• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python numeric.zeros函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.core.numeric.zeros函数的典型用法代码示例。如果您正苦于以下问题:Python zeros函数的具体用法?Python zeros怎么用?Python zeros使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了zeros函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: apply_along_axis

def apply_along_axis(func1d,axis,arr,*args):
    """ Execute func1d(arr[i],*args) where func1d takes 1-D arrays
        and arr is an N-d array.  i varies so as to apply the function
        along the given axis for each 1-d subarray in arr.
    """
    arr = asarray(arr)
    nd = arr.ndim
    if axis < 0:
        axis += nd
    if (axis >= nd):
        raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
            % (axis,nd))
    ind = [0]*(nd-1)
    i = zeros(nd,'O')
    indlist = range(nd)
    indlist.remove(axis)
    i[axis] = slice(None,None)
    outshape = asarray(arr.shape).take(indlist)
    i.put(indlist, ind)
    res = func1d(arr[tuple(i.tolist())],*args)
    #  if res is a number, then we have a smaller output array
    if isscalar(res):
        outarr = zeros(outshape,asarray(res).dtype)
        outarr[tuple(ind)] = res
        Ntot = product(outshape)
        k = 1
        while k < Ntot:
            # increment the index
            ind[-1] += 1
            n = -1
            while (ind[n] >= outshape[n]) and (n > (1-nd)):
                ind[n-1] += 1
                ind[n] = 0
                n -= 1
            i.put(indlist,ind)
            res = func1d(arr[tuple(i.tolist())],*args)
            outarr[tuple(ind)] = res
            k += 1
        return outarr
    else:
        Ntot = product(outshape)
        holdshape = outshape
        outshape = list(arr.shape)
        outshape[axis] = len(res)
        outarr = zeros(outshape,asarray(res).dtype)
        outarr[tuple(i.tolist())] = res
        k = 1
        while k < Ntot:
            # increment the index
            ind[-1] += 1
            n = -1
            while (ind[n] >= holdshape[n]) and (n > (1-nd)):
                ind[n-1] += 1
                ind[n] = 0
                n -= 1
            i.put(indlist, ind)
            res = func1d(arr[tuple(i.tolist())],*args)
            outarr[tuple(i.tolist())] = res
            k += 1
        return outarr
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:60,代码来源:shape_base.py


示例2: __train__

    def __train__(self, data, labels):
        l = labels.reshape((-1,1))
        self.__trainingData__ = data
        self.__trainingLabels__ = l
        N = len(l)
        H = zeros((N,N))
        for i in range(N):
            for j in range(N):
                H[i,j] = self.__trainingLabels__[i]*self.__trainingLabels__[j]*self.__kernelFunc__(self.__trainingData__[i],self.__trainingData__[j])
        f = -1.0*ones(labels.shape)
        lb = zeros(labels.shape)
        ub = self.C * ones(labels.shape)
        Aeq = labels
        beq = 0.0
        suppressOut = True
        if suppressOut:
            devnull = open('/dev/null', 'w')
            oldstdout_fno = os.dup(sys.stdout.fileno())
            os.dup2(devnull.fileno(), 1)
        p = QP(matrix(H),f.tolist(),lb=lb.tolist(),ub=ub.tolist(),Aeq=Aeq.tolist(),beq=beq)
        r = p.solve('cvxopt_qp')
        if suppressOut:
            os.dup2(oldstdout_fno, 1)
        lim = 1e-4
        r.xf[where(abs(r.xf)<lim)] = 0
        self.__lambdas__ = r.xf
        nonzeroindexes = where(r.xf>lim)[0]
#        l1 = nonzeroindexes[0]
#        self.w0 = 1.0/labels[l1]-dot(self.w,data[l1])
        self.numSupportVectors = len(nonzeroindexes)
开发者ID:yk,项目名称:patternhs12,代码行数:30,代码来源:classifiers.py


示例3: polyint

def polyint(p, m=1, k=None):
    """Return the mth analytical integral of the polynomial p.

    If k is None, then zero-valued constants of integration are used.
    otherwise, k should be a list of length m (or a scalar if m=1) to
    represent the constants of integration to use for each integration
    (starting with k[0])
    """
    m = int(m)
    if m < 0:
        raise ValueError, "Order of integral must be positive (see polyder)"
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0]*NX.ones(m, float)
    if len(k) < m:
        raise ValueError, \
              "k must be a scalar or a rank-1 array of length 1 or >m."
    if m == 0:
        return p
    else:
        truepoly = isinstance(p, poly1d)
        p = NX.asarray(p)
        y = NX.zeros(len(p)+1, float)
        y[:-1] = p*1.0/NX.arange(len(p), 0, -1)
        y[-1] = k[0]
        val = polyint(y, m-1, k=k[1:])
        if truepoly:
            val = poly1d(val)
        return val
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:31,代码来源:polynomial.py


示例4: polyadd

def polyadd(a1, a2):
    """
    Find the sum of two polynomials.

    Returns the polynomial resulting from the sum of two input polynomials.
    Each input must be either a poly1d object or a 1D sequence of polynomial
    coefficients, from highest to lowest degree.

    Parameters
    ----------
    a1, a2 : array_like or poly1d object
        Input polynomials.

    Returns
    -------
    out : ndarray or poly1d object
        The sum of the inputs. If either input is a poly1d object, then the
        output is also a poly1d object. Otherwise, it is a 1D array of
        polynomial coefficients from highest to lowest degree.

    See Also
    --------
    poly1d : A one-dimensional polynomial class.
    poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval

    Examples
    --------
    >>> np.polyadd([1, 2], [9, 5, 4])
    array([9, 6, 6])

    Using poly1d objects:

    >>> p1 = np.poly1d([1, 2])
    >>> p2 = np.poly1d([9, 5, 4])
    >>> print p1
    1 x + 2
    >>> print p2
       2
    9 x + 5 x + 4
    >>> print np.polyadd(p1, p2)
       2
    9 x + 6 x + 6

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:59,代码来源:polynomial.py


示例5: PlotWss

 def PlotWss(self, meshid, imagpath):
     '''
     This method plots Wss signal and returns peak wss.
     '''
     try:
         import matplotlib
         matplotlib.use('Agg') #switch to matplotlib.use('WXAgg') if you want to show and not save velocity profile.
         from matplotlib.pyplot import plot, xlabel, ylabel, title, legend, savefig, close, ylim
     except:
         sys.exit("PlotWss method requires matplotlib package (http://matplotlib.sourceforge.net.\n")
     
     tplot = linspace(0, self.tPeriod, len(self.Tauplot))
     plot(tplot, self.Tauplot,'g-',linewidth = 3, label = 'WSS')
     minY = 0
     for w in self.Tauplot:
         if w < minY:
             minY = w
     
     if minY != 0:
         plot(tplot, zeros(len(self.Tauplot)),':',linewidth = 1)
         
     ylim(ymin=minY)
     
     xlabel('Time ($s$)')
     ylabel('Wall shear stress ($dyne/cm^2$)')
     title ('Wss'+' peak:'+str(round(max(self.Tauplot),1))+' mean:'+str(round(mean(self.Tauplot),1))+' min:'+str(round(min(self.Tauplot),1)))    
     legend()
     savefig(imagpath+str(meshid)+'_'+str(self.Name)+'_wss.png')
     print "Wss, MeshId", meshid, self.Name, "=", str(round(max(self.Tauplot),1)), "$dyne/cm^2$"
     close()
     return (round(max(self.Tauplot),1))
开发者ID:archTk,项目名称:pyNS,代码行数:31,代码来源:InverseWomersley.py


示例6: gmmEM

def gmmEM(data, K, it,show=False,usekmeans=True):
    #data += finfo(float128).eps*100
    centroid = kmeans2(data, K)[0] if usekmeans else ((max(data) - min(data))*random_sample((K,data.shape[1])) + min(data))
    N = data.shape[0]
    gmm = GaussianMM(centroid)
    if show: gmm.draw(data)
    while it > 0:
        print it," iterations remaining"
        it = it - 1
        # e-step
        gausses = zeros((K, N), dtype = data.dtype)
        for k in range(0, K):
            gausses[k] = gmm.c[k]*mulnormpdf(data, gmm.mean[k], gmm.covm[k])
        sums = sum(gausses, axis=0)
        if count_nonzero(sums) != sums.size:
            raise "Divide by Zero"
        gausses /= sums
        # m step
        sg = sum(gausses, axis=1)
        if count_nonzero(sg) != sg.size:
            raise "Divide by Zero"
        gmm.c = ones(sg.shape) / N * sg
        for k in range(0, K):
            gmm.mean[k] = sum(data * gausses[k].reshape((-1,1)), axis=0) / sg[k]
            d = data - gmm.mean[k]
            d1 = d.transpose()*gausses[k]
            gmm.covm[k]=dot(d1,d)/sg[k]
        if show: gmm.draw(data)
    return gmm
开发者ID:yk,项目名称:patternhs12,代码行数:29,代码来源:ex3_1.py


示例7: diagflat

def diagflat(v,k=0):
    """Return a 2D array whose k'th diagonal is a flattened v and all other
    elements are zero.

    Examples
    --------
      >>> diagflat([[1,2],[3,4]]])
      array([[1, 0, 0, 0],
             [0, 2, 0, 0],
             [0, 0, 3, 0],
             [0, 0, 0, 4]])

      >>> diagflat([1,2], 1)
      array([[0, 1, 0],
             [0, 0, 2],
             [0, 0, 0]])
    """
    try:
        wrap = v.__array_wrap__
    except AttributeError:
        wrap = None
    v = asarray(v).ravel()
    s = len(v)
    n = s + abs(k)
    res = zeros((n,n), v.dtype)
    if (k>=0):
        i = arange(0,n-k)
        fi = i+k+i*n
    else:
        i = arange(0,n+k)
        fi = i+(i-k)*n
    res.flat[fi] = v
    if not wrap:
        return res
    return wrap(res)
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:35,代码来源:twodim_base.py


示例8: diag

def diag(v, k=0):
    """ returns a copy of the the k-th diagonal if v is a 2-d array
        or returns a 2-d array with v as the k-th diagonal if v is a
        1-d array.
    """
    v = asarray(v)
    s = v.shape
    if len(s)==1:
        n = s[0]+abs(k)
        res = zeros((n,n), v.dtype)
        if (k>=0):
            i = arange(0,n-k)
            fi = i+k+i*n
        else:
            i = arange(0,n+k)
            fi = i+(i-k)*n
        res.flat[fi] = v
        return res
    elif len(s)==2:
        N1,N2 = s
        if k >= 0:
            M = min(N1,N2-k)
            i = arange(0,M)
            fi = i+k+i*N2
        else:
            M = min(N1+k,N2)
            i = arange(0,M)
            fi = i + (i-k)*N2
        return v.flat[fi]
    else:
        raise ValueError, "Input must be 1- or 2-d."
开发者ID:8848,项目名称:Pymol-script-repo,代码行数:31,代码来源:twodim_base.py


示例9: myEnhance

    def myEnhance(self,img):
        self.img = img
        self.statx = zeros(256)
        print len(self.statx)
        
#        print len(self.img)
#        print img.shape()
#        for i in range(256):
#            self.statx[i]=self.statx.append(1)
#        np.histogram(self.img, bins=60)
#        for i in range(len(self.img)):
#            for j in range(len(self.img[i])):
##            print img[i]
##                if self.img[i][j]<100:
##                    self.img[i][j] = 0
##                else:
##                    self.img[i][j]=255
##                print self.img[i][j]
#                self.statx[self.img[i][j]] = self.statx[self.img[i][j]] + 1
#                pass
            
        
#        return self.statx
                
                
                
        
                
开发者ID:varundeveloper91,项目名称:firstrepo,代码行数:23,代码来源:mylib.py


示例10: calcN

def calcN(classKernels, trainLabels):
    N = zeros((len(trainLabels), len(trainLabels)))
    for i, l in enumerate(unique(trainLabels)):
        numExamplesWithLabel = len(where(trainLabels == l)[0])
        Idiff = identity(numExamplesWithLabel, Float64) - (1.0 / numExamplesWithLabel) * ones(numExamplesWithLabel, Float64)
        firstDot = dot(classKernels[i], Idiff)
        labelTerm = dot(firstDot, transpose(classKernels[i]))
        N += labelTerm
    N = nan_to_num(N)
    #make N more numerically stable
    #if I had more time, I would train this parameter, but I don't
    additionToN = ((mean(diag(N)) + 1) / 100.0) * identity(N.shape[0], Float64) 
    N += additionToN
            
    #make sure N is invertable
    for i in range(1000):
        try:
            inv(N)
        except LinAlgError:
            #doing this to make sure the maxtrix is invertable
            #large value supported by section titled
            #"numerical issues and regularization" in the paper
            N += additionToN

    return N
开发者ID:Primer42,项目名称:TuftComp136,代码行数:25,代码来源:main.py


示例11: __init__

 def __init__(self, *shape):
     if len(shape) == 1 and isinstance(shape[0], tuple):
         shape = shape[0]
     x = as_strided(_nx.zeros(1), shape=shape,
                    strides=_nx.zeros_like(shape))
     self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
                           order='C')
开发者ID:Benj1,项目名称:numpy,代码行数:7,代码来源:index_tricks.py


示例12: fishersLinearDiscriminent

def fishersLinearDiscriminent(trainData, trainLabels, testData, testLabels):
    numClasses = max(trainLabels) + 1
    N = [0] * numClasses
    m = [0] * numClasses
    for x,t in izip(trainData,trainLabels):
        m[t] += x
        N[t] += 1
    for i in range(numClasses):
        m[i] /= N[i]
    Sw = zeros((trainData.shape[1], trainData.shape[1]))
    for x,t in izip(trainData, trainLabels):
        Sw += outer(x-m[t], x-m[t])
    try:
        inv(Sw)
    except LinAlgError:
        Sw += 0.1 * identity(Sw.shape[0], Float64)    
    
    w = dot(inv(Sw),(m[0] - m[1]))
    meanVect = (N[0]*m[0] + N[1]*m[1]) / sum(N)
    
    numCorrect = 0
    for x,t in izip(testData, testLabels):
        if dot(w, (x-meanVect)) > 0:
            if t == 1:
                numCorrect += 1
        else:
            if t == 0:
                numCorrect += 1
    return float(numCorrect) / float(len(testLabels))
开发者ID:Primer42,项目名称:TuftComp136,代码行数:29,代码来源:main.py


示例13: createKernel

def createKernel(xList, yList, kernelFunct, *kernelFunctArgs):
    #remember, examples are rows, not columns
    k = zeros((len(xList), len(yList)))
    for i in range(len(xList)):
        for j in range(len(yList)):
            k[i,j] = kernelFunct(xList[i], yList[j], *kernelFunctArgs)
    return k
开发者ID:Primer42,项目名称:TuftComp136,代码行数:7,代码来源:main.py


示例14: iscomplex

def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True])

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return res[()]   # convert to scalar if needed
开发者ID:Horta,项目名称:numpy,代码行数:34,代码来源:type_check.py


示例15: GetFlow

    def GetFlow(self):
        '''
        Calculating inlet flow (coefficients of the FFT  x(t)=A0+sum(2*Ck*exp(j*k*2*pi*f*t)))
        Timestep and period from SimulationContext are necessary.
        '''
        try:
            timestep = self.SimulationContext.Context['timestep']
        except KeyError:
            print "Error, Please set timestep in Simulation Context XML File"
            raise
        try:
            period = self.SimulationContext.Context['period']
        except KeyError:
            print "Error, Please set period in Simulation Context XML File"
            raise

        t = arange(0.0,period+timestep,timestep).reshape((1,ceil(period/timestep+1.0)))
        Cc = self.f_coeff*1.0/2.0*1e-6
        Flow = zeros((1, ceil(period/timestep+1.0)))
        for freq in arange(0,ceil(period/timestep+1.0)):
            Flow[0, freq] = self.A0_v
            for k in arange(0,self.f_coeff.shape[0]):
                Flow[0, freq] = Flow[0, freq]+real(2.0*complex(Cc[k,0],Cc[k,1])*exp(1j*(k+1)*2.0*pi*t[0,freq]/period))
        self.Flow = Flow
        return Flow
开发者ID:archTk,项目名称:pyNS,代码行数:25,代码来源:BoundaryConditions.py


示例16: estimateGaussian

def estimateGaussian(trainData, trainLabels):
    numClasses = max(trainLabels) + 1
    N = [0]* numClasses
    mu = [0.0] * numClasses
    Slist = [zeros((trainData.shape[1], trainData.shape[1]))] * numClasses
    pList = [0.0] * numClasses
    
    #calculate N, and sum x's for mu
    for x,t in izip(trainData, trainLabels):
        N[t] += 1
        mu[t] += x
    #normalize mu
    for i in range(numClasses):
        mu[i] = mu[i] / float(N[i])
    #calculate the class probabilities
    for i in range(numClasses):
        pList[i] = float(N[i]) / sum(N)
    #calculate S0 and S1
    for x,t in izip(trainData, trainLabels):
        Slist[t] += outer(x - mu[t], x - mu[t])
        try:
            inv(Slist[t])
        except LinAlgError:
            Slist[t] += 0.1 * identity(Slist[t].shape[0], Float64)
        
    return (numClasses, N, mu, Slist, pList)
开发者ID:Primer42,项目名称:TuftComp136,代码行数:26,代码来源:main.py


示例17: triu

def triu(m, k=0):
    """
    Upper triangle of an array.

    Return a copy of a matrix with the elements below the `k`-th diagonal
    zeroed.

    Please refer to the documentation for `tril` for further details.

    See Also
    --------
    tril : lower triangle of an array

    Examples
    --------
    >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 0,  8,  9],
           [ 0,  0, 12]])

    """
    m = asanyarray(m)
    mask = tri(*m.shape[-2:], k=k-1, dtype=bool)

    return where(mask, zeros(1, m.dtype), m)
开发者ID:AlerzDev,项目名称:Brazo-Proyecto-Final,代码行数:26,代码来源:twodim_base.py


示例18: polysub

def polysub(a1, a2):
    """
    Returns difference from subtraction of two polynomials input as sequences.

    Returns difference of polynomials; `a1` - `a2`.  Input polynomials are
    represented as an array_like sequence of terms or a poly1d object.

    Parameters
    ----------
    a1 : {array_like, poly1d}
        Minuend polynomial as sequence of terms.
    a2 : {array_like, poly1d}
        Subtrahend polynomial as sequence of terms.

    Returns
    -------
    out : {ndarray, poly1d}
        Array representing the polynomial terms.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    Examples
    --------
    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

    >>> np.polysub([2, 10, -2], [3, 10, -4])
    array([-1,  0,  2])

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
开发者ID:GunioRobot,项目名称:numpy-refactor,代码行数:46,代码来源:polynomial.py


示例19: mediff1d

def mediff1d(array, to_end=None, to_begin=None):
    """Array difference with prefixed and/or appended value."""
    a = masked_array(array, copy=True)
    if a.ndim > 1:
        a.reshape((a.size,))
    (d, m, n) = (a._data, a._mask, a.size-1)
    dd = d[1:]-d[:-1]
    if m is nomask:
        dm = nomask
    else:
        dm = m[1:]-m[:-1]
    #
    if to_end is not None:
        to_end = asarray(to_end)
        nend = to_end.size
        if to_begin is not None:
            to_begin = asarray(to_begin)
            nbegin = to_begin.size
            r_data = numeric.empty((n+nend+nbegin,), dtype=a.dtype)
            r_mask = numeric.zeros((n+nend+nbegin,), dtype=bool_)
            r_data[:nbegin] = to_begin._data
            r_mask[:nbegin] = to_begin._mask
            r_data[nbegin:-nend] = dd
            r_mask[nbegin:-nend] = dm
        else:
            r_data = numeric.empty((n+nend,), dtype=a.dtype)
            r_mask = numeric.zeros((n+nend,), dtype=bool_)
            r_data[:-nend] = dd
            r_mask[:-nend] = dm
        r_data[-nend:] = to_end._data
        r_mask[-nend:] = to_end._mask
    #
    elif to_begin is not None:
        to_begin = asarray(to_begin)
        nbegin = to_begin.size
        r_data = numeric.empty((n+nbegin,), dtype=a.dtype)
        r_mask = numeric.zeros((n+nbegin,), dtype=bool_)
        r_data[:nbegin] = to_begin._data
        r_mask[:nbegin] = to_begin._mask
        r_data[nbegin:] = dd
        r_mask[nbegin:] = dm
    #
    else:
        r_data = dd
        r_mask = dm
    return masked_array(r_data, mask=r_mask)
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:46,代码来源:extras.py


示例20: polysub

def polysub(a1, a2):
    """
    Difference (subtraction) of two polynomials.

    Given two polynomials `a1` and `a2`, returns ``a1 - a2``.
    `a1` and `a2` can be either array_like sequences of the polynomials'
    coefficients (including coefficients equal to zero), or `poly1d` objects.

    Parameters
    ----------
    a1, a2 : array_like or poly1d
        Minuend and subtrahend polynomials, respectively.

    Returns
    -------
    out : ndarray or poly1d
        Array or `poly1d` object of the difference polynomial's coefficients.

    See Also
    --------
    polyval, polydiv, polymul, polyadd

    Examples
    --------
    .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2)

    >>> np.polysub([2, 10, -2], [3, 10, -4])
    array([-1,  0,  2])

    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val
开发者ID:MarkNiemczyk,项目名称:numpy,代码行数:45,代码来源:polynomial.py



注:本文中的numpy.core.numeric.zeros函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numeric.zeros_like函数代码示例发布时间:2022-05-27
下一篇:
Python numeric.where函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap