本文整理汇总了Python中numpy.core.numeric.concatenate函数的典型用法代码示例。如果您正苦于以下问题:Python concatenate函数的具体用法?Python concatenate怎么用?Python concatenate使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了concatenate函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: polyadd
def polyadd(a1, a2):
"""
Find the sum of two polynomials.
Returns the polynomial resulting from the sum of two input polynomials.
Each input must be either a poly1d object or a 1D sequence of polynomial
coefficients, from highest to lowest degree.
Parameters
----------
a1, a2 : array_like or poly1d object
Input polynomials.
Returns
-------
out : ndarray or poly1d object
The sum of the inputs. If either input is a poly1d object, then the
output is also a poly1d object. Otherwise, it is a 1D array of
polynomial coefficients from highest to lowest degree.
See Also
--------
poly1d : A one-dimensional polynomial class.
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
Examples
--------
>>> np.polyadd([1, 2], [9, 5, 4])
array([9, 6, 6])
Using poly1d objects:
>>> p1 = np.poly1d([1, 2])
>>> p2 = np.poly1d([9, 5, 4])
>>> print p1
1 x + 2
>>> print p2
2
9 x + 5 x + 4
>>> print np.polyadd(p1, p2)
2
9 x + 6 x + 6
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 + a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) + a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 + NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:59,代码来源:polynomial.py
示例2: vstack
def vstack(tup):
""" Stack arrays in sequence vertically (row wise)
Description:
Take a sequence of arrays and stack them vertically
to make a single array. All arrays in the sequence
must have the same shape along all but the first axis.
vstack will rebuild arrays divided by vsplit.
Arguments:
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = array([[1],[2],[3]])
>>> b = array([[2],[3],[4]])
>>> numpy.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
"""
return _nx.concatenate(map(atleast_2d,tup),0)
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:30,代码来源:shape_base.py
示例3: hstack
def hstack(tup):
""" Stack arrays in sequence horizontally (column wise)
Description:
Take a sequence of arrays and stack them horizontally
to make a single array. All arrays in the sequence
must have the same shape along all but the second axis.
hstack will rebuild arrays divided by hsplit.
Arguments:
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = array([[1],[2],[3]])
>>> b = array([[2],[3],[4]])
>>> numpy.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
return _nx.concatenate(map(atleast_1d,tup),1)
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:26,代码来源:shape_base.py
示例4: dstack
def dstack(tup):
""" Stack arrays in sequence depth wise (along third dimension)
Description:
Take a sequence of arrays and stack them along the third axis.
All arrays in the sequence must have the same shape along all
but the third axis. This is a simple way to stack 2D arrays
(images) into a single 3D array for processing.
dstack will rebuild arrays divided by dsplit.
Arguments:
tup -- sequence of arrays. All arrays must have the same
shape.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = array([[1],[2],[3]])
>>> b = array([[2],[3],[4]])
>>> numpy.dstack((a,b))
array([[[1, 2]],
<BLANKLINE>
[[2, 3]],
<BLANKLINE>
[[3, 4]]])
"""
return _nx.concatenate(map(atleast_3d,tup),2)
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:31,代码来源:shape_base.py
示例5: kron
def kron(a,b):
"""kronecker product of a and b
Kronecker product of two arrays is block array
[[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b ],
[ ... ... ],
[ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b ]]
"""
wrapper = get_array_wrap(a, b)
b = asanyarray(b)
a = array(a,copy=False,subok=True,ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
return _nx.multiply(a,b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
a = reshape(a, as_)
if not b.flags.contiguous:
b = reshape(b, bs)
nd = ndb
if (ndb != nda):
if (ndb > nda):
as_ = (1,)*(ndb-nda) + as_
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
result = outer(a,b).reshape(as_+bs)
axis = nd-1
for _ in xrange(nd):
result = concatenate(result, axis=axis)
if wrapper is not None:
result = wrapper(result)
return result
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:34,代码来源:shape_base.py
示例6: column_stack
def column_stack(tup):
""" Stack 1D arrays as columns into a 2D array
Description:
Take a sequence of 1D arrays and stack them as columns
to make a single 2D array. All arrays in the sequence
must have the same first dimension. 2D arrays are
stacked as-is, just like with hstack. 1D arrays are turned
into 2D columns first.
Arguments:
tup -- sequence of 1D or 2D arrays. All arrays must have the same
first dimension.
Examples:
>>> import numpy
>>> a = array((1,2,3))
>>> b = array((2,3,4))
>>> numpy.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
arrays = []
for v in tup:
arr = array(v,copy=False,subok=True)
if arr.ndim < 2:
arr = array(arr,copy=False,subok=True,ndmin=2).T
arrays.append(arr)
return _nx.concatenate(arrays,1)
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:30,代码来源:shape_base.py
示例7: polysub
def polysub(a1, a2):
"""
Returns difference from subtraction of two polynomials input as sequences.
Returns difference of polynomials; `a1` - `a2`. Input polynomials are
represented as an array_like sequence of terms or a poly1d object.
Parameters
----------
a1 : {array_like, poly1d}
Minuend polynomial as sequence of terms.
a2 : {array_like, poly1d}
Subtrahend polynomial as sequence of terms.
Returns
-------
out : {ndarray, poly1d}
Array representing the polynomial terms.
See Also
--------
polyval, polydiv, polymul, polyadd
Examples
--------
.. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)
>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 - a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) - a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 - NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:GunioRobot,项目名称:numpy-refactor,代码行数:46,代码来源:polynomial.py
示例8: stack
def stack(arrays, axis=0):
"""
Join a sequence of arrays along a new axis.
The `axis` parameter specifies the index of the new axis in the dimensions
of the result. For example, if ``axis=0`` it will be the first dimension
and if ``axis=-1`` it will be the last dimension.
.. versionadded:: 1.10.0
Parameters
----------
arrays : sequence of array_like
Each array must have the same shape.
axis : int, optional
The axis in the result array along which the input arrays are stacked.
Returns
-------
stacked : ndarray
The stacked array has one more dimension than the input arrays.
See Also
--------
concatenate : Join a sequence of arrays along an existing axis.
split : Split array into a list of multiple sub-arrays of equal size.
Examples
--------
>>> arrays = [np.random.randn(3, 4) for _ in range(10)]
>>> np.stack(arrays, axis=0).shape
(10, 3, 4)
>>> np.stack(arrays, axis=1).shape
(3, 10, 4)
>>> np.stack(arrays, axis=2).shape
(3, 4, 10)
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array([[1, 2, 3],
[2, 3, 4]])
>>> np.stack((a, b), axis=-1)
array([[1, 2],
[2, 3],
[3, 4]])
"""
arrays = [asanyarray(arr) for arr in arrays]
if not arrays:
raise ValueError('need at least one array to stack')
shapes = set(arr.shape for arr in arrays)
if len(shapes) != 1:
raise ValueError('all input arrays must have the same shape')
result_ndim = arrays[0].ndim + 1
if not -result_ndim <= axis < result_ndim:
msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim)
raise IndexError(msg)
if axis < 0:
axis += result_ndim
sl = (slice(None),) * axis + (_nx.newaxis,)
expanded_arrays = [arr[sl] for arr in arrays]
return _nx.concatenate(expanded_arrays, axis=axis)
开发者ID:sam1064max,项目名称:Arcade-Learning-Environment,代码行数:58,代码来源:stack.py
示例9: polysub
def polysub(a1, a2):
"""
Difference (subtraction) of two polynomials.
Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
`a1` and `a2` can be either array_like sequences of the polynomials'
coefficients (including coefficients equal to zero), or `poly1d` objects.
Parameters
----------
a1, a2 : array_like or poly1d
Minuend and subtrahend polynomials, respectively.
Returns
-------
out : ndarray or poly1d
Array or `poly1d` object of the difference polynomial's coefficients.
See Also
--------
polyval, polydiv, polymul, polyadd
Examples
--------
.. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)
>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 - a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) - a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 - NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:45,代码来源:polynomial.py
示例10: _leading_trailing
def _leading_trailing(a):
import numpy.core.numeric as _nc
if a.ndim == 1:
if len(a) > 2*_summaryEdgeItems:
b = _nc.concatenate((a[:_summaryEdgeItems],
a[-_summaryEdgeItems:]))
else:
b = a
else:
if len(a) > 2*_summaryEdgeItems:
l = [_leading_trailing(a[i]) for i in range(
min(len(a), _summaryEdgeItems))]
l.extend([_leading_trailing(a[-i]) for i in range(
min(len(a), _summaryEdgeItems),0,-1)])
else:
l = [_leading_trailing(a[i]) for i in range(0, len(a))]
b = _nc.concatenate(tuple(l))
return b
开发者ID:c-mori,项目名称:blaze-core,代码行数:18,代码来源:arrayprint.py
示例11: polysub
def polysub(a1, a2):
"""Subtracts two polynomials represented as sequences
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 - a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) - a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 - NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:18,代码来源:polynomial.py
示例12: __setitem__
def __setitem__(self, key, val):
ind = self.order - key
if key < 0:
raise ValueError("Does not support negative powers.")
if key > self.order:
zr = NX.zeros(key-self.order, self.coeffs.dtype)
self._coeffs = NX.concatenate((zr, self.coeffs))
ind = 0
self._coeffs[ind] = val
return
开发者ID:imshenny,项目名称:numpy,代码行数:10,代码来源:polynomial.py
示例13: block_recursion
def block_recursion(arrays, depth=0):
if depth < max_depth:
if len(arrays) == 0:
raise ValueError('Lists cannot be empty')
arrs = [block_recursion(arr, depth+1) for arr in arrays]
return _nx.concatenate(arrs, axis=-(max_depth-depth))
else:
# We've 'bottomed out' - arrays is either a scalar or an array
# type(arrays) is not list
return atleast_nd(arrays, result_ndim)
开发者ID:rc,项目名称:sfepy,代码行数:10,代码来源:compat.py
示例14: append
def append(arr, values, axis=None):
"""Append to the end of an array along axis (ravel first if None)
"""
arr = asanyarray(arr)
if axis is None:
if arr.ndim != 1:
arr = arr.ravel()
values = ravel(values)
axis = arr.ndim-1
return concatenate((arr, values), axis=axis)
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:10,代码来源:function_base.py
示例15: dstack
def dstack(tup):
"""
Stack arrays in sequence depth wise (along third axis).
Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by `dsplit`.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.
This function continues to be supported for backward compatibility, but
you should prefer ``np.concatenate`` or ``np.stack``. The ``np.stack``
function was added in NumPy 1.10.
Parameters
----------
tup : sequence of arrays
Arrays to stack. All of them must have the same shape along all
but the third axis.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.
See Also
--------
stack : Join a sequence of arrays along a new axis.
vstack : Stack along first axis.
hstack : Stack along second axis.
concatenate : Join a sequence of arrays along an existing axis.
dsplit : Split array along third axis.
Notes
-----
Equivalent to ``np.concatenate(tup, axis=2)`` if `tup` contains arrays that
are at least 3-dimensional.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])
"""
return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
开发者ID:Juanlu001,项目名称:numpy,代码行数:55,代码来源:shape_base.py
示例16: __setitem__
def __setitem__(self, key, val):
ind = self.order - key
if key < 0:
raise ValueError, "Does not support negative powers."
if key > self.order:
zr = NX.zeros(key-self.order, self.coeffs.dtype)
self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
self.__dict__['order'] = key
ind = 0
self.__dict__['coeffs'][ind] = val
return
开发者ID:258073127,项目名称:MissionPlanner,代码行数:11,代码来源:polynomial.py
示例17: dstack
def dstack(tup):
"""
Stack arrays in sequence depth wise (along third axis).
This is equivalent to concatenation along the third axis after 2-D arrays
of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
`dsplit`.
This function makes most sense for arrays with up to 3 dimensions. For
instance, for pixel-data with a height (first axis), width (second axis),
and r/g/b channels (third axis). The functions `concatenate`, `stack` and
`block` provide more general stacking and concatenation operations.
Parameters
----------
tup : sequence of arrays
The arrays must have the same shape along all but the third axis.
1-D or 2-D arrays must have the same shape.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays, will be at least 3-D.
See Also
--------
stack : Join a sequence of arrays along a new axis.
vstack : Stack along first axis.
hstack : Stack along second axis.
concatenate : Join a sequence of arrays along an existing axis.
dsplit : Split array along third axis.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])
"""
_warn_for_nonsequence(tup)
return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
开发者ID:ales-erjavec,项目名称:numpy,代码行数:52,代码来源:shape_base.py
示例18: polyadd
def polyadd(a1, a2):
"""
Returns sum of two polynomials.
Returns sum of polynomials; `a1` + `a2`. Input polynomials are
represented as an array_like sequence of terms or a poly1d object.
Parameters
----------
a1 : {array_like, poly1d}
Polynomial as sequence of terms.
a2 : {array_like, poly1d}
Polynomial as sequence of terms.
Returns
-------
out : {ndarray, poly1d}
Array representing the polynomial terms.
See Also
--------
polyval, polydiv, polymul, polyadd
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 + a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) + a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 + NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:GunioRobot,项目名称:numpy-refactor,代码行数:39,代码来源:polynomial.py
示例19: vstack
def vstack(tup):
"""
Stack arrays in sequence vertically (row wise).
Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by `vsplit`.
Parameters
----------
tup : sequence of ndarrays
Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.
See Also
--------
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
concatenate : Join a sequence of arrays together.
vsplit : Split array into a list of multiple sub-arrays vertically.
Notes
-----
Equivalent to ``np.concatenate(tup, axis=0)``
Examples
--------
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
"""
return _nx.concatenate(map(atleast_2d,tup),0)
开发者ID:AndreI11,项目名称:SatStressGui,代码行数:50,代码来源:shape_base.py
示例20: _from_string
def _from_string(str, gdict, ldict):
rows = str.split(';')
rowtup = []
for row in rows:
trow = row.split(',')
newrow = []
for x in trow:
newrow.extend(x.split())
trow = newrow
coltup = []
for col in trow:
col = col.strip()
try:
thismat = ldict[col]
except KeyError:
try:
thismat = gdict[col]
except KeyError:
raise KeyError("%s not found" % (col,))
coltup.append(thismat)
rowtup.append(concatenate(coltup, axis=-1))
return concatenate(rowtup, axis=0)
开发者ID:ihuston,项目名称:numpy,代码行数:23,代码来源:defmatrix.py
注:本文中的numpy.core.numeric.concatenate函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论