,代码来源:twodim_base.py
示例15: flipud
def flipud(m):
""" returns an array with the columns preserved and rows flipped in
the up/down direction. Works on the first dimension of m.
"""
m = asanyarray(m)
if m.ndim < 1:
raise ValueError, "Input must be >= 1-d."
return m[::-1,...]
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:8,代码来源:twodim_base.py
示例16: stack
def stack(arrays, axis=0):
"""
Join a sequence of arrays along a new axis.
The `axis` parameter specifies the index of the new axis in the dimensions
of the result. For example, if ``axis=0`` it will be the first dimension
and if ``axis=-1`` it will be the last dimension.
.. versionadded:: 1.10.0
Parameters
----------
arrays : sequence of array_like
Each array must have the same shape.
axis : int, optional
The axis in the result array along which the input arrays are stacked.
Returns
-------
stacked : ndarray
The stacked array has one more dimension than the input arrays.
See Also
--------
concatenate : Join a sequence of arrays along an existing axis.
split : Split array into a list of multiple sub-arrays of equal size.
Examples
--------
>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)
>>> np.stack(arrays, axis=1).shape
(3, 10, 4)
>>> np.stack(arrays, axis=2).shape
(3, 4, 10)
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],
[2, 3, 4]])
>>> np.stack((a, b), axis=-1)
array([[1, 2],
[2, 3],
[3, 4]])
"""
arrays = [asanyarray(arr) for arr in arrays]
if not arrays:
raise ValueError('need at least one array to stack')
shapes = set(arr.shape for arr in arrays)
if len(shapes) != 1:
raise ValueError('all input arrays must have the same shape')
result_ndim = arrays[0].ndim + 1
if not -result_ndim <= axis < result_ndim:
msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim)
raise IndexError(msg)
if axis < 0:
axis += result_ndim
sl = (slice(None),) * axis + (_nx.newaxis,)
expanded_arrays = [arr[sl] for arr in arrays]
return _nx.concatenate(expanded_arrays, axis=axis)
开发者ID:sam1064max,项目名称:Arcade-Learning-Environment,代码行数:58,代码来源:stack.py
示例17: append
def append(arr, values, axis=None):
"""Append to the end of an array along axis (ravel first if None)
"""
arr = asanyarray(arr)
if axis is None:
if arr.ndim != 1:
arr = arr.ravel()
values = ravel(values)
axis = arr.ndim-1
return concatenate((arr, values), axis=axis)
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:10,代码来源:function_base.py
示例18: piecewise
def piecewise(x, condlist, funclist, *args, **kw):
"""Return a piecewise-defined function.
x is the domain
condlist is a list of boolean arrays or a single boolean array
The length of the condition list must be n2 or n2-1 where n2
is the length of the function list. If len(condlist)==n2-1, then
an 'otherwise' condition is formed by |'ing all the conditions
and inverting.
funclist is a list of functions to call of length (n2).
Each function should return an array output for an array input
Each function can take (the same set) of extra arguments and
keyword arguments which are passed in after the function list.
A constant may be used in funclist for a function that returns a
constant (e.g. val and lambda x: val are equivalent in a funclist).
The output is the same shape and type as x and is found by
calling the functions on the appropriate portions of x.
Note: This is similar to choose or select, except
the the functions are only evaluated on elements of x
that satisfy the corresponding condition.
The result is
|--
| f1(x) for condition1
y = --| f2(x) for condition2
| ...
| fn(x) for conditionn
|--
"""
x = asanyarray(x)
n2 = len(funclist)
if not isinstance(condlist, type([])):
condlist = [condlist]
n = len(condlist)
if n == n2-1: # compute the "otherwise" condition.
totlist = condlist[0]
for k in range(1, n):
totlist |= condlist[k]
condlist.append(~totlist)
n += 1
if (n != n2):
raise ValueError, "function list and condition list must be the same"
y = empty(x.shape, x.dtype)
for k in range(n):
item = funclist[k]
if not callable(item):
y[condlist[k]] = item
else:
y[condlist[k]] = item(x[condlist[k]], *args, **kw)
return y
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:55,代码来源:function_base.py
示例19: iscomplex
def iscomplex(x):
"""Return a boolean array where elements are True if that element
is complex (has non-zero imaginary part).
For scalars, return a boolean.
"""
ax = asanyarray(x)
if issubclass(ax.dtype.type, _nx.complexfloating):
return ax.imag != 0
res = zeros(ax.shape, bool)
return +res # convet to array-scalar if needed
开发者ID:radical-software,项目名称:radicalspam,代码行数:11,代码来源:type_check.py
示例20: real_if_close
def real_if_close(a, tol=100):
"""
If complex input returns a real array if complex parts are close to zero.
"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).
Parameters
----------
a : array_like
Input array.
tol : float
Tolerance in machine epsilons for the complex part of the elements
in the array.
Returns
-------
out : ndarray
If `a` is real, the type of `a` is used for the output. If `a`
has complex elements, the returned type is float.
See Also
--------
real, imag, angle
Notes
-----
Machine epsilon varies from machine to machine and between data types
but Python floats on most platforms have a machine epsilon equal to
2.2204460492503131e-16. You can use 'np.finfo(np.float).eps' to print
out the machine epsilon for floats.
Examples
--------
>>> np.finfo(np.float).eps
2.2204460492503131e-16
>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([ 2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([ 2.1 +4.00000000e-13j])
"""
a = asanyarray(a)
if not issubclass(a.dtype.type, _nx.complexfloating):
return a
if tol > 1:
from numpy.core import getlimits
f = getlimits.finfo(a.dtype.type)
tol = f.eps * tol
if _nx.allclose(a.imag, 0, atol=tol):
a = a.real
return a
开发者ID:vkarthi46,项目名称:numpy,代码行数:54,代码来源:type_check.py
注:本文中的numpy.core.numeric.asanyarray函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论