本文整理汇总了Python中numpy.core.numeric.zeros函数的典型用法代码示例。如果您正苦于以下问题:Python zeros函数的具体用法?Python zeros怎么用?Python zeros使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zeros函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: apply_along_axis
def apply_along_axis(func1d,axis,arr,*args):
""" Execute func1d(arr[i],*args) where func1d takes 1-D arrays
and arr is an N-d array. i varies so as to apply the function
along the given axis for each 1-d subarray in arr.
"""
arr = asarray(arr)
nd = arr.ndim
if axis < 0:
axis += nd
if (axis >= nd):
raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
% (axis,nd))
ind = [0]*(nd-1)
i = zeros(nd,'O')
indlist = range(nd)
indlist.remove(axis)
i[axis] = slice(None,None)
outshape = asarray(arr.shape).take(indlist)
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
# if res is a number, then we have a smaller output array
if isscalar(res):
outarr = zeros(outshape,asarray(res).dtype)
outarr[tuple(ind)] = res
Ntot = product(outshape)
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= outshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist,ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(ind)] = res
k += 1
return outarr
else:
Ntot = product(outshape)
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = len(res)
outarr = zeros(outshape,asarray(res).dtype)
outarr[tuple(i.tolist())] = res
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= holdshape[n]) and (n > (1-nd)):
ind[n-1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())],*args)
outarr[tuple(i.tolist())] = res
k += 1
return outarr
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:60,代码来源:shape_base.py
示例2: __train__
def __train__(self, data, labels):
l = labels.reshape((-1,1))
self.__trainingData__ = data
self.__trainingLabels__ = l
N = len(l)
H = zeros((N,N))
for i in range(N):
for j in range(N):
H[i,j] = self.__trainingLabels__[i]*self.__trainingLabels__[j]*self.__kernelFunc__(self.__trainingData__[i],self.__trainingData__[j])
f = -1.0*ones(labels.shape)
lb = zeros(labels.shape)
ub = self.C * ones(labels.shape)
Aeq = labels
beq = 0.0
suppressOut = True
if suppressOut:
devnull = open('/dev/null', 'w')
oldstdout_fno = os.dup(sys.stdout.fileno())
os.dup2(devnull.fileno(), 1)
p = QP(matrix(H),f.tolist(),lb=lb.tolist(),ub=ub.tolist(),Aeq=Aeq.tolist(),beq=beq)
r = p.solve('cvxopt_qp')
if suppressOut:
os.dup2(oldstdout_fno, 1)
lim = 1e-4
r.xf[where(abs(r.xf)<lim)] = 0
self.__lambdas__ = r.xf
nonzeroindexes = where(r.xf>lim)[0]
# l1 = nonzeroindexes[0]
# self.w0 = 1.0/labels[l1]-dot(self.w,data[l1])
self.numSupportVectors = len(nonzeroindexes)
开发者ID:yk,项目名称:patternhs12,代码行数:30,代码来源:classifiers.py
示例3: polyint
def polyint(p, m=1, k=None):
"""Return the mth analytical integral of the polynomial p.
If k is None, then zero-valued constants of integration are used.
otherwise, k should be a list of length m (or a scalar if m=1) to
represent the constants of integration to use for each integration
(starting with k[0])
"""
m = int(m)
if m < 0:
raise ValueError, "Order of integral must be positive (see polyder)"
if k is None:
k = NX.zeros(m, float)
k = atleast_1d(k)
if len(k) == 1 and m > 1:
k = k[0]*NX.ones(m, float)
if len(k) < m:
raise ValueError, \
"k must be a scalar or a rank-1 array of length 1 or >m."
if m == 0:
return p
else:
truepoly = isinstance(p, poly1d)
p = NX.asarray(p)
y = NX.zeros(len(p)+1, float)
y[:-1] = p*1.0/NX.arange(len(p), 0, -1)
y[-1] = k[0]
val = polyint(y, m-1, k=k[1:])
if truepoly:
val = poly1d(val)
return val
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:31,代码来源:polynomial.py
示例4: polyadd
def polyadd(a1, a2):
"""
Find the sum of two polynomials.
Returns the polynomial resulting from the sum of two input polynomials.
Each input must be either a poly1d object or a 1D sequence of polynomial
coefficients, from highest to lowest degree.
Parameters
----------
a1, a2 : array_like or poly1d object
Input polynomials.
Returns
-------
out : ndarray or poly1d object
The sum of the inputs. If either input is a poly1d object, then the
output is also a poly1d object. Otherwise, it is a 1D array of
polynomial coefficients from highest to lowest degree.
See Also
--------
poly1d : A one-dimensional polynomial class.
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval
Examples
--------
>>> np.polyadd([1, 2], [9, 5, 4])
array([9, 6, 6])
Using poly1d objects:
>>> p1 = np.poly1d([1, 2])
>>> p2 = np.poly1d([9, 5, 4])
>>> print p1
1 x + 2
>>> print p2
2
9 x + 5 x + 4
>>> print np.polyadd(p1, p2)
2
9 x + 6 x + 6
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 + a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) + a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 + NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:59,代码来源:polynomial.py
示例5: PlotWss
def PlotWss(self, meshid, imagpath):
'''
This method plots Wss signal and returns peak wss.
'''
try:
import matplotlib
matplotlib.use('Agg') #switch to matplotlib.use('WXAgg') if you want to show and not save velocity profile.
from matplotlib.pyplot import plot, xlabel, ylabel, title, legend, savefig, close, ylim
except:
sys.exit("PlotWss method requires matplotlib package (http://matplotlib.sourceforge.net.\n")
tplot = linspace(0, self.tPeriod, len(self.Tauplot))
plot(tplot, self.Tauplot,'g-',linewidth = 3, label = 'WSS')
minY = 0
for w in self.Tauplot:
if w < minY:
minY = w
if minY != 0:
plot(tplot, zeros(len(self.Tauplot)),':',linewidth = 1)
ylim(ymin=minY)
xlabel('Time ($s$)')
ylabel('Wall shear stress ($dyne/cm^2$)')
title ('Wss'+' peak:'+str(round(max(self.Tauplot),1))+' mean:'+str(round(mean(self.Tauplot),1))+' min:'+str(round(min(self.Tauplot),1)))
legend()
savefig(imagpath+str(meshid)+'_'+str(self.Name)+'_wss.png')
print "Wss, MeshId", meshid, self.Name, "=", str(round(max(self.Tauplot),1)), "$dyne/cm^2$"
close()
return (round(max(self.Tauplot),1))
开发者ID:archTk,项目名称:pyNS,代码行数:31,代码来源:InverseWomersley.py
示例6: gmmEM
def gmmEM(data, K, it,show=False,usekmeans=True):
#data += finfo(float128).eps*100
centroid = kmeans2(data, K)[0] if usekmeans else ((max(data) - min(data))*random_sample((K,data.shape[1])) + min(data))
N = data.shape[0]
gmm = GaussianMM(centroid)
if show: gmm.draw(data)
while it > 0:
print it," iterations remaining"
it = it - 1
# e-step
gausses = zeros((K, N), dtype = data.dtype)
for k in range(0, K):
gausses[k] = gmm.c[k]*mulnormpdf(data, gmm.mean[k], gmm.covm[k])
sums = sum(gausses, axis=0)
if count_nonzero(sums) != sums.size:
raise "Divide by Zero"
gausses /= sums
# m step
sg = sum(gausses, axis=1)
if count_nonzero(sg) != sg.size:
raise "Divide by Zero"
gmm.c = ones(sg.shape) / N * sg
for k in range(0, K):
gmm.mean[k] = sum(data * gausses[k].reshape((-1,1)), axis=0) / sg[k]
d = data - gmm.mean[k]
d1 = d.transpose()*gausses[k]
gmm.covm[k]=dot(d1,d)/sg[k]
if show: gmm.draw(data)
return gmm
开发者ID:yk,项目名称:patternhs12,代码行数:29,代码来源:ex3_1.py
示例7: diagflat
def diagflat(v,k=0):
"""Return a 2D array whose k'th diagonal is a flattened v and all other
elements are zero.
Examples
--------
>>> diagflat([[1,2],[3,4]]])
array([[1, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])
>>> diagflat([1,2], 1)
array([[0, 1, 0],
[0, 0, 2],
[0, 0, 0]])
"""
try:
wrap = v.__array_wrap__
except AttributeError:
wrap = None
v = asarray(v).ravel()
s = len(v)
n = s + abs(k)
res = zeros((n,n), v.dtype)
if (k>=0):
i = arange(0,n-k)
fi = i+k+i*n
else:
i = arange(0,n+k)
fi = i+(i-k)*n
res.flat[fi] = v
if not wrap:
return res
return wrap(res)
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:35,代码来源:twodim_base.py
示例8: diag
def diag(v, k=0):
""" returns a copy of the the k-th diagonal if v is a 2-d array
or returns a 2-d array with v as the k-th diagonal if v is a
1-d array.
"""
v = asarray(v)
s = v.shape
if len(s)==1:
n = s[0]+abs(k)
res = zeros((n,n), v.dtype)
if (k>=0):
i = arange(0,n-k)
fi = i+k+i*n
else:
i = arange(0,n+k)
fi = i+(i-k)*n
res.flat[fi] = v
return res
elif len(s)==2:
N1,N2 = s
if k >= 0:
M = min(N1,N2-k)
i = arange(0,M)
fi = i+k+i*N2
else:
M = min(N1+k,N2)
i = arange(0,M)
fi = i + (i-k)*N2
return v.flat[fi]
else:
raise ValueError, "Input must be 1- or 2-d."
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:31,代码来源:twodim_base.py
示例9: myEnhance
def myEnhance(self,img):
self.img = img
self.statx = zeros(256)
print len(self.statx)
# print len(self.img)
# print img.shape()
# for i in range(256):
# self.statx[i]=self.statx.append(1)
# np.histogram(self.img, bins=60)
# for i in range(len(self.img)):
# for j in range(len(self.img[i])):
## print img[i]
## if self.img[i][j]<100:
## self.img[i][j] = 0
## else:
## self.img[i][j]=255
## print self.img[i][j]
# self.statx[self.img[i][j]] = self.statx[self.img[i][j]] + 1
# pass
# return self.statx
开发者ID:varundeveloper91,项目名称:firstrepo,代码行数:23,代码来源:mylib.py
示例10: calcN
def calcN(classKernels, trainLabels):
N = zeros((len(trainLabels), len(trainLabels)))
for i, l in enumerate(unique(trainLabels)):
numExamplesWithLabel = len(where(trainLabels == l)[0])
Idiff = identity(numExamplesWithLabel, Float64) - (1.0 / numExamplesWithLabel) * ones(numExamplesWithLabel, Float64)
firstDot = dot(classKernels[i], Idiff)
labelTerm = dot(firstDot, transpose(classKernels[i]))
N += labelTerm
N = nan_to_num(N)
#make N more numerically stable
#if I had more time, I would train this parameter, but I don't
additionToN = ((mean(diag(N)) + 1) / 100.0) * identity(N.shape[0], Float64)
N += additionToN
#make sure N is invertable
for i in range(1000):
try:
inv(N)
except LinAlgError:
#doing this to make sure the maxtrix is invertable
#large value supported by section titled
#"numerical issues and regularization" in the paper
N += additionToN
return N
开发者ID:Primer42,项目名称:TuftComp136,代码行数:25,代码来源:main.py
示例11: __init__
def __init__(self, *shape):
if len(shape) == 1 and isinstance(shape[0], tuple):
shape = shape[0]
x = as_strided(_nx.zeros(1), shape=shape,
strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
order='C')
开发者ID:Benj1,项目名称:numpy,代码行数:7,代码来源:index_tricks.py
示例12: fishersLinearDiscriminent
def fishersLinearDiscriminent(trainData, trainLabels, testData, testLabels):
numClasses = max(trainLabels) + 1
N = [0] * numClasses
m = [0] * numClasses
for x,t in izip(trainData,trainLabels):
m[t] += x
N[t] += 1
for i in range(numClasses):
m[i] /= N[i]
Sw = zeros((trainData.shape[1], trainData.shape[1]))
for x,t in izip(trainData, trainLabels):
Sw += outer(x-m[t], x-m[t])
try:
inv(Sw)
except LinAlgError:
Sw += 0.1 * identity(Sw.shape[0], Float64)
w = dot(inv(Sw),(m[0] - m[1]))
meanVect = (N[0]*m[0] + N[1]*m[1]) / sum(N)
numCorrect = 0
for x,t in izip(testData, testLabels):
if dot(w, (x-meanVect)) > 0:
if t == 1:
numCorrect += 1
else:
if t == 0:
numCorrect += 1
return float(numCorrect) / float(len(testLabels))
开发者ID:Primer42,项目名称:TuftComp136,代码行数:29,代码来源:main.py
示例13: createKernel
def createKernel(xList, yList, kernelFunct, *kernelFunctArgs):
#remember, examples are rows, not columns
k = zeros((len(xList), len(yList)))
for i in range(len(xList)):
for j in range(len(yList)):
k[i,j] = kernelFunct(xList[i], yList[j], *kernelFunctArgs)
return k
开发者ID:Primer42,项目名称:TuftComp136,代码行数:7,代码来源:main.py
示例14: iscomplex
def iscomplex(x):
"""
Returns a bool array, where True if input element is complex.
What is tested is whether the input has a non-zero imaginary part, not if
the input type is complex.
Parameters
----------
x : array_like
Input array.
Returns
-------
out : ndarray of bools
Output array.
See Also
--------
isreal
iscomplexobj : Return True if x is a complex type or an array of complex
numbers.
Examples
--------
>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
array([ True, False, False, False, False, True])
"""
ax = asanyarray(x)
if issubclass(ax.dtype.type, _nx.complexfloating):
return ax.imag != 0
res = zeros(ax.shape, bool)
return res[()] # convert to scalar if needed
开发者ID:Horta,项目名称:numpy,代码行数:34,代码来源:type_check.py
示例15: GetFlow
def GetFlow(self):
'''
Calculating inlet flow (coefficients of the FFT x(t)=A0+sum(2*Ck*exp(j*k*2*pi*f*t)))
Timestep and period from SimulationContext are necessary.
'''
try:
timestep = self.SimulationContext.Context['timestep']
except KeyError:
print "Error, Please set timestep in Simulation Context XML File"
raise
try:
period = self.SimulationContext.Context['period']
except KeyError:
print "Error, Please set period in Simulation Context XML File"
raise
t = arange(0.0,period+timestep,timestep).reshape((1,ceil(period/timestep+1.0)))
Cc = self.f_coeff*1.0/2.0*1e-6
Flow = zeros((1, ceil(period/timestep+1.0)))
for freq in arange(0,ceil(period/timestep+1.0)):
Flow[0, freq] = self.A0_v
for k in arange(0,self.f_coeff.shape[0]):
Flow[0, freq] = Flow[0, freq]+real(2.0*complex(Cc[k,0],Cc[k,1])*exp(1j*(k+1)*2.0*pi*t[0,freq]/period))
self.Flow = Flow
return Flow
开发者ID:archTk,项目名称:pyNS,代码行数:25,代码来源:BoundaryConditions.py
示例16: estimateGaussian
def estimateGaussian(trainData, trainLabels):
numClasses = max(trainLabels) + 1
N = [0]* numClasses
mu = [0.0] * numClasses
Slist = [zeros((trainData.shape[1], trainData.shape[1]))] * numClasses
pList = [0.0] * numClasses
#calculate N, and sum x's for mu
for x,t in izip(trainData, trainLabels):
N[t] += 1
mu[t] += x
#normalize mu
for i in range(numClasses):
mu[i] = mu[i] / float(N[i])
#calculate the class probabilities
for i in range(numClasses):
pList[i] = float(N[i]) / sum(N)
#calculate S0 and S1
for x,t in izip(trainData, trainLabels):
Slist[t] += outer(x - mu[t], x - mu[t])
try:
inv(Slist[t])
except LinAlgError:
Slist[t] += 0.1 * identity(Slist[t].shape[0], Float64)
return (numClasses, N, mu, Slist, pList)
开发者ID:Primer42,项目名称:TuftComp136,代码行数:26,代码来源:main.py
示例17: triu
def triu(m, k=0):
"""
Upper triangle of an array.
Return a copy of a matrix with the elements below the `k`-th diagonal
zeroed.
Please refer to the documentation for `tril` for further details.
See Also
--------
tril : lower triangle of an array
Examples
--------
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = asanyarray(m)
mask = tri(*m.shape[-2:], k=k-1, dtype=bool)
return where(mask, zeros(1, m.dtype), m)
开发者ID:AlerzDev,项目名称:Brazo-Proyecto-Final,代码行数:26,代码来源:twodim_base.py
示例18: polysub
def polysub(a1, a2):
"""
Returns difference from subtraction of two polynomials input as sequences.
Returns difference of polynomials; `a1` - `a2`. Input polynomials are
represented as an array_like sequence of terms or a poly1d object.
Parameters
----------
a1 : {array_like, poly1d}
Minuend polynomial as sequence of terms.
a2 : {array_like, poly1d}
Subtrahend polynomial as sequence of terms.
Returns
-------
out : {ndarray, poly1d}
Array representing the polynomial terms.
See Also
--------
polyval, polydiv, polymul, polyadd
Examples
--------
.. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)
>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 - a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) - a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 - NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:GunioRobot,项目名称:numpy-refactor,代码行数:46,代码来源:polynomial.py
示例19: mediff1d
def mediff1d(array, to_end=None, to_begin=None):
"""Array difference with prefixed and/or appended value."""
a = masked_array(array, copy=True)
if a.ndim > 1:
a.reshape((a.size,))
(d, m, n) = (a._data, a._mask, a.size-1)
dd = d[1:]-d[:-1]
if m is nomask:
dm = nomask
else:
dm = m[1:]-m[:-1]
#
if to_end is not None:
to_end = asarray(to_end)
nend = to_end.size
if to_begin is not None:
to_begin = asarray(to_begin)
nbegin = to_begin.size
r_data = numeric.empty((n+nend+nbegin,), dtype=a.dtype)
r_mask = numeric.zeros((n+nend+nbegin,), dtype=bool_)
r_data[:nbegin] = to_begin._data
r_mask[:nbegin] = to_begin._mask
r_data[nbegin:-nend] = dd
r_mask[nbegin:-nend] = dm
else:
r_data = numeric.empty((n+nend,), dtype=a.dtype)
r_mask = numeric.zeros((n+nend,), dtype=bool_)
r_data[:-nend] = dd
r_mask[:-nend] = dm
r_data[-nend:] = to_end._data
r_mask[-nend:] = to_end._mask
#
elif to_begin is not None:
to_begin = asarray(to_begin)
nbegin = to_begin.size
r_data = numeric.empty((n+nbegin,), dtype=a.dtype)
r_mask = numeric.zeros((n+nbegin,), dtype=bool_)
r_data[:nbegin] = to_begin._data
r_mask[:nbegin] = to_begin._mask
r_data[nbegin:] = dd
r_mask[nbegin:] = dm
#
else:
r_data = dd
r_mask = dm
return masked_array(r_data, mask=r_mask)
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:46,代码来源:extras.py
示例20: polysub
def polysub(a1, a2):
"""
Difference (subtraction) of two polynomials.
Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
`a1` and `a2` can be either array_like sequences of the polynomials'
coefficients (including coefficients equal to zero), or `poly1d` objects.
Parameters
----------
a1, a2 : array_like or poly1d
Minuend and subtrahend polynomials, respectively.
Returns
-------
out : ndarray or poly1d
Array or `poly1d` object of the difference polynomial's coefficients.
See Also
--------
polyval, polydiv, polymul, polyadd
Examples
--------
.. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)
>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1, 0, 2])
"""
truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
a1 = atleast_1d(a1)
a2 = atleast_1d(a2)
diff = len(a2) - len(a1)
if diff == 0:
val = a1 - a2
elif diff > 0:
zr = NX.zeros(diff, a1.dtype)
val = NX.concatenate((zr, a1)) - a2
else:
zr = NX.zeros(abs(diff), a2.dtype)
val = a1 - NX.concatenate((zr, a2))
if truepoly:
val = poly1d(val)
return val
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:45,代码来源:polynomial.py
注:本文中的numpy.core.numeric.zeros函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论