本文整理汇总了Python中numpy.linalg.lstsq函数的典型用法代码示例。如果您正苦于以下问题:Python lstsq函数的具体用法?Python lstsq怎么用?Python lstsq使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了lstsq函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: cca
def cca(x_tn,y_tm, reg=0.00000001):
x_tn = x_tn-x_tn.mean(axis=0)
y_tm = y_tm-y_tm.mean(axis=0)
N = x_tn.shape[1]
M = y_tm.shape[1]
xy_tq = c_[x_tn,y_tm]
cqq = cov(xy_tq,rowvar=0)
cxx = cqq[:N,:N]+reg*np.eye(N)+0.000000001*np.ones((N,N))
cxy = cqq[:N,N:(N+M)]+0.000000001*np.ones((N,N))
cyx = cqq[N:(N+M),:N]+0.000000001*np.ones((N,N))
cyy = cqq[N:(N+M),N:(N+M)]+reg*np.eye(N)+0.000000001*np.ones((N,N))
K = min(N,M)
xldivy = lstsq(cxx,cxy)[0]
yldivx = lstsq(cyy,cyx)[0]
#print xldivy
#print dot(np.linalg.inv(cxx),cxy)
_,vecs = eig(dot(xldivy,yldivx))
a_nk = vecs[:,:K]
#print normr(vecs.T)
b_mk = dot(yldivx,a_nk)
u_tk = dot(x_tn,a_nk)
v_tk = dot(y_tm,b_mk)
return a_nk,b_mk,u_tk,v_tk
开发者ID:Chrisdy,项目名称:deepcca,代码行数:27,代码来源:cca_linear.py
示例2: initialize
def initialize(self):
S = sum([np.dot(unit.X.T, unit.X) for unit in self.units])
Y = sum([np.dot(unit.X.T, unit.Y) for unit in self.units])
self.a = L.lstsq(S, Y)[0]
D = 0
t = 0
sigmasq = 0
for unit in self.units:
unit.r = unit.Y - np.dot(unit.X, self.a)
if self.q > 1:
unit.b = L.lstsq(unit.Z, unit.r)[0]
else:
Z = unit.Z.reshape((unit.Z.shape[0], 1))
unit.b = L.lstsq(Z, unit.r)[0]
sigmasq += (np.power(unit.Y, 2).sum() -
(self.a * np.dot(unit.X.T, unit.Y)).sum() -
(unit.b * np.dot(unit.Z.T, unit.r)).sum())
D += np.multiply.outer(unit.b, unit.b)
t += L.pinv(np.dot(unit.Z.T, unit.Z))
#TODO: JP added df_resid check
self.df_resid = (self.N - (self.m - 1) * self.q - self.p)
sigmasq /= (self.N - (self.m - 1) * self.q - self.p)
self.sigma = np.sqrt(sigmasq)
self.D = (D - sigmasq * t) / self.m
开发者ID:bolliger32,项目名称:pygwr,代码行数:27,代码来源:mixed.py
示例3: _calculate_log_likelihood
def _calculate_log_likelihood(self):
#if self.m == None:
# Give error message
R = zeros((self.n, self.n))
X,Y = array(self.X), array(self.Y)
thetas = 10.**self.thetas
for i in range(self.n):
for j in arange(i+1,self.n):
R[i,j] = (1-self.nugget)*e**(-sum(thetas*(X[i]-X[j])**2.)) #weighted distance formula
R = R + R.T + eye(self.n)
self.R = R
one = ones(self.n)
try:
self.R_fact = cho_factor(R)
rhs = vstack([Y, one]).T
R_fact = (self.R_fact[0].T,not self.R_fact[1])
cho = cho_solve(R_fact, rhs).T
self.mu = dot(one,cho[0])/dot(one,cho[1])
self.sig2 = dot(Y-dot(one,self.mu),cho_solve(self.R_fact,(Y-dot(one,self.mu))))/self.n
#self.log_likelihood = -self.n/2.*log(self.sig2)-1./2.*log(abs(det(self.R)+1.e-16))-sum(thetas)
self.log_likelihood = -self.n/2.*log(self.sig2)-1./2.*log(abs(det(self.R)+1.e-16))
except (linalg.LinAlgError,ValueError):
#------LSTSQ---------
self.R_fact = None #reset this to none, so we know not to use cholesky
#self.R = self.R+diag([10e-6]*self.n) #improve conditioning[Booker et al., 1999]
rhs = vstack([Y, one]).T
lsq = lstsq(self.R.T,rhs)[0].T
self.mu = dot(one,lsq[0])/dot(one,lsq[1])
self.sig2 = dot(Y-dot(one,self.mu),lstsq(self.R,Y-dot(one,self.mu))[0])/self.n
self.log_likelihood = -self.n/2.*log(self.sig2)-1./2.*log(abs(det(self.R)+1.e-16))
开发者ID:Kenneth-T-Moore,项目名称:OpenMDAO-Framework,代码行数:31,代码来源:kriging_surrogate.py
示例4: dfa
def dfa(x, ave=None, l=None):
x = np.array(x)
if ave is None:
ave = np.mean(x)
y = np.cumsum(x)
y -= ave
if l is None:
l = np.floor(len(x) * 1 / (2 ** np.array(range(4, int(np.log2(len(x))) - 4))))
f = np.zeros(len(l)) # f(n) of different given box length n
for i in xrange(0, len(l)):
n = int(l[i]) # for each box length L[i]
if n == 0:
print "time series is too short while the box length is too big"
print "abort"
exit()
for j in xrange(0, len(x), n): # for each box
if j + n < len(x):
c = range(j, j + n)
c = np.vstack([c, np.ones(n)]).T # coordinates of time in the box
y = y[j:j + n] # the value of data in the box
f[i] += lstsq(c, y)[1] # add residue in this box
f[i] /= ((len(x) / n) * n)
f = np.sqrt(f)
alpha = lstsq(np.vstack([np.log(l), np.ones(len(l))]).T, np.log(f))[0][0]
return alpha
开发者ID:kevroy314,项目名称:PLL-Neural-Network,代码行数:32,代码来源:pyeeg.py
示例5: simplex
def simplex(A,b,c,basis):
B=A[:,basis]
xx,resid,rank,s = lin.lstsq(B,b)
x = np.zeros(c.shape[0])
v = np.zeros(c.shape[0])
x[basis[0]] = xx[0,0]
cost = c[basis].T*x[basis] # cost at starting corner
for iteration in np.arange(100):
y = lin.lstsq(B.T,c[basis]) # this y may not be feasible
y = np.array([y[0]]).T
idx = (c - np.dot(A.T,y).T).argmin()
rmin = (c - np.dot(A.T,y).T).min()
if rmin >= -0.00000001: # optimality is reached, r>=0
break # current x and y are optimal
print B
print A
print A[:,idx]
print idx
v[basis] = lin.lstsq(B,A[:,idx])[0]
tmp = x[basis] / np.max(v[basis],.000001)
out = tmp.argmin()
minratio = tmp.min()
if v[out] == .000001: # out = index of first x to reach 0
break # break when that edge is extremely short
cost = cost + minratio*rmin # lower cost at end of step
x[basis] = x[basis] - minratio*v[basis] # update old x
x[idx] = minratio # find new positive component of x
basis[out] = idx # replace old index by new in basis
print basis
return x,y,cost
开发者ID:diogofalmeida,项目名称:classnotes,代码行数:33,代码来源:simplex.py
示例6: initialize
def initialize(self):
S = sum([N.dot(unit.X.T, unit.X) for unit in self.units])
Y = sum([N.dot(unit.X.T, unit.Y) for unit in self.units])
self.a = L.lstsq(S, Y)[0]
D = 0
t = 0
sigmasq = 0
for unit in self.units:
unit.r = unit.Y - N.dot(unit.X, self.a)
if self.q > 1:
unit.b = L.lstsq(unit.Z, unit.r)[0]
else:
Z = unit.Z.reshape((unit.Z.shape[0], 1))
unit.b = L.lstsq(Z, unit.r)[0]
sigmasq += (N.power(unit.Y, 2).sum() -
(self.a * N.dot(unit.X.T, unit.Y)).sum() -
(unit.b * N.dot(unit.Z.T, unit.r)).sum())
D += N.multiply.outer(unit.b, unit.b)
t += L.pinv(N.dot(unit.Z.T, unit.Z))
sigmasq /= (self.N - (self.m - 1) * self.q - self.p)
self.sigma = N.sqrt(sigmasq)
self.D = (D - sigmasq * t) / self.m
开发者ID:mbentz80,项目名称:jzigbeercp,代码行数:25,代码来源:mixed.py
示例7: con2vert
def con2vert(A, b):
"""
Convert sets of constraints to a list of vertices (of the feasible region).
If the shape is open, con2vert returns False for the closed property.
"""
# Python implementation of con2vert.m by Michael Kleder (July 2005),
# available: http://www.mathworks.com/matlabcentral/fileexchange/7894
# -con2vert-constraints-to-vertices
# Author: Michael Kelder (Original)
# Andre Campher (Python implementation)
c = linalg.lstsq(mat(A), mat(b))[0]
btmp = mat(b)-mat(A)*c
D = mat(A)/matlib.repmat(btmp, 1, A.shape[1])
fmatv = qhull(D, "Ft") #vertices on facets
G = zeros((fmatv.shape[0], D.shape[1]))
for ix in range(0, fmatv.shape[0]):
F = D[fmatv[ix, :], :].squeeze()
G[ix, :] = linalg.lstsq(F, ones((F.shape[0], 1)))[0].transpose()
V = G + matlib.repmat(c.transpose(), G.shape[0], 1)
ux = uniqm(V)
eps = 1e-13
Av = dot(A, ux.T)
bv = tile(b, (1, ux.shape[0]))
closed = sciall(Av - bv <= eps)
return ux, closed
开发者ID:CR34M3,项目名称:Optimised_MPC_constraints__Code,代码行数:30,代码来源:convertfuns.py
示例8: solve_and_check_impl
def solve_and_check_impl(A,Ah,B,Bh):
Am=numpy.matrix(A)
Amh=numpy.matrix(Ah)
Bm=numpy.matrix(B)
Bmh=numpy.matrix(Bh)
Ar,Aresidue=linalg.lstsq(Am,Amh)[0:2]
Br,Bresidue=linalg.lstsq(Bm,Bmh)[0:2]
A11,A12,Tx=Ar.transpose()[0].tolist()[0]
A21,A22,Ty=Br.transpose()[0].tolist()[0]
mA=numpy.matrix([[A11,A12],[A21,A22]])
T=numpy.matrix([[Tx],[Ty]])
print "Determinant:",linalg.det(mA)
error=0
for m,mh in zip(A,Ah):
#print "m:",m,"mh:",mh
x,y,one=m
deg=mh[0]
X=numpy.matrix([[x],[y]])
Y=mA*X+T
lat,lon=Y[0,0],Y[1,0]
#print "Mapped lat",lat,"correct",deg
error=max(error,(deg-lat))
for m,mh in zip(B,Bh):
#print "m:",m,"mh:",mh
x,y,one=m
deg=mh[0]
X=numpy.matrix([[x],[y]])
Y=mA*X+T
lat,lon=Y[0,0],Y[1,0]
#print "Mapped lon",lon,"correct",deg
error=max(error,(deg-lon))
Ai=linalg.inv(mA)
return error,mA,T
开发者ID:avl,项目名称:SwFlightPlanner,代码行数:34,代码来源:customproj.py
示例9: multiLinearExampleWithLeastSQR
def multiLinearExampleWithLeastSQR():
from numpy.linalg import lstsq
X = [[1,6,2],[1,8,1],[1,10,0],[1,14,2],[1,18,0]]
y =[[7],[9],[13],[17.5],[18]]
print "\n Least sqr:"
print lstsq(X,y)[0]
print lstsq(X,y)[0]
开发者ID:marcinwal,项目名称:ThoughtfulMachineLearning,代码行数:7,代码来源:linearRegression.py
示例10: calibrate_peak_ensemble
def calibrate_peak_ensemble(models_forecasts, measurements, forecast_len = 48, peak_level = 80):
T_predictors = []
T_target = []
H_predictors = []
H_target = []
rng = min(len(model) for model in models_forecasts)
for tm in range(rng):
msm = measurements[tm * 6: tm * 6 + forecast_len]
measured_peaks = detect_peaks(msm, peak_level)
if not measured_peaks:
continue
forecasts = [prd[tm] for prd in models_forecasts]
forecasts_peaks = [detect_peaks(fcst, peak_level) for fcst in forecasts]
forecasts_peaks_cor = [list(map(lambda x: find_corresponding_peak(x, forecast_peaks),
measured_peaks)) for forecast_peaks in forecasts_peaks]
for measured, *corresponding in zip(measured_peaks, *forecasts_peaks_cor):
if all(corresponding):
H_predictors.append([peak[3] for peak in corresponding] + [1])
T_predictors.append([peak[2] for peak in corresponding] + [1])
H_target.append(measured[3])
T_target.append(measured[2])
print(H_predictors, H_target)
H_coefs = lstsq(H_predictors, H_target)[0]
T_coefs = lstsq(T_predictors, T_target)[0]
return list(T_coefs), list(H_coefs)
开发者ID:Annaero,项目名称:EnsembleClassifier,代码行数:30,代码来源:utils.py
示例11: getOrthColumns
def getOrthColumns(m):
'''
Constructs the orthogonally complementing columns of the input.
Input of the form pxr is assumed to have r<=p,
and have either full column rank r or rank 0 (scalar or matrix)
Output is of the form px(p-r), except:
a) if M square and full rank p, returns scalar 0
b) if rank(M)=0 (zero matrix), returns I_p
(Note you cannot pass scalar zero, because dimension info would be
missing.)
Return type is as input type.
'''
if type(m) == type(asarray(m)):
m = mat(m)
output = 'array'
else: output = 'matrix'
p, r = m.shape
# first catch the stupid input case
if p < r: raise ValueError, 'need at least as many rows as columns'
# we use lstsq(M, ones) just to exploit its rank-finding algorithm,
rk = lstsq(m, ones(p).T)[2]
# first the square and full rank case:
if rk == p: result = zeros((p,0)) # note the shape! hopefully octave-like
# then the zero-matrix case (within machine precision):
elif rk == 0: result = eye(p)
# now the rank-deficient case:
elif rk < r:
raise ValueError, 'sorry, matrix does not have full column rank'
# (what's left should be ok)
else:
# we have to watch out for zero rows in M,
# if they are in the first p-r positions!
# so the (probably inefficient) algorithm:
# 1. check the rank of each row
# 2. if zero, then also put a zero row in c
# 3. if not, put the next unit vector in c-row
idr = eye(r)
idpr = eye(p-r)
c = empty([0,r]) # starting point
co = empty([0, p-r]) # will hold orth-compl.
idrcount = 0
for row in range(p):
# (must be ones() instead of 1 because of 2d-requirement
if lstsq( m[row,:], ones(1) )[2] == 0 or idrcount >= r:
c = r_[ c, zeros(r) ]
co = r_[ co, idpr[row-idrcount, :] ]
else: # row is non-zero, and we haven't used all unit vecs
c = r_[ c, idr[idrcount, :] ]
co = r_[ co, zeros(p-r) ]
idrcount += 1
# earlier non-general (=bug) line: c = mat(r_[eye(r), zeros((p-r, r))])
# and: co = mat( r_[zeros((r, p-r)), eye(p-r)] )
# old:
# result = ( eye(p) - c * (M.T * c).I * M.T ) * co
result = co - c * solve(m.T * c, m.T * co)
if output == 'array': return result.A
else: return result
开发者ID:BasileGrassi,项目名称:dynare-python,代码行数:58,代码来源:helpers.py
示例12: my_nmf
def my_nmf(document_term_mat, n_components=15, n_iterations=50, eps=1e-6):
n_rows, n_cols = document_term_mat.shape
W = rand(n_rows*n_components).reshape([n_rows, n_components])
H = rand(n_components*n_cols).reshape([n_components, n_cols])
# linalg.lstsq doesn't work on sparse mats
dense_document_term_mat = document_term_mat.todense()
for i in range(n_iterations):
H = linalg.lstsq(W, dense_document_term_mat)[0].clip(eps)
W = linalg.lstsq(H.T, dense_document_term_mat.T)[0].clip(eps).T
return array(W), array(H)
开发者ID:balajikvijayan,项目名称:NaturalLanguageProcessing,代码行数:10,代码来源:soln.py
示例13: glrd_diverse
def glrd_diverse(V, G, F, r, err_V, err_F):
# diversity threshold is 0.5
for k in xrange(r):
G_copy = np.copy(G) # create local copies for excluding the k^th col and row of G and F resp.
F_copy = np.copy(F)
G_copy[:, k] = 0.0
F_copy[k, :] = 0.0
R = V - np.dot(G_copy, F_copy) # compute residual
# Solve for optimal G(.)(k) with diversity constraints
F_k = F[k, :]
x_star_G = linalg.lstsq(R.T, F_k.T)[0].T
x_G = cvx.Variable(x_star_G.shape[0])
objective_G = cvx.Minimize(cvx.norm2(x_star_G - x_G))
constraints_G = [x_G >= 0]
for j in xrange(r):
if j != k:
constraints_G += [x_G.T * G[:, j] <= err_V]
prob_G = cvx.Problem(objective_G, constraints_G)
result = prob_G.solve(solver='SCS')
if not np.isinf(result):
G_k_min = np.asarray(x_G.value)
G[:, k] = G_k_min[:, 0]
else:
print result
# Solve for optimal F(k)(.) with diversity constraints
G_k = G[:, k]
x_star_F = linalg.lstsq(R, G_k)[0]
x_F = cvx.Variable(x_star_F.shape[0])
objective_F = cvx.Minimize(cvx.norm2(x_star_F - x_F))
constraints_F = [x_F >= 0]
for j in xrange(r):
if j != k:
constraints_F += [x_F.T * F[j, :] <= err_F]
prob_F = cvx.Problem(objective_F, constraints_F)
result = prob_F.solve(solver='SCS')
if not np.isinf(result):
F_k_min = np.asarray(x_F.value)
F[k, :] = F_k_min[0, :]
else:
print result
return G, F
开发者ID:randomsurfer,项目名称:refex,代码行数:50,代码来源:glrd_diverse.py
示例14: add_data
def add_data(self, v):
mask_c = np.isnan(v)
mask = 1 - mask_c
U = self.U
n = self.n
d = self.d
Ov = v[mask==1]
OU = U[mask==1,:]
w, _, __, ___ = la.lstsq(OU, Ov)
p = U.dot(w)
r = np.zeros((n,))
r[mask==1] = Ov - p[mask==1]
sigma = la.norm(r) * la.norm(p)
eta = self.eta0 / self.it
pw = la.norm(p) * la.norm(w)
rw = la.norm(r) * la.norm(w)
if pw == 0 or rw == 0: return
U = U + (np.cos(sigma * eta) - 1.0) * np.outer(p, w) / pw \
+ np.sin(sigma * eta) * np.outer(r, w) / rw
self.U = U
self.it += 1.0
开发者ID:greyhill,项目名称:pygrouse,代码行数:29,代码来源:__init__.py
示例15: calibrate_ensemble
def calibrate_ensemble(models_forecasts, measurements, forecast_len = 48):
"""Calculates coefficient for models in ensembles usulg OLS.
Returns coefficients for all possible ensembles obtained by models combinations.
"""
models_count = len(models_forecasts)
predictors = [list() for mdl in range(models_count)]
target = list()
rng = min(len(model) for model in models_forecasts)
for tm in range(rng):
msm = measurements[tm * 6: tm * 6 + forecast_len]
msm_len = len(msm)
for current_prediction, predictor \
in zip([prd[tm] for prd in models_forecasts], predictors):
predictor.extend(current_prediction[:msm_len])
target.extend(msm)
ensembles = list()
for ens_map in reversed(list(product([1,0], repeat = models_count))):
ensemble_predictors = \
[[a*b for a,b in zip(point, ens_map)] for point in zip(*predictors)]
ensemble_predictors = [pred + [1] for pred in ensemble_predictors]
coefs = list(lstsq(ensemble_predictors, target)[0])
ensembles.append(coefs)
return ensembles
开发者ID:Annaero,项目名称:EnsembleClassifier,代码行数:27,代码来源:utils.py
示例16: calibrate
def calibrate(x, y, z, sensor_type):
H = numpy.array([x, y, z, -y**2, -z**2, numpy.ones([len(x), 1])])
H = numpy.transpose(H)
w = x**2
(X, residues, rank, shape) = linalg.lstsq(H, w)
OSx = X[0] / 2
OSy = X[1] / (2 * X[3])
OSz = X[2] / (2 * X[4])
A = X[5] + OSx**2 + X[3] * OSy**2 + X[4] * OSz**2
B = A / X[3]
C = A / X[4]
SCx = numpy.sqrt(A)
SCy = numpy.sqrt(B)
SCz = numpy.sqrt(C)
# type conversion from numpy.float64 to standard python floats
offsets = [OSx, OSy, OSz]
scale = [SCx, SCy, SCz]
offsets = map(numpy.asscalar, offsets)
scale = map(numpy.asscalar, scale)
#misalignment matrix
if(sensor_type == "mag"):
mis_matrix = calibrate_misalignment(x_file, y_file, z_file)
return (offsets, scale, mis_matrix)
else:
return (offsets, scale)
开发者ID:openrobots-dev,项目名称:R2P_IMU_module,代码行数:32,代码来源:cal_lib.py
示例17: run
def run(self, genes):
""" Computes cross validations for given set of clusters. """
from numpy import dot, array
from numpy.linalg import lstsq
# creates boolean array from genes.
genes = array([i in genes for i in xrange(self.pis.shape[1])])
# selects pis for given set of clusters.
pis = self.pis[:,genes]
# loops over cross-validation sets.
scores, fits = [], []
for croset, fitset in zip(self.crosets, self.fitsets):
# pis, energies in cross-validation set.
cropis = pis[croset, :]
croene = self.energies[croset]
# pis, energies in fitting set.
fitpis = pis[fitset,:]
fitene = self.energies[fitset]
# performs fitting.
try: interactions = lstsq(fitpis, fitene)
except:
print "Encountered error in least-square fit."
print fitpis.shape, fitene.shape, self.pis.shape, genes
raise
else: interactions = interactions[0]
scores.append(dot(cropis, interactions) - croene)
fits.append(dot(fitpis, interactions) - fitene)
return array(scores), array(fits)
开发者ID:georgeyumnam,项目名称:pylada,代码行数:30,代码来源:evaluator.py
示例18: trainClassifer
def trainClassifer(self,labels,vectors,ilog=None):
'''
Train the polynomial. Do not call this function
manually, instead call the train function on the super
class.
'''
#build matrix
matrix = []
for each in vectors:
if len(each) != 2:
raise ValueError("ERROR: Vector length=%d. Polynomial2D only predicts for vectors of length 2."%len(each))
x,y = each
matrix.append(self.buildRow(x,y))
matrix = array(matrix)
labels = array(labels)
x,resids,rank,s = lstsq(matrix,labels)
self.x = x
self.resids = resids
self.rank = rank
self.s = s
if rank != matrix.shape[1]:
print "WARNING: Polynomial is not fully constrained."
开发者ID:ampersd,项目名称:pyvision,代码行数:26,代码来源:Polynomial.py
示例19: __loglinregression
def __loglinregression(rs, zs):
coef = linalg.lstsq(c_[log(rs), (1,)*len(rs)], log(zs))[0]
a, b = coef
#print 'Regression: log(z) = %f*log(r) + %f' % (a,b)
if a > -1.0:
print 'Warning: slope is > -1.0'
return a, b
开发者ID:noname01,项目名称:pinyin2chars,代码行数:7,代码来源:sgt.py
示例20: least_squares_fit
def least_squares_fit(M, S):
"""
Least squares fit to fit two datastreams to create calibration matrix C.
Args:
Returns:
Calibration matrix C.
"""
S_squared = S * S
S_cubed = S * S * S
S_24 = np.zeros((S.shape[0], 8, 3))
for i in xrange(S.shape[0]):
for j in xrange(S.shape[1]):
thirds = np.zeros((3, ))
thirds[0], thirds[1], thirds[2] = S[i][j], S_squared[i][
j], S_cubed[i][j]
S_24[i][j] = thirds
S_24 = S_24.reshape((S_24.shape[0], 24))
print "=== S_24 shape:{0} ===".format(S_24.shape)
#C is the vector we are solving for in the S_24 * C = M equation.
C = lstsq(S_24, M)[0]
print "=== least squares fit DONE ==="
print "=== C shape: {0} ===".format(C.shape)
return C
开发者ID:bsuper,项目名称:veloplot,代码行数:27,代码来源:calibration_utils.py
注:本文中的numpy.linalg.lstsq函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论