本文整理汇总了Python中numpy.ma.arange函数的典型用法代码示例。如果您正苦于以下问题:Python arange函数的具体用法?Python arange怎么用?Python arange使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了arange函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_testPut2
def test_testPut2(self):
# Test of put
d = arange(5)
x = array(d, mask=[0, 0, 0, 0, 0])
z = array([10, 40], mask=[1, 0])
assert_(x[2] is not masked)
assert_(x[3] is not masked)
x[2:4] = z
assert_(x[2] is masked)
assert_(x[3] is not masked)
assert_(eq(x, [0, 1, 10, 40, 4]))
d = arange(5)
x = array(d, mask=[0, 0, 0, 0, 0])
y = x[2:4]
z = array([10, 40], mask=[1, 0])
assert_(x[2] is not masked)
assert_(x[3] is not masked)
y[:] = z
assert_(y[0] is masked)
assert_(y[1] is not masked)
assert_(eq(y, [10, 40]))
assert_(x[2] is masked)
assert_(x[3] is not masked)
assert_(eq(x, [0, 1, 10, 40, 4]))
开发者ID:numpy,项目名称:numpy,代码行数:25,代码来源:test_old_ma.py
示例2: test_testAverage2
def test_testAverage2(self):
# More tests of average.
w1 = [0, 1, 1, 1, 1, 0]
w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
x = arange(6)
assert_(allclose(average(x, axis=0), 2.5))
assert_(allclose(average(x, axis=0, weights=w1), 2.5))
y = array([arange(6), 2.0 * arange(6)])
assert_(allclose(average(y, None),
np.add.reduce(np.arange(6)) * 3. / 12.))
assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.))
assert_(allclose(average(y, axis=1),
[average(x, axis=0), average(x, axis=0)*2.0]))
assert_(allclose(average(y, None, weights=w2), 20. / 6.))
assert_(allclose(average(y, axis=0, weights=w2),
[0., 1., 2., 3., 4., 10.]))
assert_(allclose(average(y, axis=1),
[average(x, axis=0), average(x, axis=0)*2.0]))
m1 = zeros(6)
m2 = [0, 0, 1, 1, 0, 0]
m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
m4 = ones(6)
m5 = [0, 1, 1, 1, 1, 1]
assert_(allclose(average(masked_array(x, m1), axis=0), 2.5))
assert_(allclose(average(masked_array(x, m2), axis=0), 2.5))
assert_(average(masked_array(x, m4), axis=0) is masked)
assert_equal(average(masked_array(x, m5), axis=0), 0.0)
assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
z = masked_array(y, m3)
assert_(allclose(average(z, None), 20. / 6.))
assert_(allclose(average(z, axis=0),
[0., 1., 99., 99., 4.0, 7.5]))
assert_(allclose(average(z, axis=1), [2.5, 5.0]))
assert_(allclose(average(z, axis=0, weights=w2),
[0., 1., 99., 99., 4.0, 10.0]))
a = arange(6)
b = arange(6) * 3
r1, w1 = average([[a, b], [b, a]], axis=1, returned=1)
assert_equal(shape(r1), shape(w1))
assert_equal(r1.shape, w1.shape)
r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1)
assert_equal(shape(w2), shape(r2))
r2, w2 = average(ones((2, 2, 3)), returned=1)
assert_equal(shape(w2), shape(r2))
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
assert_(shape(w2) == shape(r2))
a2d = array([[1, 2], [0, 4]], float)
a2dm = masked_array(a2d, [[0, 0], [1, 0]])
a2da = average(a2d, axis=0)
assert_(eq(a2da, [0.5, 3.0]))
a2dma = average(a2dm, axis=0)
assert_(eq(a2dma, [1.0, 3.0]))
a2dma = average(a2dm, axis=None)
assert_(eq(a2dma, 7. / 3.))
a2dma = average(a2dm, axis=1)
assert_(eq(a2dma, [1.5, 4.0]))
开发者ID:numpy,项目名称:numpy,代码行数:57,代码来源:test_old_ma.py
示例3: test_testMinMax2
def test_testMinMax2(self):
# Test of minimum, maximum.
assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]))
assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]))
x = arange(5)
y = arange(5) - 2
x[3] = masked
y[0] = masked
assert_(eq(minimum(x, y), where(less(x, y), x, y)))
assert_(eq(maximum(x, y), where(greater(x, y), x, y)))
assert_(minimum.reduce(x) == 0)
assert_(maximum.reduce(x) == 4)
开发者ID:numpy,项目名称:numpy,代码行数:12,代码来源:test_old_ma.py
示例4: grid_linefit
def grid_linefit(grid, timevals=None, timeslice=slice(None, None, None)):
"""A compressed spatiotemporal grid is provided. A line fit is performed
along the time axis for each spatial cell. Two grids are returned,
each of which is 2d, with the same spatial shape as the input.
The pixels of one grid contains the slope, the other contains the
r squared value of the line fit for that spatial cell.
A vector of time values may be provided. If not supplied, one
will be generated."""
if timevals == None:
timevals = ma.arange(grid.shape[0])
X = sm.add_constant(timevals, prepend=True)
outshape = (grid.shape[1],)
rsq_map = ma.zeros(outshape)
slope_map = ma.zeros(outshape)
for i in range(outshape[0]):
if (i % 1000) == 0:
print "%d of %d (%f)" % (i, outshape[0], (i * 100.0) / outshape[0])
if (type(grid) == "numpy.ma.core.MaskedArray") and grid[0, :].mask[i]:
rsq_map[i] = ma.masked
slope_map[i] = ma.masked
else:
m, rsq = linefit(grid, i, X, timeslice)
rsq_map[i] = rsq
slope_map[i] = m
return (slope_map, rsq_map)
开发者ID:bnordgren,项目名称:pylsce,代码行数:29,代码来源:trend.py
示例5: plotBestFit
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat, labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []
ycord1 = []
xcord2 = []
ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i, 1])
ycord1.append(dataArr[i, 2])
else:
xcord2.append(dataArr[i, 1])
ycord2.append(dataArr[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0] - weights[1] * x) / weights[2]
ax.plot(x, y)
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
开发者ID:daihui,项目名称:machinelearning,代码行数:26,代码来源:logRegres.py
示例6: test_testMasked
def test_testMasked(self):
# Test of masked element
xx = arange(6)
xx[1] = masked
self.assertTrue(str(masked) == '--')
self.assertTrue(xx[1] is masked)
self.assertEqual(filled(xx[1], 0), 0)
开发者ID:8ballbb,项目名称:ProjectRothar,代码行数:7,代码来源:test_old_ma.py
示例7: solve_equation
def solve_equation(k, m, x0, xk, n, h, t, w, x, solver, method_name, draw_flag):
solver(k, m, x0, xk, n, h, t, w, x)
xx = arange(x0, xk, 0.1)
f_y = []
for i in x:
f_y.append(calculate_f_x_1(i, k, m))
mean_square_error = calculate_mean_square_error(x, f_y, w)
max_error = calculate_max_norm(x, f_y, w)
mean_format = "{:.4f}"
max_format = "{:.4f}"
if mean_square_error < 0.0001:
mean_format = "{:.3e}"
elif mean_square_error > 100:
mean_format = "{:.0f}"
if max_error < 0.0001:
max_format = "{:.3e}"
elif max_error > 100:
max_format = "{:.0f}"
print(";".join((str(n), mean_format.format(mean_square_error), max_format.format(max_error))))
if draw_flag:
add_to_plot(xx, calculate_f_x_1(xx, k, m), "Given function")
add_to_plot(x, w, method_name + " differential")
file_name = method_name + "_" + str(n)
title = (
method_name
+ " n = "
+ str(n)
+ "\n mean square error = "
+ mean_format.format(mean_square_error)
+ "\n max error = "
+ max_format.format(max_error)
)
draw_plot(title, file_name)
开发者ID:WiktorJ,项目名称:Computation-Methods,代码行数:33,代码来源:FirstOrderDifferentialSolver.py
示例8: test_testMasked
def test_testMasked(self):
# Test of masked element
xx = arange(6)
xx[1] = masked
assert_(str(masked) == '--')
assert_(xx[1] is masked)
assert_equal(filled(xx[1], 0), 0)
开发者ID:numpy,项目名称:numpy,代码行数:7,代码来源:test_old_ma.py
示例9: brute_force
def brute_force(f, a, b, segments):
x0 = a
x1 = b
dx = (x1 - x0) / segments
fs = map(lambda _x: (_x, f(_x)), arange(x0, x1, dx))
return min(fs, key=lambda xf: abs(xf[1]))
开发者ID:germtb,项目名称:Pysics,代码行数:7,代码来源:algorithms.py
示例10: test_pearsonr
def test_pearsonr(self):
# Tests some computations of Pearson's r
x = ma.arange(10)
with warnings.catch_warnings():
# The tests in this context are edge cases, with perfect
# correlation or anticorrelation, or totally masked data.
# None of these should trigger a RuntimeWarning.
warnings.simplefilter("error", RuntimeWarning)
assert_almost_equal(mstats.pearsonr(x, x)[0], 1.0)
assert_almost_equal(mstats.pearsonr(x, x[::-1])[0], -1.0)
x = ma.array(x, mask=True)
pr = mstats.pearsonr(x, x)
assert_(pr[0] is masked)
assert_(pr[1] is masked)
x1 = ma.array([-1.0, 0.0, 1.0])
y1 = ma.array([0, 0, 3])
r, p = mstats.pearsonr(x1, y1)
assert_almost_equal(r, np.sqrt(3)/2)
assert_almost_equal(p, 1.0/3)
# (x2, y2) have the same unmasked data as (x1, y1).
mask = [False, False, False, True]
x2 = ma.array([-1.0, 0.0, 1.0, 99.0], mask=mask)
y2 = ma.array([0, 0, 3, -1], mask=mask)
r, p = mstats.pearsonr(x2, y2)
assert_almost_equal(r, np.sqrt(3)/2)
assert_almost_equal(p, 1.0/3)
开发者ID:andycasey,项目名称:scipy,代码行数:30,代码来源:test_mstats_basic.py
示例11: test_masked_1d_single
def test_masked_1d_single(self):
data = ma.arange(11)
data[3:7] = ma.masked
actual = PERCENTILE.aggregate(data, axis=0, percent=50)
expected = 7
self.assertTupleEqual(actual.shape, ())
self.assertEqual(actual, expected)
开发者ID:QuLogic,项目名称:iris,代码行数:7,代码来源:test_PERCENTILE.py
示例12: self_training
def self_training(X, y, X_unLabeled, clf, th):
clf.fit(X=X, y=y)
index_unlabeled = ma.arange(0, len(X_unLabeled), 1)
y_unlabeled = np.zeros(len(X_unLabeled))
train_is_failed = False
while True:
probs = clf.predict_proba(X=X_unLabeled[~ma.getmaskarray(index_unlabeled)])
index_greater_equal = np.greater_equal([max(d) for d in probs], [th]*len(probs))
index_labelable = index_unlabeled.data[~ma.getmaskarray(index_unlabeled)][index_greater_equal]
if not len(index_labelable) > 0:
if not len(index_unlabeled.data[ma.getmaskarray(index_unlabeled)]) > 0:
train_is_failed = True
break
index_unlabeled[index_labelable] = ma.masked
if index_unlabeled.all() is ma.masked:
break
y_unlabeled[index_labelable] = [np.argmax(p) for p in probs[index_greater_equal]]
X_labelable = X_unLabeled[index_unlabeled.mask]
y_labelable = y_unlabeled[index_unlabeled.mask]
clf.fit(X=np.append(X, X_labelable, axis=0),
y=np.append(y, y_labelable))
if train_is_failed:
y_unlabeled = []
else:
y_unlabeled = ma.array(data=y_unlabeled, mask=index_unlabeled.mask)
return clf, y_unlabeled
开发者ID:TatsuyukiIju,项目名称:data_projection,代码行数:35,代码来源:test.py
示例13: test_scalar_mask
def test_scalar_mask(self):
# Testing the bug raised in https://github.com/SciTools/iris/pull/123#issuecomment-9309872
# (the fix workaround for the np.append bug failed for scalar masks)
cube = tests.stock.realistic_4d_w_missing_data()
cube.data = ma.arange(np.product(cube.shape), dtype=np.float32).reshape(cube.shape)
cube.coord('grid_longitude').circular = True
# There's no result to test, just make sure we don't cause an exception with the scalar mask.
_ = iris.analysis.interpolate.linear(cube, [('grid_longitude', 0), ('grid_latitude', 0)])
开发者ID:Jozhogg,项目名称:iris,代码行数:8,代码来源:test_interpolation.py
示例14: test_multi
def test_multi(self):
for dtype in [np.int, np.float]:
data = ma.arange(12, dtype=dtype)
data[::2] = ma.masked
self._check(data.reshape(3, 4))
data = ma.arange(12, dtype=dtype)
data[1::2] = ma.masked
self._check(data.reshape(3, 4))
data = ma.arange(12, dtype=dtype).reshape(3, 4)
data[::2] = ma.masked
self._check(data)
data = ma.arange(12, dtype=dtype).reshape(3, 4)
data[1::2] = ma.masked
self._check(data)
开发者ID:QuLogic,项目名称:biggus,代码行数:17,代码来源:test_count.py
示例15: test_masked_1d_multi
def test_masked_1d_multi(self):
data = ma.arange(11)
data[3:9] = ma.masked
percent = np.array([25, 50, 75])
actual = PERCENTILE.aggregate(data, axis=0, percent=percent)
expected = [1, 2, 9]
self.assertTupleEqual(actual.shape, percent.shape)
self.assertArrayEqual(actual, expected)
开发者ID:QuLogic,项目名称:iris,代码行数:8,代码来源:test_PERCENTILE.py
示例16: test_trim
def test_trim(self):
a = ma.arange(10)
assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
a = ma.arange(10)
assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
[None,None,None,3,4,5,6,7,None,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
[None,1,2,3,4,5,6,7,None,None])
a = ma.arange(12)
a[[0,-1]] = a[5] = masked
assert_equal(mstats.trim(a,(2,8)),
[None,None,2,3,4,None,6,7,8,None,None,None])
x = ma.arange(100).reshape(10,10)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx._mask.T.ravel(),[1]*10+[0]*70+[1]*20)
x = ma.arange(110).reshape(11,10)
x[1] = masked
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x.T,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx.T._mask.ravel(),[1]*20+[0]*70+[1]*20)
开发者ID:bulli92,项目名称:scipy,代码行数:33,代码来源:test_mstats_basic.py
示例17: test_minmax
def test_minmax(self):
a = arange(1, 13).reshape(3, 4)
amask = masked_where(a < 5, a)
assert_equal(amask.max(), a.max())
assert_equal(amask.min(), 5)
assert_((amask.max(0) == a.max(0)).all())
assert_((amask.min(0) == [5, 6, 7, 8]).all())
assert_(amask.max(1)[0].mask)
assert_(amask.min(1)[0].mask)
开发者ID:numpy,项目名称:numpy,代码行数:9,代码来源:test_old_ma.py
示例18: test_testPickle
def test_testPickle(self):
# Test of pickling
x = arange(12)
x[4:10:2] = masked
x = x.reshape(4, 3)
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
s = pickle.dumps(x, protocol=proto)
y = pickle.loads(s)
assert_(eq(x, y))
开发者ID:numpy,项目名称:numpy,代码行数:9,代码来源:test_old_ma.py
示例19: setUp
def setUp(self):
self.data = ma.arange(12).reshape(3, 4)
self.data.mask = [[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 1, 1, 1]]
# --> fractions of masked-points in columns = [0, 1/3, 2/3, 1]
self.array = as_lazy_data(self.data)
self.axis = 0
self.expected_masked = ma.mean(self.data, axis=self.axis)
开发者ID:SciTools,项目名称:iris,代码行数:9,代码来源:test_MEAN.py
示例20: test_flat
def test_flat(self):
for dtype in [np.int, np.float]:
data = ma.arange(12, dtype=dtype)
data[::2] = ma.masked
self._check(data)
data.mask = ma.nomask
data[1::2] = ma.masked
self._check(data)
开发者ID:QuLogic,项目名称:biggus,代码行数:9,代码来源:test_count.py
注:本文中的numpy.ma.arange函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论