本文整理汇总了Python中numpy.lib.stride_tricks.as_strided函数的典型用法代码示例。如果您正苦于以下问题:Python as_strided函数的具体用法?Python as_strided怎么用?Python as_strided使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了as_strided函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_subclasses
def test_subclasses():
# test that subclass is preserved only if subok=True
a = VerySimpleSubClass([1, 2, 3, 4])
assert_(type(a) is VerySimpleSubClass)
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
assert_(type(a_view) is np.ndarray)
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
assert_(type(a_view) is VerySimpleSubClass)
# test that if a subclass has __array_finalize__, it is used
a = SimpleSubClass([1, 2, 3, 4])
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
assert_(type(a_view) is SimpleSubClass)
assert_(a_view.info == 'simple finalized')
# similar tests for broadcast_arrays
b = np.arange(len(a)).reshape(-1, 1)
a_view, b_view = broadcast_arrays(a, b)
assert_(type(a_view) is np.ndarray)
assert_(type(b_view) is np.ndarray)
assert_(a_view.shape == b_view.shape)
a_view, b_view = broadcast_arrays(a, b, subok=True)
assert_(type(a_view) is SimpleSubClass)
assert_(a_view.info == 'simple finalized')
assert_(type(b_view) is np.ndarray)
assert_(a_view.shape == b_view.shape)
# and for broadcast_to
shape = (2, 4)
a_view = broadcast_to(a, shape)
assert_(type(a_view) is np.ndarray)
assert_(a_view.shape == shape)
a_view = broadcast_to(a, shape, subok=True)
assert_(type(a_view) is SimpleSubClass)
assert_(a_view.info == 'simple finalized')
assert_(a_view.shape == shape)
开发者ID:Arasz,项目名称:numpy,代码行数:35,代码来源:test_stride_tricks.py
示例2: view
def view(A, offset=0):
"""
Get a view on the diagonal elements of a 2D array.
This is actually a view (!) on the diagonal of the array, so you can
in-place adjust the view.
:param :class:`ndarray` A: 2 dimensional numpy array
:param int offset: view offset to give back (negative entries allowed)
:rtype: :class:`ndarray` view of diag(A)
>>> import numpy as np
>>> X = np.arange(9).reshape(3,3)
>>> view(X)
array([0, 4, 8])
>>> d = view(X)
>>> d += 2
>>> view(X)
array([ 2, 6, 10])
>>> view(X, offset=-1)
array([3, 7])
>>> subtract(X, 3, offset=-1)
array([[ 2, 1, 2],
[ 0, 6, 5],
[ 6, 4, 10]])
"""
from numpy.lib.stride_tricks import as_strided
assert A.ndim == 2, "only implemented for 2 dimensions"
assert A.shape[0] == A.shape[1], "attempting to get the view of non-square matrix?!"
if offset > 0:
return as_strided(A[0, offset:], shape=(A.shape[0] - offset, ), strides=((A.shape[0]+1)*A.itemsize, ))
elif offset < 0:
return as_strided(A[-offset:, 0], shape=(A.shape[0] + offset, ), strides=((A.shape[0]+1)*A.itemsize, ))
else:
return as_strided(A, shape=(A.shape[0], ), strides=((A.shape[0]+1)*A.itemsize, ))
开发者ID:Arthurkorn,项目名称:GPy,代码行数:35,代码来源:diag.py
示例3: meshgrid_as_strided
def meshgrid_as_strided(x, y, mask=None):
"""numpy.meshgrid without copying data (using as_strided)"""
if mask is None:
return (as_strided(x, strides=(0, x.strides[0]), shape=(y.size, x.size)),
as_strided(y, strides=(y.strides[0],0), shape=(y.size, x.size)))
else:
return (np.ma.array(as_strided(x, strides=(0, x.strides[0]), shape=(y.size, x.size)), mask=mask),
np.ma.array(as_strided(y, strides=(y.strides[0],0), shape=(y.size, x.size)), mask=mask))
开发者ID:sanatkrtiwari86,项目名称:BOUT-dev,代码行数:8,代码来源:crosslines.py
示例4: broadcasted_shape
def broadcasted_shape(shp1, shp2):
# determine shape of array of shp1 and shp2 broadcast against one another.
x = np.array([1])
# trick to define array with certain shape that doesn't allocate all the
# memory.
a = as_strided(x, shape=shp1, strides=[0] * len(shp1))
b = as_strided(x, shape=shp2, strides=[0] * len(shp2))
return np.broadcast(a, b).shape
开发者ID:Unidata,项目名称:netcdf4-python,代码行数:8,代码来源:utils.py
示例5: disparity_ssd
def disparity_ssd(L, R, window_size = 21):
"""Compute disparity map D(y, x) such that: L(y, x) = R(y, x + D(y, x))
Params:
L: Grayscale left image, in range [0.0, 1.0]
R: Grayscale right image, same size as L
Returns: Disparity map, same size as L, R
"""
D = np.zeros(L.shape, dtype=np.float)
# subtract 1 due to the starting pixel
offset = (window_size) / 2
L = cv2.copyMakeBorder(L, offset, offset, offset, offset, cv2.BORDER_CONSTANT,value=0)
R = cv2.copyMakeBorder(R, offset, offset, offset, offset, cv2.BORDER_CONSTANT,value=0)
shape = L.shape
height = shape[0]
width = shape[1]
r_shape = (R.shape[0]-(window_size-1), R.shape[1]-(window_size-1), window_size, window_size)
r_strides = (R.shape[1] * R.itemsize, R.itemsize, R.itemsize * R.shape[1], R.itemsize)
r_strips = as_strided(R, r_shape, r_strides)
for y in range(offset, height - offset):
r_strip = r_strips[y-offset]
for x in range(offset, width-offset):
l_patch = get_patch(L, offset, offset, offset, offset, y, x)
copy_patch = np.copy(l_patch)
l_strip = as_strided(copy_patch, r_strip.shape, (0, copy_patch.itemsize*window_size, copy_patch.itemsize))
ssd = ((l_strip - r_strip)**2).sum((1, 2))
x_prime = np.argmin(ssd)
D[y-offset][x-offset] = x_prime - x
#print D.max()
return D
# def test_disparity_ssd2(l_image, r_image, problem, window_size = 21):
# L = cv2.imread(os.path.join('input', l_image), 0) * (1 / 255.0) # grayscale, scale to [0.0, 1.0]
# R = cv2.imread(os.path.join('input', r_image), 0) * (1 / 255.0)
#
# # Compute disparity (using method disparity_ssd defined in disparity_ssd.py)
# start = time.time()
# D = disparity_ssd(L, R, window_size) # TODO# : implemenet disparity_ssd()
# print "first: " + str(time.time() - start)
# start = time.time()
# D2 = disparity_ssd_2(L, R, window_size)
# print "second: " + str(time.time() - start)
#print D == D2
cv2.imwrite(os.path.join("output", "ps3-" + problem + ".png"), np.clip(D2, 0, 255).astype(np.uint8))
开发者ID:RitterGT,项目名称:ComputerVision,代码行数:54,代码来源:ps3.py
示例6: demosaic
def demosaic(self):
if self._demo is None:
# XXX Again, should take into account camera's vflip and hflip here
# Construct representation of the bayer pattern
bayer = np.zeros(self.array.shape, dtype=np.uint8)
bayer[1::2, 0::2, 0] = 1 # Red
bayer[0::2, 0::2, 1] = 1 # Green
bayer[1::2, 1::2, 1] = 1 # Green
bayer[0::2, 1::2, 2] = 1 # Blue
# Allocate output array with same shape as data and set up some
# constants to represent the weighted average window
window = (3, 3)
borders = (window[0] - 1, window[1] - 1)
border = (borders[0] // 2, borders[1] // 2)
# Pad out the data and the bayer pattern (np.pad is faster but
# unavailable on the version of numpy shipped with Raspbian at the
# time of writing)
rgb = np.zeros((
self.array.shape[0] + borders[0],
self.array.shape[1] + borders[1],
self.array.shape[2]), dtype=self.array.dtype)
rgb[
border[0]:rgb.shape[0] - border[0],
border[1]:rgb.shape[1] - border[1],
:] = self.array
bayer_pad = np.zeros((
self.array.shape[0] + borders[0],
self.array.shape[1] + borders[1],
self.array.shape[2]), dtype=bayer.dtype)
bayer_pad[
border[0]:bayer_pad.shape[0] - border[0],
border[1]:bayer_pad.shape[1] - border[1],
:] = bayer
bayer = bayer_pad
# For each plane in the RGB data, construct a view over the plane
# of 3x3 matrices. Then do the same for the bayer array and use
# Einstein summation to get the weighted average
self._demo = np.empty(self.array.shape, dtype=self.array.dtype)
for plane in range(3):
p = rgb[..., plane]
b = bayer[..., plane]
pview = as_strided(p, shape=(
p.shape[0] - borders[0],
p.shape[1] - borders[1]) + window, strides=p.strides * 2)
bview = as_strided(b, shape=(
b.shape[0] - borders[0],
b.shape[1] - borders[1]) + window, strides=b.strides * 2)
psum = np.einsum('ijkl->ij', pview)
bsum = np.einsum('ijkl->ij', bview)
self._demo[..., plane] = psum // bsum
return self._demo
开发者ID:NewLeafW,项目名称:picamera,代码行数:51,代码来源:array.py
示例7: test_internal_overlap_manual
def test_internal_overlap_manual():
# Stride tricks can construct arrays with internal overlap
# We don't care about memory bounds, the array is not
# read/write accessed
x = np.arange(1).astype(np.int8)
# Check low-dimensional special cases
check_internal_overlap(x, False) # 1-dim
check_internal_overlap(x.reshape([]), False) # 0-dim
a = as_strided(x, strides=(3, 4), shape=(4, 4))
check_internal_overlap(a, False)
a = as_strided(x, strides=(3, 4), shape=(5, 4))
check_internal_overlap(a, True)
a = as_strided(x, strides=(0,), shape=(0,))
check_internal_overlap(a, False)
a = as_strided(x, strides=(0,), shape=(1,))
check_internal_overlap(a, False)
a = as_strided(x, strides=(0,), shape=(2,))
check_internal_overlap(a, True)
a = as_strided(x, strides=(0, -9993), shape=(87, 22))
check_internal_overlap(a, True)
a = as_strided(x, strides=(0, -9993), shape=(1, 22))
check_internal_overlap(a, False)
a = as_strided(x, strides=(0, -9993), shape=(0, 22))
check_internal_overlap(a, False)
开发者ID:Jengel1,项目名称:SunriseSunsetTimeFinder,代码行数:35,代码来源:test_mem_overlap.py
示例8: test_as_strided
def test_as_strided():
a = np.array([None])
a_view = as_strided(a)
expected = np.array([None])
assert_array_equal(a_view, np.array([None]))
a = np.array([1, 2, 3, 4])
a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
expected = np.array([1, 3])
assert_array_equal(a_view, expected)
a = np.array([1, 2, 3, 4])
a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize))
expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
assert_array_equal(a_view, expected)
开发者ID:ymarfoq,项目名称:outilACVDesagregation,代码行数:15,代码来源:test_stride_tricks.py
示例9: moving_avg
def moving_avg(a, halfwindow, mask=None):
"""
Performs a fast n-point moving average of (the last
dimension of) array *a*, by using stride tricks to roll
a window on *a*.
Note that *halfwindow* gives the nb of points on each side,
so that n = 2*halfwindow + 1.
If *mask* is provided, values of *a* where mask = False are
skipped.
Returns an array of same size as *a* (which means that near
the edges, the averaging window is actually < *npt*).
"""
# padding array with zeros on the left and on the right:
# e.g., if halfwindow = 2:
# a_padded = [0 0 a0 a1 ... aN 0 0]
# mask_padded = [F F ? ? ? F F]
if mask is None:
mask = np.ones_like(a, dtype='bool')
zeros = np.zeros(a.shape[:-1] + (halfwindow,))
falses = zeros.astype('bool')
a_padded = np.concatenate((zeros, np.where(mask, a, 0), zeros), axis=-1)
mask_padded = np.concatenate((falses, mask, falses), axis=-1)
# rolling window on padded array using stride trick
#
# E.g., if halfwindow=2:
# rolling_a[:, 0] = [0 0 a0 a1 ... aN]
# rolling_a[:, 1] = [0 a0 a1 a2 ... aN 0 ]
# ...
# rolling_a[:, 4] = [a2 a3 ... aN 0 0]
npt = 2 * halfwindow + 1 # total size of the averaging window
rolling_a = as_strided(a_padded,
shape=a.shape + (npt,),
strides=a_padded.strides + (a.strides[-1],))
rolling_mask = as_strided(mask_padded,
shape=mask.shape + (npt,),
strides=mask_padded.strides + (mask.strides[-1],))
# moving average
n = rolling_mask.sum(axis=-1)
return np.where(n > 0, rolling_a.sum(axis=-1).astype('float') / n, np.nan)
开发者ID:iceseismic,项目名称:SeisSuite,代码行数:48,代码来源:network_spectrum.py
示例10: kron_id_view
def kron_id_view(vec, id_length, axis=-1):
shape = (vec.shape[:axis] +
(vec.shape[axis] - id_length + 1, id_length) +
vec.shape[axis % vec.ndim + 1:])
strides = vec.strides[:axis] + (vec.strides[axis],) + vec.strides[axis:]
return as_strided(vec, shape=shape, strides=strides)
开发者ID:kastnerkyle,项目名称:kaggle-decmeg2014,代码行数:7,代码来源:conv_mp.py
示例11: __init__
def __init__(self, which_set, context_len, data_mode, shuffle=True):
self.__dict__.update(locals())
del self.self
# Load data into self._data (defined in PennTreebank)
self._load_data(which_set, context_len, data_mode)
self._data = as_strided(self._raw_data,
shape=(len(self._raw_data) - context_len,
context_len + 1),
strides=(self._raw_data.itemsize,
self._raw_data.itemsize))
super(PennTreebankNGrams, self).__init__(
X=self._data[:, :-1],
y=self._data[:, -1:],
X_labels=self._max_labels, y_labels=self._max_labels
)
if shuffle:
warnings.warn("Note that the PennTreebank samples are only "
"shuffled when the iterator method is used to "
"retrieve them.")
self._iter_subset_class = resolve_iterator_class(
'shuffled_sequential'
)
开发者ID:123fengye741,项目名称:pylearn2,代码行数:26,代码来源:penntree.py
示例12: get_test_array
def get_test_array(shape, dtype, strides=None, no_zeros=False, high=None):
shape = wrap_in_tuple(shape)
dtype = dtypes.normalize_type(dtype)
if dtype.names is not None:
result = numpy.empty(shape, dtype)
for name in dtype.names:
result[name] = get_test_array(shape, dtype[name], no_zeros=no_zeros, high=high)
else:
if dtypes.is_integer(dtype):
low = 1 if no_zeros else 0
if high is None:
high = 100 # will work even with signed chars
get_arr = lambda: numpy.random.randint(low, high, shape).astype(dtype)
else:
low = 0.01 if no_zeros else 0
if high is None:
high = 1.0
get_arr = lambda: numpy.random.uniform(low, high, shape).astype(dtype)
if dtypes.is_complex(dtype):
result = get_arr() + 1j * get_arr()
else:
result = get_arr()
if strides is not None:
result = as_strided(result, result.shape, strides)
return result
开发者ID:mgolub2,项目名称:reikna,代码行数:29,代码来源:helpers.py
示例13: __init__
def __init__(self, label_image=None, connectivity=1, data=None, **attr):
super(RAG, self).__init__(data, **attr)
if self.number_of_nodes() == 0:
self.max_id = 0
else:
self.max_id = max(self.nodes_iter())
if label_image is not None:
fp = ndi.generate_binary_structure(label_image.ndim, connectivity)
# In the next ``ndi.generic_filter`` function, the kwarg
# ``output`` is used to provide a strided array with a single
# 64-bit floating point number, to which the function repeatedly
# writes. This is done because even if we don't care about the
# output, without this, a float array of the same shape as the
# input image will be created and that could be expensive in
# memory consumption.
ndi.generic_filter(
label_image,
function=_add_edge_filter,
footprint=fp,
mode='nearest',
output=as_strided(np.empty((1,), dtype=np.float_),
shape=label_image.shape,
strides=((0,) * label_image.ndim)),
extra_arguments=(self,))
开发者ID:Zhang5555,项目名称:scikit-image,代码行数:26,代码来源:rag.py
示例14: semicast
def semicast(*arrays):
"""
Broadcast compatible ndarray shape prefixes.
"""
# establish the final prefix shape
pre_ndim = max(len(a.shape[:i]) for (a, i) in arrays)
pre_padding = [(1,) * (pre_ndim - len(a.shape[:i])) for (a, i) in arrays]
pre_shape = tuple(map(max, *(p + a.shape[:i] for ((a, i), p) in zip(arrays, pre_padding))))
# broadcast the arrays
from numpy.lib.stride_tricks import as_strided
casts = []
for ((a, i), p) in zip(arrays, pre_padding):
if i is None:
i = len(a.shape)
for (c, d) in zip(pre_shape[len(p):], a.shape[:i]):
if c != d and d != 1:
raise ValueError("array shapes incompatible for semicast")
strides = (0,) * len(p) + tuple(0 if d == 1 else s for (d, s) in zip(a.shape, a.strides))
casts += [as_strided(a, pre_shape + a.shape[i:], strides)]
# repair dtypes (broken by as_strided)
for ((a, _), cast) in zip(arrays, casts):
cast.dtype = a.dtype
# done
return (pre_shape, casts)
开发者ID:bsilverthorn,项目名称:qy,代码行数:32,代码来源:lowloop.py
示例15: halfoverlap
def halfoverlap(X, window_size):
"""
Create an overlapped version of X using 50% of window_size as overlap.
Parameters
----------
X : ndarray, shape=(n_samples,)
Input signal to window and overlap
window_size : int
Size of windows to take
Returns
-------
X_strided : shape=(n_windows, window_size)
2D array of overlapped X
"""
if window_size % 2 != 0:
raise ValueError("Window size must be even!")
window_step = window_size // 2
# Make sure there are an even number of windows before stridetricks
append = np.zeros((window_size - len(X) % window_size))
X = np.hstack((X, append))
num_frames = len(X) // window_step - 1
row_stride = X.itemsize * window_step
col_stride = X.itemsize
X_strided = as_strided(X, shape=(num_frames, window_size),
strides=(row_stride, col_stride))
return X_strided
开发者ID:jyt109,项目名称:speech_density,代码行数:29,代码来源:midify.py
示例16: cross_correlation
def cross_correlation(x, y, maxlag):
"""
Cross correlation with a maximum number of lags.
`x` and `y` must be one-dimensional numpy arrays with the same length.
This computes the same result as
numpy.correlate(x, y, mode='full')[len(a)-maxlag-1:len(a)+maxlag]
The return vaue has length 2*maxlag + 1.
Author: http://stackoverflow.com/questions/30677241
Warren Weckesser
"""
from numpy.lib.stride_tricks import as_strided
def _check_arg(x, xname):
x = np.asarray(x)
if x.ndim != 1:
raise ValueError('%s must be one-dimensional.' % xname)
return x
x = _check_arg(x, 'x')
y = _check_arg(y, 'y')
py = np.pad(y.conj(), 2*maxlag, mode='constant')
T = as_strided(py[2*maxlag:], shape=(2*maxlag+1, len(y) + 2*maxlag),
strides=(-py.strides[0], py.strides[0]))
px = np.pad(x, maxlag, mode='constant')
return T.dot(px)
开发者ID:droidroot1995,项目名称:jr-tools,代码行数:29,代码来源:base.py
示例17: __init__
def __init__(self, *shape):
if len(shape) == 1 and isinstance(shape[0], tuple):
shape = shape[0]
x = as_strided(_nx.zeros(1), shape=shape,
strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
order='C')
开发者ID:Benj1,项目名称:numpy,代码行数:7,代码来源:index_tricks.py
示例18: _fast_synthesize
def _fast_synthesize(frequency):
"""A faster way to synthesize a signal.
Generate one cycle, and simulate arbitrary repetitions
using array indexing tricks.
"""
# hack so that we can ensure an integer number of periods and samples
# rounds frequency to 1st decimal, s.t. 10 * frequency will be an int
frequency = np.round(frequency, n_dec)
# Generate 10*frequency periods at this frequency
# Equivalent to n_samples = int(n_periods * fs / frequency)
# n_periods = 10*frequency is the smallest integer that guarantees
# that n_samples will be an integer, since assuming 10*frequency
# is an integer
n_samples = int(10.0**n_dec * fs)
short_signal = function(2.0 * np.pi * np.arange(n_samples) *
frequency / fs)
# Calculate the number of loops we need to fill the duration
n_repeats = int(np.ceil(length/float(short_signal.shape[0])))
# Simulate tiling the short buffer by using stride tricks
long_signal = as_strided(short_signal,
shape=(n_repeats, len(short_signal)),
strides=(0, short_signal.itemsize))
# Use a flatiter to simulate a long 1D buffer
return long_signal.flat
开发者ID:carlthome,项目名称:mir_eval,代码行数:29,代码来源:sonify.py
示例19: convolve
def convolve(A, B, axes=None, dot_axes=[(),()], mode='full'):
assert mode in ['valid', 'full'], "Mode {0} not yet implemented".format(mode)
if axes is None:
axes = [list(range(A.ndim)), list(range(A.ndim))]
wrong_order = any([B.shape[ax_B] < A.shape[ax_A] for ax_A, ax_B in zip(*axes)])
if wrong_order:
if mode=='valid' and not all([B.shape[ax_B] <= A.shape[ax_A] for ax_A, ax_B in zip(*axes)]):
raise Exception("One array must be larger than the other along all convolved dimensions")
elif mode != 'full' or B.size <= A.size: # Tie breaker
i1 = B.ndim - len(dot_axes[1]) - len(axes[1]) # B ignore
i2 = i1 + A.ndim - len(dot_axes[0]) - len(axes[0]) # A ignore
i3 = i2 + len(axes[0])
ignore_B = list(range(i1))
ignore_A = list(range(i1, i2))
conv = list(range(i2, i3))
return convolve(B, A, axes=axes[::-1], dot_axes=dot_axes[::-1], mode=mode).transpose(ignore_A + ignore_B + conv)
if mode == 'full':
B = pad_to_full(B, A, axes[::-1])
B_view_shape = list(B.shape)
B_view_strides = list(B.strides)
flipped_idxs = [slice(None)] * A.ndim
for ax_A, ax_B in zip(*axes):
B_view_shape.append(abs(B.shape[ax_B] - A.shape[ax_A]) + 1)
B_view_strides.append(B.strides[ax_B])
B_view_shape[ax_B] = A.shape[ax_A]
flipped_idxs[ax_A] = slice(None, None, -1)
B_view = as_strided(B, B_view_shape, B_view_strides)
A_view = A[flipped_idxs]
all_axes = [list(axes[i]) + list(dot_axes[i]) for i in [0, 1]]
return einsum_tensordot(A_view, B_view, all_axes)
开发者ID:RaoJun06,项目名称:autograd,代码行数:32,代码来源:signal.py
示例20: test_writeable
def test_writeable():
# broadcast_to should return a readonly array
original = np.array([1, 2, 3])
result = broadcast_to(original, (2, 3))
assert_equal(result.flags.writeable, False)
assert_raises(ValueError, result.__setitem__, slice(None), 0)
# but the result of broadcast_arrays needs to be writeable (for now), to
# preserve backwards compatibility
for results in [broadcast_arrays(original),
broadcast_arrays(0, original)]:
for result in results:
assert_equal(result.flags.writeable, True)
# keep readonly input readonly
original.flags.writeable = False
_, result = broadcast_arrays(0, original)
assert_equal(result.flags.writeable, False)
# regression test for GH6491
shape = (2,)
strides = [0]
tricky_array = as_strided(np.array(0), shape, strides)
other = np.zeros((1,))
first, second = broadcast_arrays(tricky_array, other)
assert_(first.shape == second.shape)
开发者ID:AlerzDev,项目名称:Brazo-Proyecto-Final,代码行数:25,代码来源:test_stride_tricks.py
注:本文中的numpy.lib.stride_tricks.as_strided函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论