• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numeric.ones函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.core.numeric.ones函数的典型用法代码示例。如果您正苦于以下问题:Python ones函数的具体用法?Python ones怎么用?Python ones使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了ones函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __train__

    def __train__(self, data, labels):
        l = labels.reshape((-1,1))
        self.__trainingData__ = data
        self.__trainingLabels__ = l
        N = len(l)
        H = zeros((N,N))
        for i in range(N):
            for j in range(N):
                H[i,j] = self.__trainingLabels__[i]*self.__trainingLabels__[j]*self.__kernelFunc__(self.__trainingData__[i],self.__trainingData__[j])
        f = -1.0*ones(labels.shape)
        lb = zeros(labels.shape)
        ub = self.C * ones(labels.shape)
        Aeq = labels
        beq = 0.0
        suppressOut = True
        if suppressOut:
            devnull = open('/dev/null', 'w')
            oldstdout_fno = os.dup(sys.stdout.fileno())
            os.dup2(devnull.fileno(), 1)
        p = QP(matrix(H),f.tolist(),lb=lb.tolist(),ub=ub.tolist(),Aeq=Aeq.tolist(),beq=beq)
        r = p.solve('cvxopt_qp')
        if suppressOut:
            os.dup2(oldstdout_fno, 1)
        lim = 1e-4
        r.xf[where(abs(r.xf)<lim)] = 0
        self.__lambdas__ = r.xf
        nonzeroindexes = where(r.xf>lim)[0]
#        l1 = nonzeroindexes[0]
#        self.w0 = 1.0/labels[l1]-dot(self.w,data[l1])
        self.numSupportVectors = len(nonzeroindexes)
开发者ID:yk,项目名称:patternhs12,代码行数:30,代码来源:classifiers.py


示例2: select

def select(condlist, choicelist, default=0):
    """ Return an array composed of different elements of choicelist
    depending on the list of conditions.

    condlist is a list of condition arrays containing ones or zeros

    choicelist is a list of choice arrays (of the "same" size as the
    arrays in condlist).  The result array has the "same" size as the
    arrays in choicelist.  If condlist is [c0, ..., cN-1] then choicelist
    must be of length N.  The elements of the choicelist can then be
    represented as [v0, ..., vN-1]. The default choice if none of the
    conditions are met is given as the default argument.

    The conditions are tested in order and the first one statisfied is
    used to select the choice. In other words, the elements of the
    output array are found from the following tree (notice the order of
    the conditions matters):

    if c0: v0
    elif c1: v1
    elif c2: v2
    ...
    elif cN-1: vN-1
    else: default

    Note that one of the condition arrays must be large enough to handle
    the largest array in the choice list.

    """
    n = len(condlist)
    n2 = len(choicelist)
    if n2 != n:
        raise ValueError, "list of cases must be same length as list of conditions"
    choicelist.insert(0, default)
    S = 0
    pfac = 1
    for k in range(1, n+1):
        S += k * pfac * asarray(condlist[k-1])
        if k < n:
            pfac *= (1-asarray(condlist[k-1]))
    # handle special case of a 1-element condition but
    #  a multi-element choice
    if type(S) in ScalarType or max(asarray(S).shape)==1:
        pfac = asarray(1)
        for k in range(n2+1):
            pfac = pfac + asarray(choicelist[k])
        if type(S) in ScalarType:
            S = S*ones(asarray(pfac).shape, type(S))
        else:
            S = S*ones(asarray(pfac).shape, S.dtype)
    return choose(S, tuple(choicelist))
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:51,代码来源:function_base.py


示例3: lpc

 def lpc(self, x0 = None, X=None, weights = None):
   ''' Will return the scaled curve if self._lpcParameters['scaled'] = True, to return the curve on the same scale as the originally input data, call getCurve with unscale = True
   Arguments
   ---------
   x0 : 2-dim numpy.array containing #rows equal to number of explicitly defined start points
   and #columns equal to dimension of the feature space points; seeds for the start points algorithm
   X : 2-dim numpy.array containing #rows equal to number of data points and #columns equal to dimension 
   of the feature space points   
   weights : see self._followxSingleDirection docs
   '''
   
   if X is None:
     if self.Xi is None:
       raise ValueError, 'Data points have not yet been set in this LPCImpl instance. Either supply as X parameter to this function or call setDataPoints'
   else:
     self.setDataPoints(X)
        
   N = self.Xi.shape[0]
   if self._lpcParameters['binary'] or weights is None:
     self._weights = ones(N, dtype = float)
   else:
     self._weights = array(weights, dtype = float)
     if self._weights.shape != (N):
       raise ValueError, 'Weights must be one dimensional of vector of weights with size equal to the sample size'
   
   self._selectStartPoints(x0)
       
   #TODO add initialization relevant for other branches
   m = self.x0.shape[0] #how many starting points were actually generated
   way = self._lpcParameters['way']
   self._curve = [self._followx(self.x0[j], way = way, weights = self._weights) for j in range(m)]
   return self._curve
     
     
开发者ID:epp-warwick,项目名称:lpcm,代码行数:32,代码来源:lpc.py


示例4: vander

def vander(x, N=None):
    """
    Generate a Van der Monde matrix.

    The columns of the output matrix are decreasing powers of the input
    vector.  Specifically, the i-th output column is the input vector to
    the power of ``N - i - 1``. Such a matrix with a geometric progression
    in each row is named Van Der Monde, or Vandermonde matrix, from
    Alexandre-Theophile Vandermonde.

    Parameters
    ----------
    x : array_like
        1-D input array.
    N : int, optional
        Order of (number of columns in) the output. If `N` is not specified,
        a square array is returned (``N = len(x)``).

    Returns
    -------
    out : ndarray
        Van der Monde matrix of order `N`.  The first column is ``x^(N-1)``,
        the second ``x^(N-2)`` and so forth.

    References
    ----------
    .. [1] Wikipedia, "Vandermonde matrix",
           http://en.wikipedia.org/wiki/Vandermonde_matrix

    Examples
    --------
    >>> x = np.array([1, 2, 3, 5])
    >>> N = 3
    >>> np.vander(x, N)
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    >>> np.column_stack([x**(N-1-i) for i in range(N)])
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    >>> x = np.array([1, 2, 3, 5])
    >>> np.vander(x)
    array([[  1,   1,   1,   1],
           [  8,   4,   2,   1],
           [ 27,   9,   3,   1],
           [125,  25,   5,   1]])

    """
    x = asarray(x)
    if N is None:
        N = len(x)
    X = ones((len(x), N), x.dtype)
    for i in range(N - 1):
        X[:, i] = x ** (N - i - 1)
    return X
开发者ID:russelljjarvis,项目名称:3Drodent,代码行数:60,代码来源:index_utils.py


示例5: gmmEM

def gmmEM(data, K, it,show=False,usekmeans=True):
    #data += finfo(float128).eps*100
    centroid = kmeans2(data, K)[0] if usekmeans else ((max(data) - min(data))*random_sample((K,data.shape[1])) + min(data))
    N = data.shape[0]
    gmm = GaussianMM(centroid)
    if show: gmm.draw(data)
    while it > 0:
        print it," iterations remaining"
        it = it - 1
        # e-step
        gausses = zeros((K, N), dtype = data.dtype)
        for k in range(0, K):
            gausses[k] = gmm.c[k]*mulnormpdf(data, gmm.mean[k], gmm.covm[k])
        sums = sum(gausses, axis=0)
        if count_nonzero(sums) != sums.size:
            raise "Divide by Zero"
        gausses /= sums
        # m step
        sg = sum(gausses, axis=1)
        if count_nonzero(sg) != sg.size:
            raise "Divide by Zero"
        gmm.c = ones(sg.shape) / N * sg
        for k in range(0, K):
            gmm.mean[k] = sum(data * gausses[k].reshape((-1,1)), axis=0) / sg[k]
            d = data - gmm.mean[k]
            d1 = d.transpose()*gausses[k]
            gmm.covm[k]=dot(d1,d)/sg[k]
        if show: gmm.draw(data)
    return gmm
开发者ID:yk,项目名称:patternhs12,代码行数:29,代码来源:ex3_1.py


示例6: polyint

def polyint(p, m=1, k=None):
    """Return the mth analytical integral of the polynomial p.

    If k is None, then zero-valued constants of integration are used.
    otherwise, k should be a list of length m (or a scalar if m=1) to
    represent the constants of integration to use for each integration
    (starting with k[0])
    """
    m = int(m)
    if m < 0:
        raise ValueError, "Order of integral must be positive (see polyder)"
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0]*NX.ones(m, float)
    if len(k) < m:
        raise ValueError, \
              "k must be a scalar or a rank-1 array of length 1 or >m."
    if m == 0:
        return p
    else:
        truepoly = isinstance(p, poly1d)
        p = NX.asarray(p)
        y = NX.zeros(len(p)+1, float)
        y[:-1] = p*1.0/NX.arange(len(p), 0, -1)
        y[-1] = k[0]
        val = polyint(y, m-1, k=k[1:])
        if truepoly:
            val = poly1d(val)
        return val
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:31,代码来源:polynomial.py


示例7: smooth

def smooth(x,window_len=11,window='hanning'):
    """smooth the data using a window with requested size.

    This method is based on the convolution of a scaled window with the signal.
    The signal is prepared by introducing reflected copies of the signal
    (with the window size) in both ends so that transient parts are minimized
    in the begining and end part of the output signal.

    input:
        x: the input signal
        window_len: the dimension of the smoothing window; should be an odd integer
        window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
            flat window will produce a moving average smoothing.

    output:
        the smoothed signal

    example:

    t=linspace(-2,2,0.1)
    x=sin(t)+randn(len(t))*0.1
    y=smooth(x)

    see also:

    numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
    scipy.signal.lfilter

    TODO: the window parameter could be the window itself if an array instead of a string
    """
    from numpy.core.numeric import ones
    import numpy
    
    x = numpy.array(x)

    if x.ndim != 1:
        raise ValueError, "smooth only accepts 1 dimension arrays."

    if x.size < window_len:
    #if len(x) < window_len:
        raise ValueError, "Input vector needs to be bigger than window size."


    if window_len<3:
        return x


    if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
        raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'"


    s=numpy.r_[2*x[0]-x[window_len:1:-1],x,2*x[-1]-x[-1:-window_len:-1]]
    #print(len(s))
    if window == 'flat': #moving average
        w=ones(window_len,'d')
    else:
        w=eval('numpy.'+window+'(window_len)')

    y=numpy.convolve(w/w.sum(),s,mode='same')
    return y[window_len-1:-window_len+1]
开发者ID:BioinformaticsArchive,项目名称:DuctApe,代码行数:60,代码来源:utils.py


示例8: train

 def train(self, data, labels):
     l = labels.reshape((-1,1))
     xy = data * l
     H = dot(xy,transpose(xy))
     f = -1.0*ones(labels.shape)
     lb = zeros(labels.shape)
     ub = self.C * ones(labels.shape)
     Aeq = labels
     beq = 0.0
     p = QP(matrix(H),f.tolist(),lb=lb.tolist(),ub=ub.tolist(),Aeq=Aeq.tolist(),beq=beq)
     r = p.solve('cvxopt_qp')
     r.xf[where(r.xf<1e-3)] = 0
     self.w = dot(r.xf*labels,data)
     nonzeroindexes = where(r.xf>1e-4)[0]
     l1 = nonzeroindexes[0]
     self.w0 = 1.0/labels[l1]-dot(self.w,data[l1])
     self.numSupportVectors = len(nonzeroindexes)
开发者ID:yk,项目名称:patternhs12,代码行数:17,代码来源:classifiers.py


示例9: tranNBO

def tranNBO(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs) #某个类发生的概率
    p0Num = ones(numWords)
    p1Num = ones(numWords) #初始样本个数为1,防止条件概率为0,影响结果       
    p0Denom = 2.0
    p1Denom = 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom) #计算类标签为1时,其它属性发生的条件概率
    p0Vect = log(p0Num/p0Denom) #计算类标签为0时,其它属性发生的条件概率
    return p0Vect,p1Vect,pAbusive #返回条件概率喝类标签为1的概率
开发者ID:DaPangYuanBuEr,项目名称:datamining,代码行数:18,代码来源:bayes.py


示例10: hamming

def hamming(M):
    """hamming(M) returns the M-point Hamming window.
    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1,float)
    n = arange(0,M)
    return 0.54-0.46*cos(2.0*pi*n/(M-1))
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:9,代码来源:function_base.py


示例11: bartlett

def bartlett(M):
    """bartlett(M) returns the M-point Bartlett window.
    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1, float)
    n = arange(0,M)
    return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1))
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:9,代码来源:function_base.py


示例12: blackman

def blackman(M):
    """blackman(M) returns the M-point Blackman window.
    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1, float)
    n = arange(0,M)
    return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:9,代码来源:function_base.py


示例13: readFile

 def readFile(self, filePath,fileSize):
     '''
         
         file format
         ---------------------------
         index1    xx.xxx    yy.yyy
         index2    xx.xxx    yy.yyy
         index3    xx.xxx    yy.yyy
         ---------------------------
         
         we eliminate the 'index' and extract two values into a set.
         
     '''
     
     
     try:
         __fpath=filePath; # path of the file
         __size=fileSize; # number of data items in file
         
         # these values may subject to change depending on the data.txt format
         __firstValStart=2;
         __firstValEnd=12;
         __secondValStart=13;
         __secondValEnd=22;
         
        
         
         from numpy import float64
         
         # 3 columns. bias value, first value, second value 
         
         __array= ones((__size,3),float64);
         
         f=open(__fpath, mode='r', buffering=1, encoding=None, errors=None, newline=None, closefd=True); 
         
         print('reading data from file....');
         for i in range(0,__size):
             
             line= f.readline();
             __firstValue= line[__firstValStart:__firstValEnd];
             __secondValue=line[__secondValStart:__secondValEnd];
             
             
             __array[i,1]= __firstValue
             __array[i,2]= __secondValue;
             #print(__array[i,1],__array[i,2]);
          
         print('data reading complete....');
         
         return __array;
         
     except IOError:
         pass 
开发者ID:TharinduRusira,项目名称:ML,代码行数:53,代码来源:LinearReg.py


示例14: logisticRegression

def logisticRegression(trainData, trainLabels, testData, testLabels):
    #adjust the data, adding the 'free parameter' to the train data
    trainDataWithFreeParam = hstack((trainData.copy(), ones(trainData.shape[0])[:,newaxis]))
    testDataWithFreeParam = hstack((testData.copy(), ones(testData.shape[0])[:,newaxis]))
    
    alpha = 10
    oldW = zeros(trainDataWithFreeParam.shape[1])
    newW = ones(trainDataWithFreeParam.shape[1])
    iteration = 0
    
    trainDataWithFreeParamTranspose = transpose(trainDataWithFreeParam)
    alphaI = alpha * identity(oldW.shape[0])
    
    while not array_equal(oldW, newW):
        if iteration == 100:
            break
        oldW = newW.copy()
        
        yVect = yVector(oldW, trainDataWithFreeParam)
        r = R(yVect)

        firstTerm = inv(alphaI + dot(dot(trainDataWithFreeParamTranspose, r), trainDataWithFreeParam))
        secondTerm = dot(trainDataWithFreeParamTranspose, (yVect-trainLabels)) + alpha * oldW
        newW = oldW - dot(firstTerm, secondTerm)
        iteration += 1
                              
        
    #see how well we did
    numCorrect  = 0
    for x,t in izip(testDataWithFreeParam, testLabels):
        
        if yScalar(newW, x) >= 0.5:
            if t == 1:
                numCorrect += 1
        else:
            if t == 0:
                numCorrect += 1
    return float(numCorrect) / float(len(testLabels))
开发者ID:Primer42,项目名称:TuftComp136,代码行数:38,代码来源:main.py


示例15: vander

def vander(x, N=None):
    """
    Generate the Vandermonde matrix of vector x.

    The i-th column of X is the the (N-i)-1-th power of x.  N is the
    maximum power to compute; if N is None it defaults to len(x).

    """
    x = asarray(x)
    if N is None: N=len(x)
    X = ones( (len(x),N), x.dtype)
    for i in range(N-1):
        X[:,i] = x**(N-i-1)
    return X
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:14,代码来源:twodim_base.py


示例16: problem1

def problem1(data, figureDir, figureName, targetValue):
    figureOutLoc = os.path.join(figureDir, '1', figureName + ".eps")
    if os.path.exists(figureOutLoc):
        return
    if not os.path.exists(os.path.dirname(figureOutLoc)):
        os.makedirs(os.path.dirname(figureOutLoc))
    trainList = []
    testList = []
    for l in range(151):
        w = doubleU(phi(data[TRAIN]), l, tListToTVector(data[TRAIN_LABELS]))
        trainMSE = MSE(data[TRAIN], w, data[TRAIN_LABELS])
        testMSE = MSE(data[TEST], w, data[TEST_LABELS])
        trainList.append(trainMSE)
        testList.append(testMSE)
    trainArray = squeeze(row_stack(trainList))
    testArray = squeeze(row_stack(testList))
    
    #find the best l value on the test set
    targetArray = targetValue * ones(151, dtype=numpy.float64)
    targetDiffArray = testArray - targetArray
    bestL = argmin(targetDiffArray)
    
    lArray = arange(151).reshape(-1)

    plt.plot(lArray, trainArray, '-', label="Train")
    plt.plot(lArray, testArray, '--', label="Test")
    plt.plot(lArray, targetArray, ':', label="Target")
    plt.title(figureName)
    plt.xlabel("lambda")
    plt.ylabel("MSE")
    plt.ylim(ymax = min((plt.ylim()[1], 7.0)))
    #add a label showing the min value, and annotate it's lvalue
    if series == 'wine':
        annotateOffset = .02
    else:
        annotateOffset = .2
    plt.annotate("Best lambda value = " + str(bestL) + " MSE = %.3f" %testList[bestL], 
                 xy=(bestL, testArray[bestL]), 
                 xytext=(bestL + 10, testArray[bestL] - annotateOffset),
                 bbox=dict(boxstyle="round", fc="0.8"), 
                 arrowprops=dict(arrowstyle="->"))
     
    plt.legend(loc=0)
    
    plt.savefig(figureOutLoc)
    plt.clf()
开发者ID:Primer42,项目名称:TuftComp136,代码行数:46,代码来源:main.py


示例17: vander

def vander(x, N=None):
    """
    Generate a Van der Monde matrix.

    The columns of the output matrix are decreasing powers of the input
    vector.  Specifically, the i-th output column is the input vector to
    the power of ``N - i - 1``.

    Parameters
    ----------
    x : array_like
        Input array.
    N : int, optional
        Order of (number of columns in) the output.

    Returns
    -------
    out : ndarray
        Van der Monde matrix of order `N`.  The first column is ``x^(N-1)``,
        the second ``x^(N-2)`` and so forth.

    Examples
    --------
    >>> x = np.array([1, 2, 3, 5])
    >>> N = 3
    >>> np.vander(x, N)
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    >>> np.column_stack([x**(N-1-i) for i in range(N)])
    array([[ 1,  1,  1],
           [ 4,  2,  1],
           [ 9,  3,  1],
           [25,  5,  1]])

    """
    x = asarray(x)
    if N is None:
        N = len(x)
    X = ones((len(x), N), x.dtype)
    for i in range(N - 1):
        X[:, i] = x ** (N - i - 1)
    return X
开发者ID:hadesain,项目名称:robothon,代码行数:45,代码来源:twodim_base.py


示例18: roots

def roots(p):
    """ Return the roots of the polynomial coefficients in p.

        The values in the rank-1 array p are coefficients of a polynomial.
        If the length of p is n+1 then the polynomial is
        p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
    """
    # If input is scalar, this makes it an array
    p = atleast_1d(p)
    if len(p.shape) != 1:
        raise ValueError,"Input must be a rank-1 array."

    # find non-zero array entries
    non_zero = NX.nonzero(NX.ravel(p))[0]

    # Return an empty array if polynomial is all zeros
    if len(non_zero) == 0:
        return NX.array([])

    # find the number of trailing zeros -- this is the number of roots at 0.
    trailing_zeros = len(p) - non_zero[-1] - 1

    # strip leading and trailing zeros
    p = p[int(non_zero[0]):int(non_zero[-1])+1]

    # casting: if incoming array isn't floating point, make it floating point.
    if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
        p = p.astype(float)

    N = len(p)
    if N > 1:
        # build companion matrix and find its eigenvalues (the roots)
        A = diag(NX.ones((N-2,), p.dtype), -1)
        A[0, :] = -p[1:] / p[0]
        roots = _eigvals(A)
    else:
        roots = NX.array([])

    # tack any zeros onto the back of the array
    roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
    return roots
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:41,代码来源:polynomial.py


示例19: problem2

def problem2(data, figureDir, dataName, l, maxNumRepetitions, minSampleSize, targetValue):
    if os.path.exists(getProblem2FigureLoc(figureDir, dataName, l, maxNumRepetitions)):
        #this implies that all figures before it have been created already, so we don't need to repeat them
        return
    MSEValues = [[] for x in xrange(minSampleSize, len(data[TRAIN]) + 1)]
    sampleSizeValueList = range(minSampleSize, len(data[TRAIN]) + 1, 1)
    sampleSizeValueArray = array(sampleSizeValueList)
    
    targetArray = targetValue * ones(len(sampleSizeValueList), dtype=numpy.float64)
    
    for repeatNum in range(1, maxNumRepetitions+1):
        #randomly choose ordering of the samples for this run
        #make the range of indexes, then shuffle them into a random order
        randomlySortedIndexes = range(len(data[TRAIN]))
        shuffle(randomlySortedIndexes)
        
        #start with a sample size of one, go to the total training set
        for sampleSizeIndex, sampleSize in enumerate(sampleSizeValueList):
            curSampleIndexesList = randomlySortedIndexes[:sampleSize]
            curTrainSample = selectSample(data[TRAIN], curSampleIndexesList)
            curTrainLabelSample = selectSample(data[TRAIN_LABELS], curSampleIndexesList)
            w = doubleU(phi(curTrainSample), l, tListToTVector(curTrainLabelSample))
            curSampleMSE = MSE(data[TEST], w, data[TEST_LABELS])
            MSEValues[sampleSizeIndex].append(squeeze(curSampleMSE))
    #have a sample size of 0 is meaningless
    curRepeatMeanMSEValues = array([mean(array(x, dtype=numpy.float64)) for x in MSEValues])
        
    plt.plot(sampleSizeValueArray, curRepeatMeanMSEValues, '-', label="Learning curve")
    plt.plot(sampleSizeValueArray, targetArray, '--', label="Target MSE")
    plt.title("lamba = " + str(l) + " - " + str(repeatNum) + " repetitions")
    plt.xlabel("Sample Size - minimum " + str(minSampleSize))
    plt.ylabel("MSE on Full Test Set")
    plt.xlim(xmin=targetValue - .5)
    plt.legend(loc=0)
    plt.savefig(getProblem2FigureLoc(figureDir, dataName, l, repeatNum))
    plt.clf()
开发者ID:Primer42,项目名称:TuftComp136,代码行数:36,代码来源:main.py


示例20: mask_indices

def mask_indices(n, mask_func, k=0):
    """
    Return the indices to access (n, n) arrays, given a masking function.

    Assume `mask_func` is a function that, for a square array a of size
    ``(n, n)`` with a possible offset argument `k`, when called as
    ``mask_func(a, k)`` returns a new array with zeros in certain locations
    (functions like `triu` or `tril` do precisely this). Then this function
    returns the indices where the non-zero values would be located.

    Parameters
    ----------
    n : int
        The returned indices will be valid to access arrays of shape (n, n).
    mask_func : callable
        A function whose call signature is similar to that of `triu`, `tril`.
        That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
        `k` is an optional argument to the function.
    k : scalar
        An optional argument which is passed through to `mask_func`. Functions
        like `triu`, `tril` take a second argument that is interpreted as an
        offset.

    Returns
    -------
    indices : tuple of arrays.
        The `n` arrays of indices corresponding to the locations where
        ``mask_func(np.ones((n, n)), k)`` is True.

    See Also
    --------
    triu, tril, triu_indices, tril_indices

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    These are the indices that would allow you to access the upper triangular
    part of any 3x3 array:

    >>> iu = np.mask_indices(3, np.triu)

    For example, if `a` is a 3x3 array:

    >>> a = np.arange(9).reshape(3, 3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5],
           [6, 7, 8]])
    >>> a[iu]
    array([0, 1, 2, 4, 5, 8])

    An offset can be passed also to the masking function.  This gets us the
    indices starting on the first diagonal right of the main one:

    >>> iu1 = np.mask_indices(3, np.triu, 1)

    with which we now extract only three elements:

    >>> a[iu1]
    array([1, 2, 5])

    """
    m = ones((n,n), int)
    a = mask_func(m, k)
    return where(a != 0)
开发者ID:RJSSimpson,项目名称:numpy,代码行数:68,代码来源:twodim_base.py



注:本文中的numpy.core.numeric.ones函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numeric.outer函数代码示例发布时间:2022-05-27
下一篇:
Python numeric.obj2sctype函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap