本文整理汇总了Python中numpy.fft.rfftfreq函数的典型用法代码示例。如果您正苦于以下问题:Python rfftfreq函数的具体用法?Python rfftfreq怎么用?Python rfftfreq使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了rfftfreq函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: Resample
def Resample(S, ns, nr, p, rate):
w_s = rfftfreq(ns, 1.0/rate)
d_s = 1.*rate / ns
w_r = rfftfreq(nr, 1.0/rate)
d_r = 1.*rate / nr
i_wfloor = (np.floor(w_r[1:]/p / d_s) - 1).astype(np.int)
i_wceil = (np.ceil(w_r[1:]/p / d_s) - 1).astype(np.int)
w_floor = w_s[1+i_wfloor]
w_ceil = w_s[1+i_wceil]
a_floor0, a_ceil0 = (w_r[1:]/p - w_floor), (w_ceil - w_r[1:]/p)
# Some freqs may be exact matches, e.g. if nr == 2*ns, every other one.
exact = (a_floor0 == 0.0) & (a_ceil0 == 0.0)
# Ignore the DC Component and any exact matches in the interpolation.
R = np.hstack((np.array([S[0]]), np.zeros(w_r.size-1)))
R[1:][exact] = S[1+i_wfloor[exact]]
# The rest: interpolate mag/phase from the nearest sampled frequencies.
absS, angS = np.abs(S[1:]), np.angle(S[1:])
intrp = ~exact
# Basic floor/ceil linear interpolation ...
i_fl, i_cl = i_wfloor[intrp], i_wceil[intrp]
afl0, acl0 = a_floor0[intrp], a_ceil0[intrp]
afl = 1.0 - afl0 / (afl0 + acl0)
acl = 1.0 - acl0 / (afl0 + acl0)
absR = afl * absS[i_fl] + acl * absS[i_cl]
angR = afl * angS[i_fl] + acl * angS[i_cl]
R[1:][intrp] = absR * np.exp(1j * angR)
assert R.size == w_r.size, (R.size, w_r.size, S.size, ns, nr)
return R
开发者ID:sharkinyourcomputer,项目名称:agui,代码行数:29,代码来源:stft.py
示例2: test_definition
def test_definition(self):
x = [0, 1, 2, 3, 4]
assert_array_almost_equal(9*fft.rfftfreq(9), x)
assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
x = [0, 1, 2, 3, 4, 5]
assert_array_almost_equal(10*fft.rfftfreq(10), x)
assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
开发者ID:AlerzDev,项目名称:Brazo-Proyecto-Final,代码行数:7,代码来源:test_helper.py
示例3: dfmap_fft
def dfmap_fft(df, indep_var='Time'):
if df is not None:
df = df
new_df = {}
n = len(df[indep_var])
a, b = df[indep_var][0], df[indep_var][n-1]
for key in df:
if key == indep_var:
continue
new_df[key] = rfft(df[key])
new_df[key] = list(map(np.absolute, new_df[key]))
new_df[key] = list(map(lambda x: 2*x/n, new_df[key]))
# avg time between samples
# assumes uniform sampling
dt = (b-a) / n
#dt = (b-a).total_seconds() / n
# get list of frequencies from the fft
# new_df['Freq'] = fftfreq(len(self.df[key]), dt)
new_df['Freq'] = rfftfreq(n, dt)
#
new_df = pandas.DataFrame.from_dict(new_df)#.sort_values('Freq')
#new_df = new_df[abs(new_df.Freq) > 0.4]
return new_df
开发者ID:larndoc,项目名称:icu-simulator,代码行数:27,代码来源:jmag_bokeh_if.py
示例4: create_output_signal
def create_output_signal(self, freq=1000, level=-3, sig_type='sine'):
'''Creates the array for global out_sig.
Should eventually handle multiple signal types.
Currently this only builds sine waves that are periodic
in our buffer size. It finds the closest frequency to the
specified frequency.
takes inputs:
freq: frequency in Hz.
level: signal level in dB.
sig_type: Currently only supports sine waves.
'''
if self.out_enable:
retoggle = True
self.toggle_out()
else:
retoggle = False
freq_array = fft.rfftfreq(n=self.args.buff_size,
d=(1 / self.args.sample_rate))
mag_array = np.zeros_like(freq_array)
closest_freq_index = np.searchsorted(freq_array, freq)
mag_array[closest_freq_index] = ((10 ** (level / 20)
* self.args.buff_size / 2))
self.out_sig = np.fft.irfft(a=mag_array, n=self.args.buff_size)
if retoggle:
self.toggle_out()
return (freq_array[closest_freq_index], level, sig_type)
开发者ID:ABillBlakely,项目名称:fft-analyzer,代码行数:30,代码来源:fft_analyzer.py
示例5: bandpass_gaussian
def bandpass_gaussian(data, dt, period, alpha):
"""
Bandpassing real data (in array *data*) with a Gaussian
filter centered at *period* whose width is controlled
by *alpha*:
exp[-alpha * ((f-f0)/f0)**2],
with f the frequency and f0 = 1 / *period*.
*dt* is the sampling interval of the data.
@type data: L{numpy.ndarray}
@type dt: float
@type period: float
@type alpha: float
@rtype: L{numpy.ndarray}
"""
# Fourier transform
fft_data = rfft(data)
# aray of frequencies
freq = rfftfreq(len(data), d=dt)
# bandpassing data
f0 = 1.0 / period
fft_data *= np.exp(-alpha * ((freq - f0) / f0) ** 2)
# back to time domain
return irfft(fft_data, n=len(data))
开发者ID:iceseismic,项目名称:SeisSuite,代码行数:28,代码来源:psutils.py
示例6: decompose
def decompose(self,l_edges,keep_fourier=False):
"""
Decomposes the shear map into its E and B modes components and returns the respective power spectral densities at the specified multipole moments
:param l_edges: Multipole bin edges
:type l_edges: array
:param keep_fourier: If set to True, holds the Fourier transforms of the E and B mode maps into the E and B attributes of the ShearMap instance
:type keep_fourier: bool.
:returns: :returns: tuple -- (l -- array,P_EE,P_BB,P_EB -- arrays) = (multipole moments, EE,BB power spectra and EB cross power)
>>> test_map = ShearMap.load("shear.fit",format=load_fits_default_shear)
>>> l_edges = np.arange(300.0,5000.0,200.0)
>>> l,EE,BB,EB = test_map.decompose(l_edges)
"""
#Perform Fourier transforms
ft_data1 = rfft2(self.data[0])
ft_data2 = rfft2(self.data[1])
#Compute frequencies
lx = rfftfreq(ft_data1.shape[0])
ly = fftfreq(ft_data1.shape[0])
#Safety check
assert len(lx)==ft_data1.shape[1]
assert len(ly)==ft_data1.shape[0]
#Compute sines and cosines of rotation angles
l_squared = lx[np.newaxis,:]**2 + ly[:,np.newaxis]**2
l_squared[0,0] = 1.0
sin_2_phi = 2.0 * lx[np.newaxis,:] * ly[:,np.newaxis] / l_squared
cos_2_phi = (lx[np.newaxis,:]**2 - ly[:,np.newaxis]**2) / l_squared
#Compute E and B components
ft_E = cos_2_phi * ft_data1 + sin_2_phi * ft_data2
ft_B = -1.0 * sin_2_phi * ft_data1 + cos_2_phi * ft_data2
ft_E[0,0] = 0.0
ft_B[0,0] = 0.0
assert ft_E.shape == ft_B.shape
assert ft_E.shape == ft_data1.shape
#Compute and return power spectra
l = 0.5*(l_edges[:-1] + l_edges[1:])
P_EE = _topology.rfft2_azimuthal(ft_E,ft_E,self.side_angle.to(deg).value,l_edges)
P_BB = _topology.rfft2_azimuthal(ft_B,ft_B,self.side_angle.to(deg).value,l_edges)
P_EB = _topology.rfft2_azimuthal(ft_E,ft_B,self.side_angle.to(deg).value,l_edges)
if keep_fourier:
self.fourier_E = ft_E
self.fourier_B = ft_B
return l,P_EE,P_BB,P_EB
开发者ID:TheisEizo,项目名称:LensTools,代码行数:59,代码来源:shear.py
示例7: freqz_fos
def freqz_fos(b, a, order, nfft, plotfun=None):
impulse = _create_impulse(nfft)
response, states = fosfilter(b, a, order, impulse)
freqresponse = rfft(np.real(response))
frequencies = rfftfreq(nfft)
if plotfun:
plotfun(frequencies, freqresponse)
return freqresponse, frequencies, response
开发者ID:HuaxingXu,项目名称:pyfilterbank,代码行数:8,代码来源:gammatone.py
示例8: fourier_analysis
def fourier_analysis(data, ptree=None):
time = data['time']
current = data['current']
voltage = data['voltage']
# inspect data
n = len(time) # normalization factor for fft
assert len(current) == n
assert len(voltage) == n
d = time[1] - time[0] # inverse of the sampling rate
# check sampling spacing is the same everywhere
for i in range(n - 1):
assert isclose(time[i + 1] - time[i], d, atol=1e-10, rtol=1e-10)
# truncate signals
if ptree:
steps_per_cycle = ptree.get_int('steps_per_cycle')
cycles = ptree.get_int('cycles')
ignore_cycles = ptree.get_int('ignore_cycles')
assert cycles > ignore_cycles
assert n == cycles * steps_per_cycle
time = time[ignore_cycles * steps_per_cycle:]
current = current[ignore_cycles * steps_per_cycle:]
voltage = voltage[ignore_cycles * steps_per_cycle:]
else:
time = time[int(n / 2):]
current = current[int(n / 2):]
voltage = voltage[int(n / 2):]
n = len(time)
assert len(current) == n
assert len(voltage) == n
if not _is_power_of_two(n):
warn(
"(cycles-ignore_cycles)*steps_per_cycles is not a "
"power of 2 (most efficient for the fourier analysis)",
RuntimeWarning)
# perform the actual fourrier analaysis
fft_current = fft.rfft(current) / n
fft_voltage = fft.rfft(voltage) / n
fft_frequency = fft.rfftfreq(n, d)
# find the excited harmonics
if ptree:
harmonics = array(ptree.get_array_int('harmonics'))
peak_indices = harmonics * (cycles - ignore_cycles)
else:
mx, mn = peakdet(absolute(fft_voltage), mean(absolute(fft_current)))
peak_indices = int(mx[:, 0])
mx, mn = peakdet(absolute(fft_voltage), mean(absolute(fft_current)))
assert peak_indices == mx[:, 0]
frequency = fft_frequency[peak_indices]
impedance = fft_voltage[peak_indices] / fft_current[peak_indices]
return [frequency, impedance]
开发者ID:ORNL-CEES,项目名称:Cap,代码行数:58,代码来源:impedance_spectroscopy.py
示例9: fromEBmodes
def fromEBmodes(cls,fourier_E,fourier_B,angle=3.14*deg):
"""
This class method allows to build a shear map specifying its E and B mode components
:param fourier_E: E mode of the shear map in fourier space
:type fourier_E: numpy 2D array, must be of type np.complex128 and must have a shape that is appropriate for a real fourier transform, i.e. (N,N/2 + 1); N should be a power of 2
:param fourier_B: B mode of the shear map in fourier space
:type fourier_B: numpy 2D array, must be of type np.complex128 and must have a shape that is appropriate for a real fourier transform, i.e. (N,N/2 + 1); N should be a power of 2
:param angle: Side angle of the real space map in degrees
:type angle: float.
:returns: the corresponding ShearMap instance
:raises: AssertionErrors for inappropriate inputs
"""
assert fourier_E.dtype == np.complex128 and fourier_B.dtype == np.complex128
assert fourier_E.shape[1] == fourier_E.shape[0]/2 + 1
assert fourier_B.shape[1] == fourier_B.shape[0]/2 + 1
assert fourier_E.shape == fourier_B.shape
#Compute frequencies
lx = rfftfreq(fourier_E.shape[0])
ly = fftfreq(fourier_E.shape[0])
#Safety check
assert len(lx)==fourier_E.shape[1]
assert len(ly)==fourier_E.shape[0]
#Compute sines and cosines of rotation angles
l_squared = lx[np.newaxis,:]**2 + ly[:,np.newaxis]**2
l_squared[0,0] = 1.0
sin_2_phi = 2.0 * lx[np.newaxis,:] * ly[:,np.newaxis] / l_squared
cos_2_phi = (lx[np.newaxis,:]**2 - ly[:,np.newaxis]**2) / l_squared
sin_2_phi[0,0] = 0.0
cos_2_phi[0,0] = 0.0
#Invert E/B modes and find the components of the shear
ft_data1 = cos_2_phi * fourier_E - sin_2_phi * fourier_B
ft_data2 = sin_2_phi * fourier_E + cos_2_phi * fourier_B
#Invert Fourier transforms
data1 = irfft2(ft_data1)
data2 = irfft2(ft_data2)
#Instantiate new shear map class
new = cls(np.array([data1,data2]),angle)
setattr(new,"fourier_E",fourier_E)
setattr(new,"fourier_B",fourier_B)
return new
开发者ID:TheisEizo,项目名称:LensTools,代码行数:57,代码来源:shear.py
示例10: main
def main(input_val):
currency_pairs = ["BTC_USD_", "LTC_USD_", "LTC_BTC_", "DRK_BTC_",
"DOGE_BTC_", "DRK_LTC_", "DOGE_LTC_"]
file_list_uber = []
for pair in currency_pairs:
file_list_uber.append(pair + "full_ubersampled.csv")
for file in file_list_uber:
uber_csv = open(file, 'r')
csv_read = csv.DictReader(uber_csv, delimiter=',',
quoting=csv.QUOTE_NONNUMERIC)
csv_list = []
for row in csv_read:
csv_list.append({'price':float(row['price']),
'tmsp':int(row['tmsp'])})
first_tmsp = int(csv_list[0]['tmsp'])
last_tmsp = int(csv_list[-1]['tmsp'])
delta_tmsp = int(last_tmsp - first_tmsp)
uber_len = len(csv_list)
uber_price_array = np.zeros(uber_len, dtype='float')
for i in range(0,uber_len,1):
uber_price_array[i] = csv_list[i]['price']
uber_fft = fft.rfft(uber_price_array)
uber_fft_imag = np.imag(uber_fft)
uber_fft_real = np.real(uber_fft)
uber_fft_mag = np.sqrt((uber_fft_real * uber_fft_real) +
(uber_fft_imag * uber_fft_imag))
uber_fft_bins = fft.rfftfreq(uber_len, d=100)
uber_csv.close()
field_names = ['freq_bin', 'magnitude']
fft_csv_name = file[0:-4] + "_fft.csv"
fft_csv = open(fft_csv_name, 'w', newline = '')
csvwriter = csv.DictWriter(fft_csv, delimiter=',',fieldnames=field_names,
quoting=csv.QUOTE_NONNUMERIC)
csvwriter.writeheader()
#csvwriter.writerows(full_conditioned)
for i in range(0,len(uber_fft_real),1):
dict_d = {'freq_bin':uber_fft_bins[i],
'magnitude':uber_fft_mag[i]}
csvwriter.writerow(dict_d)
fft_csv.close()
开发者ID:psoll001,项目名称:phys177,代码行数:55,代码来源:upsample_fft_full.py
示例11: freq_analyze
def freq_analyze(data, noise, dt):
plt.figure()
plt.plot(data)
plt.title('data to analyze')
plt.figure()
plt.title('noise to analyze')
plt.plot(noise)
data_FFT=rfft(data)
data_freqs=rfftfreq(len(data), dt)
noise_FFT=rfft(noise)
noise_freqs=rfftfreq(len(noise), dt)
plt.figure()
plt.plot(data_freqs, data_FFT, label='data FFT')
plt.plot(noise_freqs, noise_FFT, label='noise FFT')
plt.title('FFT of noise and data')
plt.yscale('log')
plt.show()
开发者ID:EdwardBetts,项目名称:iclrt_tools,代码行数:20,代码来源:filters.py
示例12: getSTFT
def getSTFT(signal, sample_spacing=1, slidingWindowSize=20, stepSize=10) :
"""
Get short-time fourier transform with slidingWindowSize=20 (number of sample in window) and stepSize=10 (number of samle to sample from window to another)
"""
segmentedSignal=segmentSignal(signal,slidingWindowSize,stepSize)
segmentedSignalSTFT=[]
for segment in segmentedSignal : segmentedSignalSTFT.append(rfft(segment))
spectrogram=np.array(segmentedSignalSTFT)
t=np.array([stepSize*i for i in xrange(len(segmentedSignal))])
f=np.array(rfftfreq(slidingWindowSize,d=sample_spacing))
return t,f,spectrogram
开发者ID:BelfodilAimene,项目名称:PDC4-Kaggle_Axa,代码行数:11,代码来源:Utils.py
示例13: __init__
def __init__(self, args):
self.args = args
# Determine the frequencies the dfft calculates at.
self.freq = fft.rfftfreq(n=args.fft_size,
d=(1 / args.sample_rate))
# Setup the display:
self.fig = plt.figure()
self.ax = plt.axes(xlim=args.xlims, ylim=args.ylims)
self.ax.set_xscale('log', basex=10)
self.line, = self.ax.plot([], [])
plt.ion()
开发者ID:ABillBlakely,项目名称:fft-analyzer,代码行数:11,代码来源:fft_analyzer.py
示例14: __init__
def __init__(self, **kwargs):
super(SpectralFrameWidget, self).__init__()
# default parameters if not specified
for name, val in self.defaults.items():
setattr(self, name, kwargs.get(name, val))
self.setLabel('left', 'Amplitude', units='dB')
self.setLabel('bottom', text='Frequency', units='kHz')
self.getPlotItem().setRange(yRange=[-50, 40])
self.spectrum_curve = self.plot([])
self.freqs = rfftfreq(self.nfft) * self.fs / 1000.0
self.frame_size = get_frame_size(self.fs, self.frame_size_ms)
self.window = np.hamming(self.frame_size)
开发者ID:aagnone3,项目名称:audio_analysis,代码行数:14,代码来源:widgets.py
示例15: simpleSpecs
def simpleSpecs(t, sig, amponly=False):
'''
Creates simple amplitude and phase spectrums of real functions using numpy.fft; phase is in degrees
:param t: time (1D numpy array)
:param sig: signal (1D numpy array)
:param amponly: outputs only the amplitude spectrum (bool)
:return: frequency (1D numpy array), A(f), phi(f)
'''
n = sig.size
fouSig = fft.rfft(sig) / n # DFT of the signal normalized
sample_int = t[n-1] - t[n-2] # sample interval
fouFrq = fft.rfftfreq(n, d=sample_int)
fouAmp = sqrt(real(fouSig)**2 + imag(fouSig)**2)
fouPhi = angle(fouSig, deg=True)
if amponly is True:
return fouFrq, fouAmp
else:
return fouFrq, fouAmp, fouPhi
开发者ID:threecubed,项目名称:simpleUIs,代码行数:18,代码来源:simpleSpectrums.py
示例16: init_plot
def init_plot(self):
x = fft.rfftfreq(self.CHUNK_SIZE)*self.SAMPLE_RATE
x_max = x[-1]
self.init_y = linspace(0, x_max, len(x))
y = self.init_y
source = ColumnDataSource(data=dict(x=x, y=y))
# TODO: range and size (toolbar), maybe could be user settings
plot = Figure(plot_height=400, plot_width=800, title="freq anal",
tools="crosshair,pan,reset,resize,save,wheel_zoom",
x_range=[0, x_max], y_range=[0, 15])
rad = x_max/float(len(x))
data = plot.circle('x', 'y', source=source, line_color=None, radius=rad)
self.data_source = data.data_source
# TODO: maybe not the best place
curdoc().add_root(plot)
开发者ID:ricsirke,项目名称:SoundFreqPlotter,代码行数:18,代码来源:ui.py
示例17: testResample
def testResample():
s, rate = ReadAndConvert(os.path.join('testdata', 'foo_s80_p95.wav'))
s = scipy.signal.resample(s, 4*len(s))
rate = 4*rate
ConvertAndWrite(s, rate, os.path.join('testout', 'foo_resampled.wav'))
s = s[0 : 15*2048]
nfft, nskip = 1024, 512
Sws = STFT(s, nfft, nskip)
nrfft, nrskip = 4096, 2048
target_pitch = 880. #440.0 * 2 ** (7.0 / 12)
Rws = []
for nw, Sw in enumerate(Sws):
freqs = rfftfreq(nfft, 1.0/rate)
epitch = EstimatePitch(Sw, rate)
if epitch == 0.0:
p = 1
else:
p = target_pitch / epitch
print '%d: epitch=%f p=%f' % (nw, epitch, p)
PlotPitches(np.abs(Sw), rate, name='testResampleFrame%dInMag' % nw,
title='Spectrum of input frame %d (%f)' % (nw, epitch))
PlotPitches(np.angle(Sw), rate, name='testResampleFrame%dInPhase' % nw,
title='Phase of input frame %d' % nw)
Rw = Resample(Sw, nfft, nrfft, p, rate)
Rws.append(Rw)
erpitch = EstimatePitch(Rw, rate)
PlotPitches(np.abs(Rw), rate, name='testResampleFrame%dOutMag' % nw,
title='Spectrum of output frame %d (%f)' % (nw, erpitch))
PlotPitches(np.angle(Rw), rate, name='testResampleFrame%dOutPhase' % nw,
title='Phase of output frame %d' % nw)
r = STIFT(Rws, nrfft, nrskip)
r = scipy.signal.resample(r, int(np.floor(r.size/2)))
rate = rate/2
ConvertAndWrite(
r, rate,
os.path.join('testout', 'testResample.wav'))
开发者ID:sharkinyourcomputer,项目名称:agui,代码行数:43,代码来源:stft.py
示例18: real_to_fourier
def real_to_fourier(f, x, y, z):
# Check that real-space grid spacing is all equal
if not (_is_evenly_spaced(x) and _is_evenly_spaced(y) and _is_evenly_spaced(z)):
raise ValueError('Sample points in real space are not evenly spaced.')
dx = x[1]-x[0] # Grid spacing
dy = y[1]-y[0]
dz = z[1]-z[0]
ftrans = ft.rfftn(f)
# Wavenumber arrays
kx = 2*np.pi * ft.fftfreq(x.size, d=dx)
ky = 2*np.pi * ft.fftfreq(y.size, d=dy)
kz = 2*np.pi * ft.rfftfreq(z.size, d=dz) # Only last axis is halved in length when using numpy.fft.rfftn()
# Normalize (convert DFT to continuous FT)
ftrans *= dx*dy*dz
return ftrans, kx, ky, kz
开发者ID:tonyyli,项目名称:imapper2,代码行数:19,代码来源:kspace.py
示例19: PlotPSD
def PlotPSD(self):
colors = ['r']
dt = self.Dt
Ry = self.measurements[0][0]
mean = np.average(Ry)
val = np.array( [v - mean for v in Ry] )
freq = fft.rfftfreq(len(val), dt)
tr = fft.rfft(val)
tr_vect = [np.real(i) for i in tr]
psd = [(np.real(i)**2 + np.imag(i)**2)**0.5 for i in tr]
plt.clf()
plt.figure("psd")
plt.plot(freq[1:],tr_vect[1:],colors[0])
plt.xlim(0, 10.0)
plt.xlabel(r"$Frequency \, (Hz)$")
plt.ylabel(r"$PSD$")
plt.savefig("psd.eps")
开发者ID:KratosCSIC,项目名称:trunk,代码行数:19,代码来源:analytics.py
示例20: fft
def fft(self, nfft=None):
"""Compute the one-dimensional discrete Fourier transform of
this `TimeSeries`.
Parameters
----------
nfft : `int`, optional
length of the desired Fourier transform.
Input will be cropped or padded to match the desired length.
If nfft is not given, the length of the `TimeSeries`
will be used
Returns
-------
out : :class:`~gwpy.spectrum.Spectrum`
the normalised, complex-valued FFT `Spectrum`.
See Also
--------
:mod:`scipy.fftpack` for the definition of the DFT and conventions
used.
Notes
-----
This method, in constrast to the :meth:`numpy.fft.rfft` method
it calls, applies the necessary normalisation such that the
amplitude of the output :class:`~gwpy.spectrum.Spectrum` is
correct.
"""
from ..spectrum import Spectrum
if nfft is None:
nfft = self.size
dft = npfft.rfft(self.value, n=nfft) / nfft
dft[1:] *= 2.0
new = Spectrum(dft, epoch=self.epoch, channel=self.channel,
unit=self.unit)
new.frequencies = npfft.rfftfreq(self.size, d=self.dx.value)
return new
开发者ID:WanduiAlbert,项目名称:gwpy,代码行数:38,代码来源:timeseries.py
注:本文中的numpy.fft.rfftfreq函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论