• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python fft.irfft2函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中numpy.fft.irfft2函数的典型用法代码示例。如果您正苦于以下问题:Python irfft2函数的具体用法?Python irfft2怎么用?Python irfft2使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了irfft2函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: fromEBmodes

	def fromEBmodes(cls,fourier_E,fourier_B,angle=3.14*deg):

		"""
		This class method allows to build a shear map specifying its E and B mode components

		:param fourier_E: E mode of the shear map in fourier space
		:type fourier_E: numpy 2D array, must be of type np.complex128 and must have a shape that is appropriate for a real fourier transform, i.e. (N,N/2 + 1); N should be a power of 2

		:param fourier_B: B mode of the shear map in fourier space
		:type fourier_B: numpy 2D array, must be of type np.complex128 and must have a shape that is appropriate for a real fourier transform, i.e. (N,N/2 + 1); N should be a power of 2

		:param angle: Side angle of the real space map in degrees
		:type angle: float.

		:returns: the corresponding ShearMap instance

		:raises: AssertionErrors for inappropriate inputs

		"""

		assert fourier_E.dtype == np.complex128 and fourier_B.dtype == np.complex128
		assert fourier_E.shape[1] == fourier_E.shape[0]/2 + 1
		assert fourier_B.shape[1] == fourier_B.shape[0]/2 + 1
		assert fourier_E.shape == fourier_B.shape

		#Compute frequencies
		lx = rfftfreq(fourier_E.shape[0])
		ly = fftfreq(fourier_E.shape[0])

		#Safety check
		assert len(lx)==fourier_E.shape[1]
		assert len(ly)==fourier_E.shape[0]

		#Compute sines and cosines of rotation angles
		l_squared = lx[np.newaxis,:]**2 + ly[:,np.newaxis]**2
		l_squared[0,0] = 1.0

		sin_2_phi = 2.0 * lx[np.newaxis,:] * ly[:,np.newaxis] / l_squared
		cos_2_phi = (lx[np.newaxis,:]**2 - ly[:,np.newaxis]**2) / l_squared

		sin_2_phi[0,0] = 0.0
		cos_2_phi[0,0] = 0.0

		#Invert E/B modes and find the components of the shear
		ft_data1 = cos_2_phi * fourier_E - sin_2_phi * fourier_B
		ft_data2 = sin_2_phi * fourier_E + cos_2_phi * fourier_B

		#Invert Fourier transforms
		data1 = irfft2(ft_data1)
		data2 = irfft2(ft_data2)

		#Instantiate new shear map class
		new = cls(np.array([data1,data2]),angle)
		setattr(new,"fourier_E",fourier_E)
		setattr(new,"fourier_B",fourier_B)

		return new
开发者ID:TheisEizo,项目名称:LensTools,代码行数:57,代码来源:shear.py


示例2: output

    def output(self):
        """ """

        # One dimension
        if len(self._source.shape) == 1:
            source = self._actual_source
            # Use FFT convolution
            if self._fft:
                if not self._toric:
                    P = rfft(source,self._fft_shape[0])*self._fft_weights
                    R = irfft(P, self._fft_shape[0]).real
                    R = R[self._fft_indices]
                else:
                    P = rfft(source)*self._fft_weights
                    R = irfft(P,source.shape[0]).real

                # if self._toric:
                #     R  = ifft(fft(source)*self._fft_weights).real
                # else:
                #     n = source.shape[0]
                #     self._src_holder[n//2:n//2+n] = source
                #     R = ifft(fft(self._src_holder)*self._fft_weights)
                #     R = R.real[n//2:n//2+n]
            # Use regular convolution
            else:
                R = convolve1d(source, self._weights[::-1], self._toric)
            if self._src_rows is not None:
                R = R[self._src_rows]
            return R.reshape(self._target.shape)
        # Two dimensions
        else:
            source = self._actual_source
            # Use FFT convolution
            if self._fft:
                if not self._toric:
                    P = rfft2(source,self._fft_shape)*self._fft_weights
                    R = irfft2(P, self._fft_shape).real
                    R = R[self._fft_indices]
                else:
                    P = rfft2(source)*self._fft_weights
                    R = irfft2(P,source.shape).real

            # Use SVD convolution
            else:
                R = convolve2d(source, self._weights, self._USV, self._toric)
            if self._src_rows is not None and self._src_cols is not None:
                R = R[self._src_rows, self._src_cols]
        return R.reshape(self._target.shape)
开发者ID:B-Rich,项目名称:dana,代码行数:48,代码来源:shared_connection.py


示例3: _correlate2d_fft

def _correlate2d_fft(data0, kernel0, output=None, mode="nearest", cval=0.0):
    """_correlate2d_fft does 2d correlation of 'data' with 'kernel', storing
    the result in 'output' using the FFT to perform the correlation.

    supported 'mode's include:
        'nearest'   elements beyond boundary come from nearest edge pixel.
        'wrap'      elements beyond boundary come from the opposite array edge.
        'reflect'   elements beyond boundary come from reflection on same array
                    edge.
        'constant'  elements beyond boundary are set to 'cval'
    """

    shape = data0.shape
    kshape = kernel0.shape
    oversized = (np.array(shape) + np.array(kshape))

    dy = kshape[0] // 2
    dx = kshape[1] // 2

    kernel = np.zeros(oversized, dtype=np.float64)
    # convolution <-> correlation
    kernel[:kshape[0], :kshape[1]] = kernel0[::-1,::-1]
    data = iraf_frame.frame(data0, oversized, mode=mode, cval=cval)

    complex_result = (isinstance(data, np.complexfloating) or
                      isinstance(kernel, np.complexfloating))

    Fdata = dft.fft2(data)
    del data

    Fkernel = dft.fft2(kernel)
    del kernel

    np.multiply(Fdata, Fkernel, Fdata)
    del Fkernel

    if complex_result:
        convolved = dft.irfft2(Fdata, s=oversized)
    else:
        convolved = dft.irfft2(Fdata, s=oversized)

    ks0, ks1 = kshape[0] - 1, kshape[1] - 1
    result = convolved[ks0:shape[0] + ks0, ks1:shape[1] + ks1]

    if output is not None:
        output._copyFrom(result)
    else:
        return result
开发者ID:jhunkeler,项目名称:stsci.convolve,代码行数:48,代码来源:convolve.py


示例4: _filter

def _filter(filter, array):
    X = fft.rfft2(array)
    X = fft.fftshift(X)
    numpy.multiply(X, filter, out=X)
    X = fft.ifftshift(X)
    x = fft.irfft2(X, s=array.shape)
    return x
开发者ID:eliteraspberries,项目名称:avena,代码行数:7,代码来源:filter.py


示例5: _BandPassFilter

def _BandPassFilter(image, len_noise, len_object):
    """
    bandpass filter implementation.
    Source: http://physics-server.uoregon.edu/~raghu/particle_tracking.html
    """
    b = len_noise
    w = round(len_object)
    N = 2 * w + 1

    # Gaussian Convolution Kernel
    sm = numpy.arange(0, N, dtype=numpy.float)
    r = (sm - w) / (2 * b)
    gx = numpy.power(math.e, -r ** 2) / (2 * b * math.sqrt(math.pi))
    gx = numpy.reshape(gx, (gx.shape[0], 1))
    gy = gx.conj().transpose()

    # Boxcar average kernel, background
    bx = numpy.zeros((1, N), numpy.float) + 1 / N
    by = bx.conj().transpose()

    # Convolution with the matrix and kernels
    gxy = gx * gy
    bxy = bx * by
    kernel = fft.rfft2(gxy - bxy, image.shape)

    res = fft.irfft2(fft.rfft2(image) * kernel)
    arr_out = numpy.zeros((image.shape))
    arr_out[w:-w, w:-w] = res[2 * w:, 2 * w:]
    res = numpy.maximum(arr_out, 0)
    return res
开发者ID:pieleric,项目名称:odemis-old,代码行数:30,代码来源:coordinates.py


示例6: matches_exist

def matches_exist(template, image, tolerance=1):
    # just taken from convolution def
    expected = numpy.count_nonzero(template)
    ih, iw = image.shape
    th, tw = template.shape

    # Pad image to even dimensions
    if ih % 2 or iw % 2:
        if ih % 2:
            ih += 1
        if iw % 2:
            iw += 1
        bin_image = pad_bin_image_to_shape(image, (ih, iw))
    if expected == 0:
        return []

    # Calculate the convolution of the FFT's of the image & template
    convolution_freqs = rfft2(image) * rfft2(template[::-1, ::-1],
                                                 image.shape)
    convolution_image = irfft2(convolution_freqs)
    found_bitmap = convolution_image > (expected - tolerance)
    if True in found_bitmap:
        return True
    else:
        return False
开发者ID:MMChambers,项目名称:Geist,代码行数:25,代码来源:similar_images.py


示例7: ifftn_mpi

def ifftn_mpi(fu, u):
    """ifft in three directions using mpi.
    Need to do ifft in reversed order of fft
    """
    if num_processes == 1:
        #u[:] = irfft(ifft(ifft(fu, axis=0), axis=2), axis=1)
        u[:] = irfftn(fu, axes=(0,2,1))
        return
    
    # Do first owned direction
    Uc_hat[:] = ifft(fu, axis=0)
    
    # Communicate all values
    comm.Alltoall([Uc_hat, MPI.DOUBLE_COMPLEX], [U_mpi, MPI.DOUBLE_COMPLEX])
    for i in range(num_processes): 
        Uc_hatT[:, :, i*Np:(i+1)*Np] = U_mpi[i]

    #for i in range(num_processes):
    #    if not i == rank:
    #        comm.Sendrecv_replace([Uc_send[i], MPI.DOUBLE_COMPLEX], i, 0, i, 0)   
    #    Uc_hatT[:, :, i*Np:(i+1)*Np] = Uc_send[i]
           
    # Do last two directions
    #u[:] = irfft(ifft(Uc_hatT, axis=2), axis=1)
    u[:] = irfft2(Uc_hatT, axes=(2,1))
开发者ID:francispoulin,项目名称:spectralDNS,代码行数:25,代码来源:spectralDNS3D.py


示例8: ifftn_mpi

def ifftn_mpi(fu, u):
    Uc_hat[:] = ifft(fu, axis=0)
    comm.Alltoall([Uc_hat, MPI.DOUBLE_COMPLEX], [U_mpi, MPI.DOUBLE_COMPLEX])
    for i in range(num_processes):
        Uc_hatT[:, i*Np:(i+1)*Np] = U_mpi[i]
    u[:] = irfft2(Uc_hatT, axes=(1,2))
    return u
开发者ID:crocha700,项目名称:spectralDNS,代码行数:7,代码来源:spectralDNS3D_short.py


示例9: convolution

def convolution(bin_template, bin_image, tollerance=0.5):
    expected = numpy.count_nonzero(bin_template)
    ih, iw = bin_image.shape
    th, tw = bin_template.shape

    # Padd image to even dimensions
    if ih % 2 or iw % 2:
        if ih % 2:
            ih += 1
        if iw % 2:
            iw += 1
        bin_image = pad_bin_image_to_shape(bin_image, (ih, iw))
    if expected == 0:
        return []

    # Calculate the convolution of the FFT's of the image & template
    convolution_freqs = rfft2(bin_image) * rfft2(bin_template[::-1, ::-1],
                                                 bin_image.shape)
    # Reverse the FFT to find the result image
    convolution_image = irfft2(convolution_freqs)
    # At this point, the maximum point in convolution_image should be the
    # bottom right (why?) of the area of greatest match

    # The areas in the result image within expected +- tollerance are where we
    # saw matches
    found_bitmap = ((convolution_image > (expected - tollerance)) &
                    (convolution_image < (expected + tollerance)))

    match_points = numpy.transpose(numpy.nonzero(found_bitmap))  # bottom right

    # Find the top left point from the template (remember match_point is
    # inside the template (hence -1)
    return [((fx - (tw - 1)), (fy - (th - 1))) for (fy, fx) in match_points]
开发者ID:bibi-L,项目名称:Geist,代码行数:33,代码来源:vision.py


示例10: getDisplacements2D

 def getDisplacements2D(self, Z=None, window=False):
     """
     Use phase correlation to find the relative displacement between
     each time step
     """
     if Z is None:
         Z = self.getNbPixelsPerFrame()/self.getNbPixelsPerSlice()/2
     shape = np.asarray(self.get2DShape())
     if window:
         ham = np.hamming(shape[1])*np.atleast_2d(np.hamming(shape[0])).T
     else:
         ham = 1.0
     displs = np.zeros((self.getNbFrames(),2))
     a = rfft2(self.get2DSlice(T=0, Z=Z)*ham)
     for t in range(1,self.getNbFrames()):
         b = rfft2(self.get2DSlice(T=t, Z=Z)*ham)
         #calculate the normalized cross-power spectrum
         #R = numexpr.evaluate(
         #    'a*complex(real(b), -imag(b)/abs(a*complex(real(b), -imag(b))))'
         #    )
         R = a*b.conj()
         Ra = np.abs(a*b.conj())
         R[Ra>0] /= Ra[Ra>0]
         r = irfft2(R)
         #Get the periodic position of the peak
         l = r.argmax()
         displs[t] = np.unravel_index(l, r.shape)
         #prepare next step
         a = b
     return np.where(displs<shape/2, displs, displs-shape)
开发者ID:MathieuLeocmach,项目名称:colloids,代码行数:30,代码来源:lif.py


示例11: fromConvPower

	def fromConvPower(self,power_func,seed=0,**kwargs):

		"""
		This method uses a supplied power spectrum to generate correlated noise maps in real space via FFTs

		:param power_func: function that given a numpy array of l's returns a numpy array with the according Pl's (this is the input power spectrum); alternatively you can pass an array (l,Pl) and the power spectrum will be calculated with scipy's interpolation routines
		:type power_func: function with the above specifications, or numpy array (l,Pl) of shape (2,n) 

		:param seed: seed of the random generator 
		:type seed: int.

		:param kwargs: keyword arguments to be passed to power_func, or to the interpolate.interp1d routine

		:returns: ConvergenceMap instance of the same exact shape as the one used as blueprint

		"""
		assert self.label == "convergence"

		#Initialize random number generator
		np.random.seed(seed)

		#Generate a random Fourier realization and invert it
		ft_map = self._fourierMap(power_func,**kwargs)
		noise_map = irfft2(ft_map)

		return ConvergenceMap(noise_map,self.side_angle)
开发者ID:TheisEizo,项目名称:LensTools,代码行数:26,代码来源:noise.py


示例12: convolve_dcr_image

def convolve_dcr_image(flux_arr, x_loc, y_loc, bandpass=None, x_size=None, y_size=None, seed=None,
                       psf=None, pad_image=1.5, pixel_scale=None, kernel_radius=None,
                       oversample_image=1, photon_noise=False, sky_noise=0.0, verbose=True, **kwargs):
    """Wrapper to call fast_dft with multiple DCR planes."""
    x_size_use = int(x_size * pad_image)
    y_size_use = int(y_size * pad_image)
    oversample_image = int(oversample_image)
    pixel_scale_use = pixel_scale / oversample_image
    x0 = oversample_image * ((x_size_use - x_size) // 2)
    x1 = x0 + x_size * oversample_image
    y0 = oversample_image * ((y_size_use - y_size) // 2)
    y1 = y0 + y_size * oversample_image
    x_loc_use = x_loc * oversample_image + x0
    y_loc_use = y_loc * oversample_image + y0
    x_size_use *= oversample_image
    y_size_use *= oversample_image
    timing_model = -time.time()
    source_image = fast_dft(flux_arr, x_loc_use, y_loc_use, x_size=x_size_use, y_size=y_size_use,
                            kernel_radius=kernel_radius, **kwargs)
    timing_model += time.time()
    n_star = len(x_loc)
    if oversample_image > 1:
        bright_star = "bright "
    else:
        bright_star = ""
    if verbose:
        if n_star == 1:
            print("Time to model %i %sstar: [%0.3fs]"
                  % (n_star, bright_star, timing_model))
        else:
            print("Time to model %i %sstars: [%0.3fs | %0.5fs per star]"
                  % (n_star, bright_star, timing_model, timing_model / n_star))
    rand_gen = np.random
    if seed is not None:
        rand_gen.seed(seed - 1)
    # The images are purely real, so we can save time by using the real FFT,
    # which uses only half of the complex plane
    convol = np.zeros((y_size_use, x_size_use // 2 + 1), dtype='complex64')
    dcr_gen = dcr_generator(bandpass, pixel_scale=pixel_scale_use, **kwargs)
    timing_fft = -time.time()

    for _i, offset in enumerate(dcr_gen):
        source_image_use = source_image[_i]

        psf_image = psf.drawImage(scale=pixel_scale_use, method='fft', offset=offset,
                                  nx=x_size_use, ny=y_size_use, use_true_center=False)
        if photon_noise:
            base_noise = np.random.normal(scale=1.0, size=(y_size_use, x_size_use))
            base_noise *= np.sqrt(np.abs(source_image_use) / photons_per_adu)
            source_image_use += base_noise
        if sky_noise > 0:
            source_image_use += (rand_gen.normal(scale=sky_noise, size=(y_size_use, x_size_use))
                                 / np.sqrt(bandpass_nstep(bandpass)))
        convol += rfft2(source_image_use) * rfft2(psf_image.array)
    return_image = np.real(fftshift(irfft2(convol)))
    timing_fft += time.time()
    if verbose:
        print("FFT timing for %i DCR planes: [%0.3fs | %0.3fs per plane]"
              % (_i, timing_fft, timing_fft / _i))
    return(return_image[y0:y1:oversample_image, x0:x1:oversample_image] * oversample_image**2)
开发者ID:isullivan,项目名称:simulations,代码行数:60,代码来源:StarFast.py


示例13: fft_convolve

def fft_convolve(in1, in2, times):
    def _centered(arr, newsize):
        # Return the center newsize portion of the array.
        currsize = np.array(arr.shape)
        startind = (currsize - newsize) // 2
        endind = startind + newsize
        myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
        return arr[tuple(myslice)]

    if times == 0:
        return in1.copy()


    s1 = np.array(in1.shape)
    s2 = np.array(in2.shape)
    shape = s1 + (s2 - 1) * times

    # Speed up FFT by padding to optimal size for FFTPACK
    fshape = [next_fast_len(int(d)) for d in shape]
    fslice = tuple([slice(0, int(sz)) for sz in shape])

    resfft = fast_power(rfft2(in2, fshape), times)
    resfft = resfft * rfft2(in1, fshape)
    ret = irfft2(resfft, fshape)[fslice].copy()
    ret = ret.real

    return _centered(ret, s1)
开发者ID:CellProfiler,项目名称:cellstar,代码行数:27,代码来源:image_util.py


示例14: linespectra

def linespectra (arr, freqs, sigma=4, channelWidth=20, kms=False, source_speed=0): #nb sigma is given in px (can be fractional)
    """arr should be an array of shape (x,:,>pix,>pix)
freqs an array or list of nums of length x"""
    shifts=[int(round((freqs[-1]-freqs[i])*299792458/(channelWidth*freqs[-1]))) for i in xrange(len(freqs))]
#    print shifts
    x=[[] for _ in xrange(arr.shape[0])]
    mid=arr.shape[2]/2.0-0.5

    gauss_mask=garray(arr.shape[-2:],sigma)
    s=[y*2 for y in gauss_mask.shape]
    ftg=rfft2(gauss_mask, s)

    for i in xrange(len(x)):
        for j in xrange(arr.shape[1]):
            convolved=irfft2(rfft2(arr[i,j,:,:],s)*ftg)
            x[i].append(convolved[s[0]/2,s[1]/2])

    padding=abs(max(shifts))
    padded=[0 for _ in xrange(arr.shape[1]+padding*2+2)]
    for i in xrange(len(x[0])):
        for j in xrange(len(x)):
            try:
                padded[i+shifts[j]+padding]+=x[j][i]
            except IndexError : 
                print j,i,len(x),len(x[j])
                None
    if kms: return [((i-150)*20/1000.0,x) for i,x in enumerate(padded)]
    else:   return [((i-150)*20,x)        for i,x in enumerate(padded)]
开发者ID:Womble,项目名称:analysis-tools,代码行数:28,代码来源:complete.py


示例15: getDispl2DImage

 def getDispl2DImage(self, t0=0, t1=1, Z=0):
     ham = np.hamming(self.get2DShape()[1])*np.atleast_2d(np.hamming(self.get2DShape()[0])).T
     a = rfft2(self.get2DSlice(T=t0, Z=Z)*ham)
     b = rfft2(self.get2DSlice(T=t1, Z=Z)*ham)
     R = numexpr.evaluate(
         'a*complex(real(b), -imag(b)/abs(a*complex(real(b), -imag(b))'
         )
     return irfft2(R)
开发者ID:MathieuLeocmach,项目名称:colloids,代码行数:8,代码来源:lif.py


示例16: register_imgs

def register_imgs(imgs,template):
    "save some time by only taking fft of template once"
    rfft2_template_conj = rfft2(template).conj()
    shifts = []
    for img in imgs:
        corr = irfft2(rfft2(img)*rfft2_template_conj)
        shifts.append(balanced_mod(np.unravel_index(corr.argmax(),corr.shape),corr.shape))
    return shifts
开发者ID:wj2,项目名称:2p,代码行数:8,代码来源:registration.py


示例17: ifct

def ifct(fu, u):
    """Inverse Cheb transform of x-direction, Fourier in y and z"""
    Uc_hat3[:] = ST.ifct(fu, Uc_hat3)
    comm.Alltoall([Uc_hat3, MPI.DOUBLE_COMPLEX], [U_mpi, MPI.DOUBLE_COMPLEX])
    n0 = U_mpi.shape[2]
    for i in range(num_processes):
        Uc_hatT[:, i*n0:(i+1)*n0] = U_mpi[i]
    u[:] = irfft2(Uc_hatT, axes=(1,2))
    return u
开发者ID:bkimo,项目名称:spectralDNS,代码行数:9,代码来源:spectralDNS_Cheb.py


示例18: beam_convolve

def beam_convolve(arr, sigma):
    "convoles a 2D image with a gaussian profile with sigma in px"
    if len(arr.shape)!=2 or 3*sigma > max(arr.shape): raise ValueError ("arr is not 2d or beam is too wide")
    else: 
        shape=arr.shape
        gauss_mask=garray(shape,sigma)
        s=[y*2 for y in gauss_mask.shape]
        ftg=rfft2(gauss_mask, s)
        return irfft2(rfft2(arr,s)*ftg)
开发者ID:Womble,项目名称:analysis-tools,代码行数:9,代码来源:complete.py


示例19: dnf_response

def dnf_response( n, Rn, stimulus, w, we, wi, time, dt ):
		alpha, tau = 0.1, 1.0
		U  = np.random.random((n,n)) * .01
		V  = np.random.random((n,n)) * .01

		V_shape = np.array(V.shape)

		# Computes field input accordingly
		D = (( np.abs( w - stimulus )).sum(axis=-1))/float(Rn*Rn)
		I = ( 1.0 - D.reshape(n,n) ) * alpha

		for j in range( int(time/dt) ):
				Z = rfft2( V * alpha )
				Le = irfft2( Z * we, V_shape).real
				Li = irfft2( Z * wi, V_shape).real
				U += ( -U + ( Le - Li ) + I )* dt * tau
				V = np.maximum( U, 0.0 )
		return V
开发者ID:gdetor,项目名称:SI-RF-Structure,代码行数:18,代码来源:responses.py


示例20: conv

def conv(im, ker):
    ''' Convolves image im with kernel ker 
        Both image and kernel's dimensions should be even: ker.shape % 2 == 0
    '''
    sy,sx = array(ker.shape)/2
    y0,x0 = array(im.shape)/2
    big_ker = zeros(im.shape)
    big_ker[y0-sy:y0+sy,x0-sx:x0+sx] = ker
    return irfft2(rfft2(im)*rfft2(fftshift(big_ker)))
开发者ID:ndaniyar,项目名称:aphot,代码行数:9,代码来源:common.py



注:本文中的numpy.fft.irfft2函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python fft.irfftn函数代码示例发布时间:2022-05-27
下一篇:
Python fft.irfft函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap