本文整理汇总了Python中numpy.lib.format.open_memmap函数的典型用法代码示例。如果您正苦于以下问题:Python open_memmap函数的具体用法?Python open_memmap怎么用?Python open_memmap使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了open_memmap函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_memmap_roundtrip
def test_memmap_roundtrip():
# Fixme: test crashes nose on windows.
if not (sys.platform == 'win32' or sys.platform == 'cygwin'):
for arr in basic_arrays + record_arrays:
if arr.dtype.hasobject:
# Skip these since they can't be mmap'ed.
continue
# Write it out normally and through mmap.
nfn = os.path.join(tempdir, 'normal.npy')
mfn = os.path.join(tempdir, 'memmap.npy')
fp = open(nfn, 'wb')
try:
format.write_array(fp, arr)
finally:
fp.close()
fortran_order = (
arr.flags.f_contiguous and not arr.flags.c_contiguous)
ma = format.open_memmap(mfn, mode='w+', dtype=arr.dtype,
shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
# Check that both of these files' contents are the same.
fp = open(nfn, 'rb')
normal_bytes = fp.read()
fp.close()
fp = open(mfn, 'rb')
memmap_bytes = fp.read()
fp.close()
yield assert_equal_, normal_bytes, memmap_bytes
# Check that reading the file using memmap works.
ma = format.open_memmap(nfn, mode='r')
del ma
开发者ID:dyao-vu,项目名称:meta-core,代码行数:35,代码来源:test_format.py
示例2: test_memmap_roundtrip
def test_memmap_roundtrip():
# XXX: test crashes nose on windows. Fix this
if not (sys.platform == "win32" or sys.platform == "cygwin"):
for arr in basic_arrays + record_arrays:
if arr.dtype.hasobject:
# Skip these since they can't be mmap'ed.
continue
# Write it out normally and through mmap.
nfn = os.path.join(tempdir, "normal.npy")
mfn = os.path.join(tempdir, "memmap.npy")
fp = open(nfn, "wb")
try:
format.write_array(fp, arr)
finally:
fp.close()
fortran_order = arr.flags.f_contiguous and not arr.flags.c_contiguous
ma = format.open_memmap(mfn, mode="w+", dtype=arr.dtype, shape=arr.shape, fortran_order=fortran_order)
ma[...] = arr
del ma
# Check that both of these files' contents are the same.
fp = open(nfn, "rb")
normal_bytes = fp.read()
fp.close()
fp = open(mfn, "rb")
memmap_bytes = fp.read()
fp.close()
yield assert_equal, normal_bytes, memmap_bytes
# Check that reading the file using memmap works.
ma = format.open_memmap(nfn, mode="r")
# yield assert_array_equal, ma, arr
del ma
开发者ID:rlamy,项目名称:numpy,代码行数:34,代码来源:test_format.py
示例3: test_version_2_0_memmap
def test_version_2_0_memmap():
# requires more than 2 byte for header
dt = [(("%d" % i) * 100, float) for i in range(500)]
d = np.ones(1000, dtype=dt)
tf = tempfile.mktemp('', 'mmap', dir=tempdir)
# 1.0 requested but data cannot be saved this way
assert_raises(ValueError, format.open_memmap, tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=(1, 0))
ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=(2, 0))
ma[...] = d
del ma
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', UserWarning)
ma = format.open_memmap(tf, mode='w+', dtype=d.dtype,
shape=d.shape, version=None)
assert_(w[0].category is UserWarning)
ma[...] = d
del ma
ma = format.open_memmap(tf, mode='r')
assert_array_equal(ma, d)
开发者ID:dyao-vu,项目名称:meta-core,代码行数:25,代码来源:test_format.py
示例4: gendata
def gendata(
data_path,
label_path,
data_out_path,
label_out_path,
num_person_in=5, #observe the first 5 persons
num_person_out=2, #then choose 2 persons with the highest score
max_frame=300):
feeder = Feeder_kinetics(
data_path=data_path,
label_path=label_path,
num_person_in=num_person_in,
num_person_out=num_person_out,
window_size=max_frame)
sample_name = feeder.sample_name
sample_label = []
fp = open_memmap(
data_out_path,
dtype='float32',
mode='w+',
shape=(len(sample_name), 3, max_frame, 18, num_person_out))
for i, s in enumerate(sample_name):
data, label = feeder[i]
print_toolbar(i * 1.0 / len(sample_name),
'({:>5}/{:<5}) Processing data: '.format(
i + 1, len(sample_name)))
fp[i, :, 0:data.shape[1], :, :] = data
sample_label.append(label)
with open(label_out_path, 'wb') as f:
pickle.dump((sample_name, list(sample_label)), f)
开发者ID:tangxiaohuihui,项目名称:st-gcn,代码行数:35,代码来源:kinetics_gendata.py
示例5: dump_electrode_data_circus
def dump_electrode_data_circus(self, filename, chunks=1e9):
self.load_mcs_data()
itemsize = np.array([0.0], dtype=np.float32).nbytes
data = self.electrodes_data
n = len(next(iter(data.values()))) # num samples per channel
n_items = int(chunks // itemsize) # num chunked samples per chan
total_n = sum(len(value) for value in data.values()) # num bytes total
pbar = tqdm(
total=total_n * itemsize, file=sys.stdout, unit_scale=1,
unit='bytes')
mmap_array = open_memmap(
filename, mode='w+', dtype=np.float32, shape=(n, len(data)))
names = sorted(data.keys(), key=lambda x: (x[0], int(x[1:])))
for k, name in enumerate(names):
value = data[name]
offset, scale = self.get_electrode_offset_scale(name)
i = 0
n = len(value)
while i * n_items < n:
items = np.array(
value[i * n_items:min((i + 1) * n_items, n)])
mmap_array[i * n_items:i * n_items + len(items), k] = \
(items - offset) * scale
pbar.update(len(items) * itemsize)
i += 1
pbar.close()
print('Channel order in "{}" is: {}'.format(filename, names))
开发者ID:matham,项目名称:Ceed,代码行数:30,代码来源:__init__.py
示例6: setUp
def setUp(self):
self.data = sp.arange(80).reshape((2, 8, 5))
self.memmap_data = npfor.open_memmap('temp.npy', mode='w+',
shape=(2, 8, 5))
self.memmap_data[:, :, :] = sp.arange(80).reshape(2, 8, 5)
开发者ID:eric-switzer,项目名称:algebra_base,代码行数:7,代码来源:test_algebra.py
示例7: _get_numpy_binary_array
def _get_numpy_binary_array(self, name):
"""Return the an memmap object as represented by the .npy file"""
filename = self._array_files.get(name)
if filename is not None:
return open_memmap(filename)
else:
return None
开发者ID:dynaryu,项目名称:eqrm,代码行数:7,代码来源:file_store.py
示例8: gendata
def gendata(data_path,
out_path,
ignored_sample_path=None,
benchmark='xview',
part='eval'):
if ignored_sample_path != None:
with open(ignored_sample_path, 'r') as f:
ignored_samples = [
line.strip() + '.skeleton' for line in f.readlines()
]
else:
ignored_samples = []
sample_name = []
sample_label = []
for filename in os.listdir(data_path):
if filename in ignored_samples:
continue
action_class = int(
filename[filename.find('A') + 1:filename.find('A') + 4])
subject_id = int(
filename[filename.find('P') + 1:filename.find('P') + 4])
camera_id = int(
filename[filename.find('C') + 1:filename.find('C') + 4])
if benchmark == 'xview':
istraining = (camera_id in training_cameras)
elif benchmark == 'xsub':
istraining = (subject_id in training_subjects)
else:
raise ValueError()
if part == 'train':
issample = istraining
elif part == 'val':
issample = not (istraining)
else:
raise ValueError()
if issample:
sample_name.append(filename)
sample_label.append(action_class - 1)
with open('{}/{}_label.pkl'.format(out_path, part), 'wb') as f:
pickle.dump((sample_name, list(sample_label)), f)
# np.save('{}/{}_label.npy'.format(out_path, part), sample_label)
fp = open_memmap(
'{}/{}_data.npy'.format(out_path, part),
dtype='float32',
mode='w+',
shape=(len(sample_label), 3, max_frame, num_joint, max_body))
for i, s in enumerate(sample_name):
print_toolbar(i * 1.0 / len(sample_label),
'({:>5}/{:<5}) Processing {:>5}-{:<5} data: '.format(
i + 1, len(sample_name), benchmark, part))
data = read_xyz(
os.path.join(data_path, s), max_body=max_body, num_joint=num_joint)
fp[i, :, 0:data.shape[1], :, :] = data
end_toolbar()
开发者ID:tangxiaohuihui,项目名称:st-gcn,代码行数:60,代码来源:ntu_gendata.py
示例9: crop
def crop(self, item, focus, mode='loose', fixed=None, return_data=True):
"""Faster version of precomputed(item).crop(...)"""
memmap = open_memmap(self.get_path(item), mode='r')
swf = SlidingWindowFeature(memmap, self.sliding_window_)
result = swf.crop(focus, mode=mode, fixed=fixed,
return_data=return_data)
del memmap
return result
开发者ID:instinct2k18,项目名称:pyannote-audio,代码行数:8,代码来源:utils.py
示例10: open_memmap
def open_memmap(filename, mode='r+', dtype=None, shape=None,
fortran_order=False, version=(1, 0), metafile=None):
"""Open a file and memory map it to an InfoMemmap object.
This is similar to the numpy.lib.format.openmemmap() function but also
deals with the meta data dictionary, which is read and written from a
meta data file.
The only extra argument over the numpy version is the meta data file name
`metafile`.
Parameters
----------
metafile: str
File name for which the `info` attribute of the returned InfoMemmap
will be read from and written to. Default is None, where the it is
assumed to be `filename` + ".meta".
Returns
-------
marray: InfoMemmap
The `info` is intialized as an empty dictionary if `mode` is 'w' or if
the file corresponding to `metafile` does not exist. The `metafile`
attribute of marray is set to the `metafile` parameter unless `mode` is
'r' or 'c' in which case it is set to None.
"""
# Restrict to version (1,0) because we've only written write_header for
# this version.
if version != (1, 0):
raise ValueError("Only version (1,0) is safe from this function.")
# Memory map the data part.
marray = npfor.open_memmap(filename, mode, dtype, shape, fortran_order,
version)
# Get the file name for the meta data.
if metafile is None:
metafile = filename + '.meta'
# Read the meta data if need be.
if ('r' in mode or mode is 'c') and os.path.isfile(metafile):
info_fid = open(metafile, 'r')
try:
infostring = info_fid.readline()
finally:
info_fid.close()
info = safe_eval(infostring)
else:
info = {}
# In read mode don't pass a metafile to protect the meta data.
if mode is 'r' or mode is 'c':
metafile = None
marray = info_header.InfoMemmap(marray, info, metafile)
return marray
开发者ID:eric-switzer,项目名称:algebra_base,代码行数:58,代码来源:file_io.py
示例11: create_empty
def create_empty(self, file_path=None, entries=1, field_names=None, data_types=None, memory_mode=False):
"""
:param file_path: Optional. Full path for the output data file. If *memory_false* is 'false' and path is missing,
then the file is created in the temp folder
:param entries: Number of records in the dataset. Default is 1
:param field_names: List of field names for this dataset. If no list is provided, the field 'data' will be created
:param data_types: List of data types for the dataset. Types need to be NumPy data types (e.g. np.int16,
np.float64). If no list of types are provided, type will be *np.float64*
:param memory_mode: If true, dataset will be kept in memory. If false, the dataset will be a memory-mapped numpy array
:return: # nothing. Associates a dataset with the AequilibraEData object
"""
if file_path is not None or memory_mode:
if field_names is None:
field_names = ['data']
if data_types is None:
data_types = [np.float64] * len(field_names)
self.file_path = file_path
self.entries = entries
self.fields = field_names
self.data_types = data_types
self.aeq_index_type = np.uint64
if memory_mode:
self.memory_mode = MEMORY
else:
self.memory_mode = DISK
if self.file_path is None:
self.file_path = self.random_name()
# Consistency checks
if not isinstance(self.fields, list):
raise ValueError('Titles for fields, "field_names", needs to be a list')
if not isinstance(self.data_types, list):
raise ValueError('Data types, "data_types", needs to be a list')
# The check below is not working properly with the QGIS importer
# else:
# for dt in self.data_types:
# if not isinstance(dt, type):
# raise ValueError('Data types need to be Python or Numpy data types')
for field in self.fields:
if field in object.__dict__:
raise Exception(field + ' is a reserved name. You cannot use it as a field name')
self.num_fields = len(self.fields)
dtype = [('index', self.aeq_index_type)]
dtype.extend([(self.fields[i], self.data_types[i]) for i in range(self.num_fields)])
# the file
if self.memory_mode:
self.data = np.recarray((self.entries,), dtype=dtype)
else:
self.data = open_memmap(self.file_path, mode='w+', dtype=dtype, shape=(self.entries,))
开发者ID:AequilibraE,项目名称:AequilibraE,代码行数:58,代码来源:aequilibrae_data.py
示例12: setUp
def setUp(self) :
data = sp.arange(20)
data.shape = (5,4)
self.mat_arr = algebra.make_mat(data.copy(), axis_names=('ra', 'dec'))
self.vect_arr = algebra.make_vect(data.copy(), axis_names=('ra', 'dec'))
mem = npfor.open_memmap('temp.npy', mode='w+', shape=(5, 4))
mem[:] = data
self.vect_mem = algebra.make_vect(mem)
self.arr = data.copy()
开发者ID:adam-lewis,项目名称:analysis_IM,代码行数:9,代码来源:test_algebra.py
示例13: test_from_memmap
def test_from_memmap(self) :
# Works if constructed from array.
data = npfor.open_memmap('temp.npy', mode='w+', shape=(4,3,3))
data[:] = 5.0
Mat = algebra.info_memmap(data, {'a': 'b'})
Mat.flush()
self.assertEqual(Mat.shape, (4, 3, 3))
self.assertEqual(Mat.info['a'], 'b')
self.assertTrue(sp.allclose(Mat, 5.0))
self.assertTrue(isinstance(Mat, sp.memmap))
del Mat
os.remove('temp.npy')
开发者ID:adam-lewis,项目名称:analysis_IM,代码行数:12,代码来源:test_algebra.py
示例14: test_assert_info
def test_assert_info(self) :
"""Test the assert_info function."""
# info_memaps should pass.
data = npfor.open_memmap('temp.npy', mode='w+', shape=(4,3,3))
data[:] = 5.0
Mat = algebra.info_memmap(data)
algebra.assert_info(Mat)
del Mat
os.remove('temp.npy')
# info_arrays should pass.
data = sp.empty((5, 6, 6))
data[:] = 4.0
Mat = algebra.info_array(data)
algebra.assert_info(Mat)
# arrays should fail.
self.assertRaises(TypeError, algebra.assert_info, data)
开发者ID:adam-lewis,项目名称:analysis_IM,代码行数:16,代码来源:test_algebra.py
示例15: load
def load(self, file_path):
"""
:param file_path: Full file path to the AequilibraEDataset to be loaded
:return: Loads the dataset into the AequilibraEData instance
"""
f = open(file_path)
self.file_path = os.path.realpath(f.name)
f.close()
# Map in memory and load data names plus dimensions
self.data = open_memmap(self.file_path, mode='r+')
self.entries = self.data.shape[0]
self.fields = [x for x in self.data.dtype.fields if x != 'index']
self.num_fields = len(self.fields)
self.data_types = [self.data[x].dtype.type for x in self.fields]
开发者ID:AequilibraE,项目名称:AequilibraE,代码行数:16,代码来源:aequilibrae_data.py
示例16: load_data_matrix
def load_data_matrix(self):
memmap_path = os.path.join(self.bin_dir,self.memmap_name)
if os.path.exists(memmap_path):
print 'loading in '+self.memmap_name
self.raw_data_list = npf.open_memmap(memmap_path,mode='r',dtype='float32')
#self.raw_data_list = np.load(memmap_path)
print 'shape of loaded memmap:'
print self.raw_data_list.shape
self.loaded_warm_start = True
return True
else:
print 'no file of name '+self.memmap_name+' to load.'
print 'aborting memmap load'
return False
开发者ID:spanlab,项目名称:spanprocessor,代码行数:21,代码来源:RegRegPipe.py
示例17: create_data_matrix
def create_data_matrix(self,save_memmap=True,nuke=True):
raw_path = os.path.join(self.bin_dir,self.memmap_name)
if nuke and os.path.exists(raw_path):
os.remove(raw_path)
if save_memmap:
# We need to determine how many nifti files there are in total to
# determine the shape of the memmap:
brainshape = []
for subject in self.reg_subjects:
sub_path = os.path.join(self.top_dir,subject)
for nifti_name in self.reg_nifti_name:
nifti_path = os.path.join(sub_path,nifti_name)
if os.path.exists(nifti_path):
self.total_nifti_files += 1
if not brainshape:
[tempdata,tempaffine,brainshape] = self.__load_nifti(nifti_path)
# Allocate the .npy memmap according to its size:
memmap_shape = (self.total_nifti_files,brainshape[0],brainshape[1],brainshape[2],
brainshape[3])
print 'Determined memmap shape:'
print memmap_shape
print 'Allocating the memmap...'
self.raw_data_list = npf.open_memmap(raw_path,mode='w+',dtype='float32',
shape=memmap_shape)
print 'Succesfully allocated memmap... memmap shape:'
pprint(self.raw_data_list.shape)
nifti_iter = 0
for subject in self.reg_subjects:
sub_path = os.path.join(self.top_dir,subject)
print sub_path
print subject
print os.getcwd()
for nifti_name in self.reg_nifti_name:
nifti_path = os.path.join(sub_path,nifti_name)
pprint(nifti_name)
if os.path.exists(nifti_path):
[idata,affine,ishape] = self.__load_nifti(nifti_path)
pprint(ishape)
if save_memmap:
print 'Appending idata to memmap at: %s' % str(nifti_iter)
self.raw_data_list[nifti_iter] = np.array(idata)
self.subject_trial_indices[nifti_iter] = []
nifti_iter += 1
if self.reg_experiment_trs == False:
self.reg_experiment_trs = len(idata[3])
if self.reg_total_trials == False:
if self.reg_trial_trs:
self.reg_total_trials = self.reg_experiment_trs/self.reg_trial_trs
if self.raw_affine == []:
self.raw_affine = affine
if self.raw_data_shape == []:
self.raw_data_shape = ishape
pprint(ishape)
开发者ID:spanlab,项目名称:spanprocessor,代码行数:71,代码来源:RegRegPipe.py
示例18: msgr
ncores = 8
savename = 'launch-%06d.npy' % (idx,)
outname = 'reduced-%06d.pickle' % (idx,)
msg = msgr()
try:
os.stat(outname)
msg('found result file!')
except:
msg('no result found, proceeding to do reduction')
msg('loading dataset %s' % savename)
import cPickle as cp
from numpy import *
from numpy.linalg import svd
from numpy.lib.format import open_memmap
from multiprocessing import Pool
npy = open_memmap(savename)
npy_ = npy.reshape((-1, 32*npy.shape[1], 192))
pool = Pool(ncores)
svds = pool.map(reducer, range(npy_.shape[0]))
msg('writing data')
with open(outname, 'w') as fd:
cp.dump(svds, fd)
开发者ID:pausz,项目名称:pysdnet,代码行数:29,代码来源:reduction.py
示例19: open_memmap
from numpy.lib.format import open_memmap
n0 = open_memmap('launch-000000.npy')
n1 = open_memmap('launch-000001.npy')
n2 = open_memmap('launch-000002.npy')
n0_cond_ss = n0.reshape((-1, 32, 401, 192))[:, :, 200:].reshape((-1, 32*201, 192))
n1_cond_ss = n1.reshape((-1, 32, 401, 192))[:, :, 200:].reshape((-1, 32*201, 192))
# triple f here
figure(figsize=(15, 12))
ws = l9['dataset'].weights
ds = l9['dataset'].distances
idx = 32*10 + 21
cond = n9.reshape((-1, 32, 401, 96, 2))[idx, :, :]
ts = r_[0 : cond.shape[1]*2.5 : 1j*cond.shape[1]]
cond -= cond.reshape((-1, 192)).mean(axis=0).reshape((1, 1, 96, 2))
trial_svds = [svd(trial[:, :, 0], full_matrices=0) for trial in cond]
cond_svd = svd(cond[:, :, :, 0].reshape((-1, 96)), full_matrices=0)
for i, svdi, trial in zip(range(32), trial_svds, cond):
subplot(335)
x, y, z = svdi[1][:3][:, newaxis]*dot(svdi[2][:3], trial[:, :, 0].T)
plot(x+z/3, y+z/3, 'k-', alpha=0.2)
subplot(336)
x, y, z = svdi[1][:3][:, newaxis]*dot(cond_svd[2][:3], trial[:, :, 0].T)
plot(x+z/3, y+z/3, 'k-', alpha=0.3)
subplot(6,3,13)
hist(concatenate([abs(dot(svd1[2][:3], svd2[2][:3].T)).flat for i, svd1 in enumerate(trial_svds) for j, svd2 in enumerate(trial_svds) if not j==i]), 50)
xlim([0, 1.0])
subplot(3, 3, 4)
开发者ID:pausz,项目名称:pysdnet,代码行数:31,代码来源:big-ipython-log.py
示例20: shape
def shape(self, item):
"""Faster version of precomputed(item).data.shape"""
memmap = open_memmap(self.get_path(item), mode='r')
shape = memmap.shape
del memmap
return shape
开发者ID:instinct2k18,项目名称:pyannote-audio,代码行数:6,代码来源:utils.py
注:本文中的numpy.lib.format.open_memmap函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论