本文整理汇总了Python中numpy.core.numeric.empty函数的典型用法代码示例。如果您正苦于以下问题:Python empty函数的具体用法?Python empty怎么用?Python empty使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了empty函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _replace_zero_by_x_arrays
def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if _nx.ndim(sub_arys[i]) == 0:
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
return sub_arys
开发者ID:Juanlu001,项目名称:numpy,代码行数:7,代码来源:shape_base.py
示例2: isneginf
def isneginf(x, y=None):
"""
Return True where x is -infinity, and False otherwise.
Parameters
----------
x : array_like
The input array.
y : array_like
A boolean array with the same shape as `x` to store the result.
Returns
-------
y : ndarray
A boolean array where y[i] = True only if x[i] = -Inf.
See Also
--------
isposinf, isfinite
Examples
--------
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False], dtype=bool)
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), nx.signbit(x), y)
return y
开发者ID:The-Franklin-Institute,项目名称:ARIEL_Builder,代码行数:31,代码来源:ufunclike.py
示例3: _ismethod
def _ismethod(self, name):
result = empty(self.shape, dtype=bool)
res = result.flat
for k, val in enumerate(self.flat):
item = val.rstrip('\x00')
res[k] = getattr(item, name)()
return result
开发者ID:Huskyeder,项目名称:augustus,代码行数:7,代码来源:odgchararray.py
示例4: mediff1d
def mediff1d(array, to_end=None, to_begin=None):
"""Array difference with prefixed and/or appended value."""
a = masked_array(array, copy=True)
if a.ndim > 1:
a.reshape((a.size,))
(d, m, n) = (a._data, a._mask, a.size-1)
dd = d[1:]-d[:-1]
if m is nomask:
dm = nomask
else:
dm = m[1:]-m[:-1]
#
if to_end is not None:
to_end = asarray(to_end)
nend = to_end.size
if to_begin is not None:
to_begin = asarray(to_begin)
nbegin = to_begin.size
r_data = numeric.empty((n+nend+nbegin,), dtype=a.dtype)
r_mask = numeric.zeros((n+nend+nbegin,), dtype=bool_)
r_data[:nbegin] = to_begin._data
r_mask[:nbegin] = to_begin._mask
r_data[nbegin:-nend] = dd
r_mask[nbegin:-nend] = dm
else:
r_data = numeric.empty((n+nend,), dtype=a.dtype)
r_mask = numeric.zeros((n+nend,), dtype=bool_)
r_data[:-nend] = dd
r_mask[:-nend] = dm
r_data[-nend:] = to_end._data
r_mask[-nend:] = to_end._mask
#
elif to_begin is not None:
to_begin = asarray(to_begin)
nbegin = to_begin.size
r_data = numeric.empty((n+nbegin,), dtype=a.dtype)
r_mask = numeric.zeros((n+nbegin,), dtype=bool_)
r_data[:nbegin] = to_begin._data
r_mask[:nbegin] = to_begin._mask
r_data[nbegin:] = dd
r_mask[nbegin:] = dm
#
else:
r_data = dd
r_mask = dm
return masked_array(r_data, mask=r_mask)
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:46,代码来源:extras.py
示例5: isneginf
def isneginf(x, y=None):
"""Return a boolean array y with y[i] True for x[i] = -Inf.
If y is an array, the result replaces the contents of y.
"""
if y is None:
x = asarray(x)
y = empty(x.shape, dtype=nx.bool_)
umath.logical_and(isinf(x), signbit(x), y)
return y
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:10,代码来源:ufunclike.py
示例6: piecewise
def piecewise(x, condlist, funclist, *args, **kw):
"""Return a piecewise-defined function.
x is the domain
condlist is a list of boolean arrays or a single boolean array
The length of the condition list must be n2 or n2-1 where n2
is the length of the function list. If len(condlist)==n2-1, then
an 'otherwise' condition is formed by |'ing all the conditions
and inverting.
funclist is a list of functions to call of length (n2).
Each function should return an array output for an array input
Each function can take (the same set) of extra arguments and
keyword arguments which are passed in after the function list.
A constant may be used in funclist for a function that returns a
constant (e.g. val and lambda x: val are equivalent in a funclist).
The output is the same shape and type as x and is found by
calling the functions on the appropriate portions of x.
Note: This is similar to choose or select, except
the the functions are only evaluated on elements of x
that satisfy the corresponding condition.
The result is
|--
| f1(x) for condition1
y = --| f2(x) for condition2
| ...
| fn(x) for conditionn
|--
"""
x = asanyarray(x)
n2 = len(funclist)
if not isinstance(condlist, type([])):
condlist = [condlist]
n = len(condlist)
if n == n2-1: # compute the "otherwise" condition.
totlist = condlist[0]
for k in range(1, n):
totlist |= condlist[k]
condlist.append(~totlist)
n += 1
if (n != n2):
raise ValueError, "function list and condition list must be the same"
y = empty(x.shape, x.dtype)
for k in range(n):
item = funclist[k]
if not callable(item):
y[condlist[k]] = item
else:
y[condlist[k]] = item(x[condlist[k]], *args, **kw)
return y
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:55,代码来源:function_base.py
示例7: _typedmethod
def _typedmethod(self, name, myiter, dtype):
result = empty(myiter.shape, dtype=dtype)
res = result.flat
for k, val in enumerate(myiter):
newval = []
for chk in val[1:]:
if not chk or (chk.dtype is object_ and chk.item() is None):
break
newval.append(chk)
this_str = val[0].rstrip('\x00')
newitem = getattr(this_str,name)(*newval)
res[k] = newitem
return result
开发者ID:Huskyeder,项目名称:augustus,代码行数:13,代码来源:odgchararray.py
示例8: _calculatePathLength
def _calculatePathLength(self, save_xd):
'''Calculates the cumulative Euclidian d-dimensional path length of the piecewise linear curve defined by a series of points save_xd
TODO - factor this out into an 'lpcPath'-type class
Parameters
----------
save_xd : 2-dim (n*m) numpy.array of floats containing coordinates of n, ordered, m-dimensional feature points defining a
piecewise linear curve with n-1 segments
Returns
-------
lamb : 1-dim array with n ordered entries, defining the cumulative sum of segment lengths. lamb[0] = 0.
'''
it = len(save_xd)
lamb = empty(it)
for i in range(it):
if i==0:
lamb[0] = 0
else:
lamb[i] = lamb[i-1] + sqrt(sum((save_xd[i] - save_xd[i-1])**2))
return lamb
开发者ID:epp-warwick,项目名称:lpcm,代码行数:20,代码来源:lpc.py
示例9: delete
def delete(arr, obj, axis=None):
"""Return a new array with sub-arrays along an axis deleted.
Return a new array with the sub-arrays (i.e. rows or columns)
deleted along the given axis as specified by obj
obj may be a slice_object (s_[3:5:2]) or an integer
or an array of integers indicated which sub-arrays to
remove.
If axis is None, then ravel the array first.
Example:
>>> arr = [[3,4,5],
... [1,2,3],
... [6,7,8]]
>>> delete(arr, 1, 1)
array([[3, 5],
[1, 3],
[6, 8]])
>>> delete(arr, 1, 0)
array([[3, 4, 5],
[6, 7, 8]])
"""
wrap = None
if type(arr) is not ndarray:
try:
wrap = arr.__array_wrap__
except AttributeError:
pass
arr = asarray(arr)
ndim = arr.ndim
if axis is None:
if ndim != 1:
arr = arr.ravel()
ndim = arr.ndim;
axis = ndim-1;
if ndim == 0:
if wrap:
return wrap(arr)
else:
return arr.copy()
slobj = [slice(None)]*ndim
N = arr.shape[axis]
newshape = list(arr.shape)
if isinstance(obj, (int, long, integer)):
if (obj < 0): obj += N
if (obj < 0 or obj >=N):
raise ValueError, "invalid entry"
newshape[axis]-=1;
new = empty(newshape, arr.dtype, arr.flags.fnc)
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = slice(obj,None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(obj+1,None)
new[slobj] = arr[slobj2]
elif isinstance(obj, slice):
start, stop, step = obj.indices(N)
numtodel = len(xrange(start, stop, step))
if numtodel <= 0:
if wrap:
return wrap(new)
else:
return arr.copy()
newshape[axis] -= numtodel
new = empty(newshape, arr.dtype, arr.flags.fnc)
# copy initial chunk
if start == 0:
pass
else:
slobj[axis] = slice(None, start)
new[slobj] = arr[slobj]
# copy end chunck
if stop == N:
pass
else:
slobj[axis] = slice(stop-numtodel,None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(stop, None)
new[slobj] = arr[slobj2]
# copy middle pieces
if step == 1:
pass
else: # use array indexing.
obj = arange(start, stop, step, dtype=intp)
all = arange(start, stop, dtype=intp)
obj = setdiff1d(all, obj)
slobj[axis] = slice(start, stop-numtodel)
slobj2 = [slice(None)]*ndim
slobj2[axis] = obj
new[slobj] = arr[slobj2]
else: # default behavior
obj = array(obj, dtype=intp, copy=0, ndmin=1)
all = arange(N, dtype=intp)
obj = setdiff1d(all, obj)
slobj[axis] = obj
#.........这里部分代码省略.........
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:101,代码来源:function_base.py
示例10: insert
def insert(arr, obj, values, axis=None):
"""Return a new array with values inserted along the given axis
before the given indices
If axis is None, then ravel the array first.
The obj argument can be an integer, a slice, or a sequence of
integers.
Example:
>>> a = array([[1,2,3],
... [4,5,6],
... [7,8,9]])
>>> insert(a, [1,2], [[4],[5]], axis=0)
array([[1, 2, 3],
[4, 4, 4],
[4, 5, 6],
[5, 5, 5],
[7, 8, 9]])
"""
wrap = None
if type(arr) is not ndarray:
try:
wrap = arr.__array_wrap__
except AttributeError:
pass
arr = asarray(arr)
ndim = arr.ndim
if axis is None:
if ndim != 1:
arr = arr.ravel()
ndim = arr.ndim
axis = ndim-1
if (ndim == 0):
arr = arr.copy()
arr[...] = values
if wrap:
return wrap(arr)
else:
return arr
slobj = [slice(None)]*ndim
N = arr.shape[axis]
newshape = list(arr.shape)
if isinstance(obj, (int, long, integer)):
if (obj < 0): obj += N
if obj < 0 or obj > N:
raise ValueError, "index (%d) out of range (0<=index<=%d) "\
"in dimension %d" % (obj, N, axis)
newshape[axis] += 1;
new = empty(newshape, arr.dtype, arr.flags.fnc)
slobj[axis] = slice(None, obj)
new[slobj] = arr[slobj]
slobj[axis] = obj
new[slobj] = values
slobj[axis] = slice(obj+1,None)
slobj2 = [slice(None)]*ndim
slobj2[axis] = slice(obj,None)
new[slobj] = arr[slobj2]
if wrap:
return wrap(new)
return new
elif isinstance(obj, slice):
# turn it into a range object
obj = arange(*obj.indices(N),**{'dtype':intp})
# get two sets of indices
# one is the indices which will hold the new stuff
# two is the indices where arr will be copied over
obj = asarray(obj, dtype=intp)
numnew = len(obj)
index1 = obj + arange(numnew)
index2 = setdiff1d(arange(numnew+N),index1)
newshape[axis] += numnew
new = empty(newshape, arr.dtype, arr.flags.fnc)
slobj2 = [slice(None)]*ndim
slobj[axis] = index1
slobj2[axis] = index2
new[slobj] = values
new[slobj2] = arr
if wrap:
return wrap(new)
return new
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:87,代码来源:function_base.py
示例11: vander
def vander(x, N=None, increasing=False):
"""
Generate a Vandermonde matrix.
The columns of the output matrix are powers of the input vector. The
order of the powers is determined by the `increasing` boolean argument.
Specifically, when `increasing` is False, the `i`-th output column is
the input vector raised element-wise to the power of ``N - i - 1``. Such
a matrix with a geometric progression in each row is named for Alexandre-
Theophile Vandermonde.
Parameters
----------
x : array_like
1-D input array.
N : int, optional
Number of columns in the output. If `N` is not specified, a square
array is returned (``N = len(x)``).
increasing : bool, optional
Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.
.. versionadded:: 1.9.0
Returns
-------
out : ndarray
Vandermonde matrix. If `increasing` is False, the first column is
``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is
True, the columns are ``x^0, x^1, ..., x^(N-1)``.
See Also
--------
polynomial.polynomial.polyvander
Examples
--------
>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1, 1, 1],
[ 4, 2, 1],
[ 9, 3, 1],
[25, 5, 1]])
>>> x = np.array([1, 2, 3, 5])
>>> np.vander(x)
array([[ 1, 1, 1, 1],
[ 8, 4, 2, 1],
[ 27, 9, 3, 1],
[125, 25, 5, 1]])
>>> np.vander(x, increasing=True)
array([[ 1, 1, 1, 1],
[ 1, 2, 4, 8],
[ 1, 3, 9, 27],
[ 1, 5, 25, 125]])
The determinant of a square Vandermonde matrix is the product
of the differences between the values of the input vector:
>>> np.linalg.det(np.vander(x))
48.000000000000043
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48
"""
x = asarray(x)
if x.ndim != 1:
raise ValueError("x must be a one-dimensional array or sequence.")
if N is None:
N = len(x)
v = empty((len(x), N), dtype=promote_types(x.dtype, int))
tmp = v[:, ::-1] if not increasing else v
if N > 0:
tmp[:, 0] = 1
if N > 1:
tmp[:, 1:] = x[:, None]
multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1)
return v
开发者ID:noclew,项目名称:numpy,代码行数:88,代码来源:twodim_base.py
示例12: isposinf
def isposinf(x, y=None):
"""
Test element-wise for positive infinity, return result as bool array.
Parameters
----------
x : array_like
The input array.
y : array_like, optional
A boolean array with the same shape as `x` to store the result.
Returns
-------
y : ndarray
A boolean array with the same dimensions as the input.
If second argument is not supplied then a boolean array is returned
with values True where the corresponding element of the input is
positive infinity and values False where the element of the input is
not positive infinity.
If a second argument is supplied the result is stored there. If the
type of that array is a numeric type the result is represented as zeros
and ones, if the type is boolean then as False and True.
The return value `y` is then a reference to that array.
See Also
--------
isinf, isneginf, isfinite, isnan
Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754).
Errors result if the second argument is also supplied when `x` is a
scalar input, or if first and second arguments have different shapes.
Examples
--------
>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True], dtype=bool)
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isposinf(x, y)
array([0, 0, 1])
>>> y
array([0, 0, 1])
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
return y
开发者ID:258073127,项目名称:MissionPlanner,代码行数:61,代码来源:ufunclike.py
示例13: test_empty_method
def test_empty_method(self):
a = empty((2,3))
self.assertEqual(a.ndim, 2)
开发者ID:pawanvirsingh,项目名称:NumpyTutorial,代码行数:3,代码来源:examples.py
示例14: diag
def diag(v, k=0):
"""
Extract a diagonal or construct a diagonal array.
Parameters
----------
v : array_like
If `v` is a 2-D array, return a copy of its `k`-th diagonal.
If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th
diagonal.
k : int, optional
Diagonal in question. The default is 0. Use `k>0` for diagonals
above the main diagonal, and `k<0` for diagonals below the main
diagonal.
Returns
-------
out : ndarray
The extracted diagonal or constructed diagonal array.
See Also
--------
diagonal : Return specified diagonals.
diagflat : Create a 2-D array with the flattened input as a diagonal.
trace : Sum along diagonals.
triu : Upper triangle of an array.
tril : Lower triange of an array.
Examples
--------
>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x, k=-1)
array([3, 7])
>>> np.diag(np.diag(x))
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 8]])
"""
v = asarray(v)
s = v.shape
if len(s) == 1:
n = s[0]+abs(k)
res = zeros((n,n), v.dtype)
if k >= 0:
i = k
else:
i = (-k) * n
res[:n-k].flat[i::n+1] = v
return res
elif len(s) == 2:
if k >= s[1]:
return empty(0, dtype=v.dtype)
if v.flags.f_contiguous:
# faster slicing
v, k, s = v.T, -k, s[::-1]
if k >= 0:
i = k
else:
i = (-k) * s[1]
return v[:s[1]-k].flat[i::s[1]+1]
else:
raise ValueError("Input must be 1- or 2-d.")
开发者ID:1950,项目名称:sawbuck,代码行数:73,代码来源:twodim_base.py
示例15: isposinf
def isposinf(x, y=None):
"""
Shows which elements of the input are positive infinity.
Returns a numpy array resulting from an element-wise test for positive
infinity.
Parameters
----------
x : array_like
The input array.
y : array_like
A boolean array with the same shape as `x` to store the result.
Returns
-------
y : ndarray
A numpy boolean array with the same dimensions as the input.
If second argument is not supplied then a numpy boolean array is returned
with values True where the corresponding element of the input is positive
infinity and values False where the element of the input is not positive
infinity.
If second argument is supplied then an numpy integer array is returned
with values 1 where the corresponding element of the input is positive
positive infinity.
See Also
--------
isinf : Shows which elements are negative or positive infinity.
isneginf : Shows which elements are negative infinity.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a number, positive and
negative infinity
Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.
Errors result if second argument is also supplied with scalar input or
if first and second arguments have different shapes.
Numpy's definitions for positive infinity (PINF) and negative infinity
(NINF) may be change in the future versions.
Examples
--------
>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True], dtype=bool)
>>> x=np.array([-np.inf, 0., np.inf])
>>> y=np.array([2,2,2])
>>> np.isposinf(x,y)
array([1, 0, 0])
>>> y
array([1, 0, 0])
"""
if y is None:
x = nx.asarray(x)
y = nx.empty(x.shape, dtype=nx.bool_)
nx.logical_and(nx.isinf(x), ~nx.signbit(x), y)
return y
开发者ID:The-Franklin-Institute,项目名称:ARIEL_Builder,代码行数:72,代码来源:ufunclike.py
示例16: _followxSingleDirection
def _followxSingleDirection( self,
x,
direction = Direction.FORWARD,
forward_curve = None,
last_eigenvector = None,
weights = 1.):
'''Generates a partial lpc curve dictionary from the start point, x.
Arguments
---------
x : 1-dim, length m, numpy.array of floats, start point for the algorithm when m is dimension of feature space
direction : bool, proceeds in Direction.FORWARD or Direction.BACKWARD from this point (just sets sign for first eigenvalue)
forward_curve : dictionary as returned by this function, is used to detect crossing of the curve under construction with a
previously constructed curve
last_eigenvector : 1-dim, length m, numpy.array of floats, a unit vector that defines the initial direction, relative to
which the first eigenvector is biased and initial cos_neu_neu is calculated
weights : 1-dim, length n numpy.array of observation weights (can also be used to exclude
individual observations from the computation by setting their weight to zero.),
where n is the number of feature points
'''
x0 = copy(x)
N = self.Xi.shape[0]
d = self.Xi.shape[1]
it = self._lpcParameters['it']
h = array(self._lpcParameters['h'])
t0 = self._lpcParameters['t0']
rho0 = self._lpcParameters['rho0']
save_xd = empty((it,d))
eigen_vecd = empty((it,d))
c0 = ones(it)
cos_alt_neu = ones(it)
cos_neu_neu = ones(it)
lamb = empty(it) #NOTE this is named 'lambda' in the original R code
rho = zeros(it)
high_rho_points = empty((0,d))
count_points = 0
for i in range(it):
kernel_weights = self._kernd(self.Xi, x0, c0[i]*h) * weights
mu_x = average(self.Xi, axis = 0, weights = kernel_weights)
sum_weights = sum(kernel_weights)
mean_sub = self.Xi - mu_x
cov_x = dot( dot(transpose(mean_sub), numpy.diag(kernel_weights)), mean_sub) / sum_weights
#assert (abs(cov_x.transpose() - cov_x)/abs(cov_x.transpose() + cov_x) < 1e-6).all(), 'Covariance matrix not symmetric, \n cov_x = {0}, mean_sub = {1}'.format(cov_x, mean_sub)
save_xd[i] = mu_x #save first point of the branch
count_points += 1
#calculate path length
if i==0:
lamb[0] = 0
else:
lamb[i] = lamb[i-1] + sqrt(sum((mu_x - save_xd[i-1])**2))
#calculate eigenvalues/vectors
#(sorted_eigen_cov is a list of tuples containing eigenvalue and associated eigenvector, sorted descending by eigenvalue)
eigen_cov = eigh(cov_x)
sorted_eigen_cov = zip(eigen_cov[0],map(ravel,vsplit(eigen_cov[1].transpose(),len(eigen_cov[1]))))
sorted_eigen_cov.sort(key = lambda elt: elt[0], reverse = True)
eigen_norm = sqrt(sum(sorted_eigen_cov[0][1]**2))
eigen_vecd[i] = direction * sorted_eigen_cov[0][1] / eigen_norm #Unit eigenvector corresponding to largest eigenvalue
#rho parameters
rho[i] = sorted_eigen_cov[1][0] / sorted_eigen_cov[0][0] #Ratio of two largest eigenvalues
if i != 0 and rho[i] > rho0 and rho[i-1] <= rho0:
high_rho_points = vstack((high_rho_points, x0))
#angle between successive eigenvectors
if i==0 and last_eigenvector is not None:
cos_alt_neu[i] = direction * dot(last_eigenvector, eigen_vecd[i])
if i > 0:
cos_alt_neu[i] = dot(eigen_vecd[i], eigen_vecd[i-1])
#signum flipping
if cos_alt_neu[i] < 0:
eigen_vecd[i] = -eigen_vecd[i]
cos_neu_neu[i] = -cos_alt_neu[i]
else:
cos_neu_neu[i] = cos_alt_neu[i]
#angle penalization
pen = self._lpcParameters['pen']
if pen > 0:
if i == 0 and last_eigenvector is not None:
a = abs(cos_alt_neu[i])**pen
eigen_vecd[i] = a * eigen_vecd[i] + (1-a) * last_eigenvector
if i > 0:
a = abs(cos_alt_neu[i])**pen
eigen_vecd[i] = a * eigen_vecd[i] + (1-a) * eigen_vecd[i-1]
#check curve termination criteria
if i not in (0, it-1):
#crossing
cross = self._lpcParameters['cross']
if forward_curve is None:
full_curve_points = save_xd[0:i+1]
else:
#.........这里部分代码省略.........
开发者ID:epp-warwick,项目名称:lpcm,代码行数:101,代码来源:lpc.py
示例17: histogramdd
def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
"""histogramdd(sample, bins=10, range=None, normed=False, weights=None)
Return the N-dimensional histogram of the sample.
Parameters:
sample : sequence or array
A sequence containing N arrays or an NxM array. Input data.
bins : sequence or scalar
A sequence of edge arrays, a sequence of bin counts, or a scalar
which is the bin count for all dimensions. Default is 10.
range : sequence
A sequence of lower and upper bin edges. Default is [min, max].
normed : boolean
If False, return the number of samples in each bin, if True,
returns the density.
weights : array
Array of weights. The weights are normed only if normed is True.
Should the sum of the weights not equal N, the total bin count will
not be equal to the number of samples.
Returns:
hist : array
Histogram array.
edges : list
List of arrays defining the lower bin edges.
SeeAlso:
histogram
Example
>>> x = random.randn(100,3)
>>> hist3d, edges = histogramdd(x, bins = (5, 6, 7))
"""
try:
# Sample is an ND-array.
N, D = sample.shape
except (AttributeError, ValueError):
# Sample is a sequence of 1D arrays.
sample = atleast_2d(sample).T
N, D = sample.shape
nbin = empty(D, int)
edges = D*[None]
dedges = D*[None]
if weights is not None:
weights = asarray(weights)
try:
M = len(bins)
if M != D:
raise AttributeError, 'The dimension of bins must be a equal to the dimension of the sample x.'
except TypeError:
bins = D*[bins]
# Select range for each dimension
# Used only if number of bins is given.
if range is None:
smin = atleast_1d(array(sample.min(0), float))
smax = atleast_1d(array(sample.max(0), float))
else:
smin = zeros(D)
smax = zeros(D)
for i in arange(D):
smin[i], smax[i] = range[i]
# Make sure the bins have a finite width.
for i in arange(len(smin)):
if smin[i] == smax[i]:
smin[i] = smin[i] - .5
smax[i] = smax[i] + .5
# Create edge arrays
for i in arange(D):
if isscalar(bins[i]):
nbin[i] = bins[i] + 2 # +2 for outlier bins
edges[i] = linspace(smin[i], smax[i], nbin[i]-1)
else:
edges[i] = asarray(bins[i], float)
nbin[i] = len(edges[i])+1 # +1 for outlier bins
dedges[i] = diff(edges[i])
nbin = asarray(nbin)
# Compute the bin number each sample falls into.
Ncount = {}
for i in arange(D):
Ncount[i] = digitize(sample[:,i], edges[i])
#.........这里部分代码省略.........
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:101,代码来源:function_base.py
示例18: masked_all
def masked_all(shape, dtype=float_):
"""Returns an empty masked array of the given shape and dtype,
where all the data are masked."""
a = masked_array(numeric.empty(shape, dtype),
mask=numeric.ones(shape, bool_))
return a
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:6,代码来源:extras.py
注:本文中的numpy.core.numeric.empty函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论