本文整理汇总了Python中numpy.ma.log函数的典型用法代码示例。如果您正苦于以下问题:Python log函数的具体用法?Python log怎么用?Python log使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了log函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: trainNB0
def trainNB0(trainMatrix, trainClassMatrix):
'''
朴素贝叶斯分类器训练函数
:param trainMatrix: 训练集矩阵
:param trainClassMatrix: 包含训练集的类别矩阵
:return: p0Vect: 第0类的一个向量,其中每个维度的值表示在第0类的所有样本的所有词组中,该维度的词所占的比例, p1Vect: 意思和p0Vect类同, pAbusive: 第1类样本的数量在训练集所占的比例
'''
# 获取训练集有多少个样本
numOfTrainDocs = len(trainMatrix)
# 获取词条向量所包含的属性个数
numOfWords = len(trainMatrix[0])
pAbusive = sum(trainClassMatrix) / numOfTrainDocs
p0Num = ones(numOfWords)
p1Num = ones(numOfWords)
# 分母,表示在第0类下训练集所包含的词的总数量
p0Denom = 2.0
p1Denom = 2.0
for i in range(numOfTrainDocs):
if trainClassMatrix[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 这里用log是防止下溢
p0Vect = log(p0Num / p0Denom)
p1Vect = log(p1Num / p1Denom)
return p0Vect, p1Vect, pAbusive
开发者ID:wyuanchen,项目名称:machineLearning,代码行数:28,代码来源:bayes.py
示例2: classifyNB
def classifyNB(inputVec, p0Vect, p1Vect, pAbsive):
p0 = sum(inputVec * p0Vect) + log(1 - pAbsive)
p1 = sum(inputVec * p1Vect) + log(pAbsive)
if p1 > p0:
return 1
else:
return 0
开发者ID:shenhd,项目名称:Machine-Learning-Practice,代码行数:7,代码来源:bayes.py
示例3: costFunction_Regular
def costFunction_Regular(theta, *args):
print "现在在调用正则化的cost函数"
# print "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@",shape(theta)
dataArr = asarray(args[0]) # args0 为特征数据 args1 为类别数据
labelArr = asarray(args[1])
m, n = shape(dataArr) # dataArr 已经加入bias
# print "记录条数:",m
theta = reshape(theta, (n, 1))
#print "costFunction_Regular中theta的值为:", theta
hx = sigmodFunction(dataArr, theta) #计算预测的类别概率值
loghx = ma.log(hx)
#print "log hx:",loghx
yhx = dot(loghx.transpose(), labelArr)
#print "yhx:",yhx
log1_hx = ma.log(1 - hx)
#print "log1_hx:",log1_hx
#print (-yhx-dot(log1_hx.transpose(),(1-labelArr)))*1.0/m
#print "lameda 值为:", args[2] # args[2]为传入的lameda参数
jtheta = (-yhx - dot(log1_hx.transpose(), (1 - labelArr))) * 1.0 / m + args[2] * 1.0 / (2 * m) * (
dot(theta.transpose(), theta) - theta[0, 0] ** 2)
#gra=getGradient(dataArr,labelArr,theta,m)
#print type(jtheta),type(gra.flatten())
#print gra
#print "###################",type(array(jtheta)[0]),array(jtheta)[0]
#print "costFunction_Regular得到的jtheta值为:", type(jtheta.flatten()[0]), jtheta, jtheta.flatten()[0]
print "&&&&&7jtheta.flatten()[0]", jtheta.flatten()[0]
return jtheta.flatten()[0]
开发者ID:kingflyingwx,项目名称:Machine-Learning,代码行数:27,代码来源:LogisticRegression_onevsall_train.py
示例4: entropy
def entropy(array, dim=None):
if dim is None:
array = array.ravel()
dim = 0
n = ma.sum(array, dim)
array = ma.log(array) * array
sum = ma.sum(array, dim)
return (ma.log(n) - sum / n) / ma.log(2.0)
开发者ID:astaric,项目名称:orange-bio,代码行数:8,代码来源:expression.py
示例5: average_in_flux
def average_in_flux(mag, dmag, axis=None):
flux = 10**(mag / -2.5)
dflux = np.log(10) / 2.5 * flux * dmag
avg_dflux = np.power(np.sum(np.power(dflux, -2), axis), -0.5)
avg_flux = np.sum(flux * np.power(dflux, -2), axis) * avg_dflux**2
avg_mag = -2.5 * np.log10(avg_flux)
avg_dmag = 2.5 / np.log(10) * np.divide(avg_dflux, avg_flux)
return avg_mag, avg_dmag
开发者ID:svalenti,项目名称:lcogtsnpipe,代码行数:8,代码来源:calibratemag.py
示例6: computeCost
def computeCost(theta, X, y, lamda):
m = np.shape(X)[0]
hypo = sigmoid(X.dot(theta))
term1 = log(hypo).dot(-y)
term2 = log(1.0 - hypo).dot(1 - y)
left_hand = (term1 - term2) / m
right_hand = theta.transpose().dot(theta) * lamda / (2 * m)
return left_hand + right_hand
开发者ID:steven1227,项目名称:MLwithPy,代码行数:8,代码来源:ex2_2.py
示例7: log_linear_vinterp
def log_linear_vinterp(T,P,levs):
'''
# Author Charles Doutriaux
# Version 1.1
# Expect 2D field here so there''s no reorder which I suspect to do a memory leak
# email: [email protected]
# Converts a field from sigma levels to pressure levels
# Log linear interpolation
# Input
# T : temperature on sigma levels
# P : pressure field from TOP (level 0) to BOTTOM (last level)
# levs : pressure levels to interplate to (same units as P)
# Output
# t : temperature on pressure levels (levs)
# External: Numeric'''
import numpy.ma as MA
## from numpy.oldnumeric.ma import ones,Float,greater,less,logical_and,where,equal,log,asarray,Float16
sh=P.shape
nsigma=sh[0] # Number of sigma levels
try:
nlev=len(levs) # Number of pressure levels
except:
nlev=1 # if only one level len(levs) would breaks
t=[]
for ilv in range(nlev): # loop through pressure levels
try:
lev=levs[ilv] # get value for the level
except:
lev=levs # only 1 level passed
# print ' ......... level:',lev
Pabv=MA.ones(P[0].shape,Numeric.Float)
Tabv=-Pabv # Temperature on sigma level Above
Tbel=-Pabv # Temperature on sigma level Below
Pbel=-Pabv # Pressure on sigma level Below
Pabv=-Pabv # Pressure on sigma level Above
for isg in range(1,nsigma): # loop from second sigma level to last one
## print 'Sigma level #',isg
a = MA.greater(P[isg], lev) # Where is the pressure greater than lev
b = MA.less(P[isg-1],lev) # Where is the pressure less than lev
# Now looks if the pressure level is in between the 2 sigma levels
# If yes, sets Pabv, Pbel and Tabv, Tbel
Pabv=MA.where(MA.logical_and(a,b),P[isg],Pabv) # Pressure on sigma level Above
Tabv=MA.where(MA.logical_and(a,b),T[isg],Tabv) # Temperature on sigma level Above
Pbel=MA.where(MA.logical_and(a,b),P[isg-1],Pbel) # Pressure on sigma level Below
Tbel=MA.where(MA.logical_and(a,b),T[isg-1],Tbel) # Temperature on sigma level Below
# end of for isg in range(1,nsigma)
# val=where(equal(Pbel,-1.),Pbel.missing_value,lev) # set to missing value if no data below lev if there is
tl=MA.masked_where(MA.equal(Pbel,-1.),MA.log(lev/MA.absolute(Pbel))/MA.log(Pabv/Pbel)*(Tabv-Tbel)+Tbel) # Interpolation
t.append(tl) # add a level to the output
# end of for ilv in range(nlev)
return asMA(t).astype(Numeric.Float32) # convert t to an array
开发者ID:UV-CDAT,项目名称:parallel,代码行数:57,代码来源:csm_sigma2p_daily.py
示例8: KL_Measure
def KL_Measure(i, j):
'''
计算KL散度
:return:
'''
KL1 = sum(i*(log(i/j).data))
KL2 = sum(j*(log(j/i).data))
D = (KL1 + KL2)/2
return 1/(1+ math.e ** D )
开发者ID:sherrylml,项目名称:Opinion-Mining,代码行数:9,代码来源:AMCBoot.py
示例9: _zfromp_MA
def _zfromp_MA(P, lapse_rate, P_bott, T_bott, z_bott):
"""Altitude given pressure in a constant lapse rate layer.
The dry gas constant is used in calculations requiring the gas
constant. See the docstring for press2alt for references.
Input Arguments:
* P: Pressure [hPa].
* lapse_rate: -dT/dz [K/m] over the layer.
* P_bott: Pressure [hPa] at the base of the layer.
* T_bott: Temperature [K] at the base of the layer.
* z_bott: Geopotential altitude [m] of the base of the layer.
Output:
* Altitude [m] for each element given in the input arguments.
All input arguments can be either a scalar or an MA array. All
arguments that are MA arrays, however, are of the same size and
shape. If every input argument is a scalar, the output is a scalar.
If any of the input arguments is an MA array, the output is an MA
array of the same size and shape.
"""
import numpy as N
#jfp was import Numeric as N
import numpy.ma as MA
#jfp was import MA
from atmconst import AtmConst
const = AtmConst()
if MA.size(lapse_rate) == 1:
if MA.array(lapse_rate)[0] == 0.0:
return ( (-const.R_d * T_bott / const.g) * MA.log(P/P_bott) ) + \
z_bott
else:
exponent = (const.R_d * lapse_rate) / const.g
return ((T_bott / lapse_rate) * (1. - (P/P_bott)**exponent)) + \
z_bott
else:
exponent = (const.R_d * lapse_rate) / const.g
z = ((T_bott / lapse_rate) * (1. - (P/P_bott)**exponent)) + z_bott
z_at_0 = ( (-const.R_d * T_bott / const.g) * MA.log(P/P_bott) ) + \
z_bott
zero_lapse_mask = MA.filled(MA.where(lapse_rate == 0., 1, 0), 0)
zero_lapse_mask_indices_flat = N.nonzero(N.ravel(zero_lapse_mask))
z_flat = MA.ravel(z)
MA.put( z_flat, zero_lapse_mask_indices_flat \
, MA.take(MA.ravel(z_at_0), zero_lapse_mask_indices_flat) )
return MA.reshape(z_flat, z.shape)
开发者ID:UV-CDAT,项目名称:uvcmetrics,代码行数:50,代码来源:press2alt.py
示例10: classifyNB
def classifyNB(vecToClassify, p0Vec, p1Vec, pClass1):
'''
利用训练好的模型进行分类
:param param:
:param p0Vec:
:param p1Vec:
:param pClass1:
:return:
'''
p1 = sum(vecToClassify * p0Vec) + log(pClass1)
p0 = sum(vecToClassify * p1Vec) + log(1 - pClass1)
if p1 > p0:
return 1
else:
return 0
开发者ID:wyuanchen,项目名称:machineLearning,代码行数:15,代码来源:bayes.py
示例11: __call__
def __call__(self, value, clip=None):
if clip is None:
clip = self.clip
if cbook.iterable(value):
vtype = 'array'
val = ma.asarray(value).astype(np.float)
else:
vtype = 'scalar'
val = ma.array([value]).astype(np.float)
self.autoscale_None(val)
vmin, vmax = self.vmin, self.vmax
if vmin > vmax:
raise ValueError("minvalue must be less than or equal to maxvalue")
elif vmin<=0:
raise ValueError("values must all be positive")
elif vmin==vmax:
return 0.0 * val
else:
if clip:
mask = ma.getmask(val)
val = ma.array(np.clip(val.filled(vmax), vmin, vmax),
mask=mask)
result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
if vtype == 'scalar':
result = result[0]
return result
开发者ID:AndreI11,项目名称:SatStressGui,代码行数:28,代码来源:colors.py
示例12: test_testUfuncs1
def test_testUfuncs1(self):
# Test various functions such as sin, cos.
(x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
assert_(eq(np.cos(x), cos(xm)))
assert_(eq(np.cosh(x), cosh(xm)))
assert_(eq(np.sin(x), sin(xm)))
assert_(eq(np.sinh(x), sinh(xm)))
assert_(eq(np.tan(x), tan(xm)))
assert_(eq(np.tanh(x), tanh(xm)))
with np.errstate(divide='ignore', invalid='ignore'):
assert_(eq(np.sqrt(abs(x)), sqrt(xm)))
assert_(eq(np.log(abs(x)), log(xm)))
assert_(eq(np.log10(abs(x)), log10(xm)))
assert_(eq(np.exp(x), exp(xm)))
assert_(eq(np.arcsin(z), arcsin(zm)))
assert_(eq(np.arccos(z), arccos(zm)))
assert_(eq(np.arctan(z), arctan(zm)))
assert_(eq(np.arctan2(x, y), arctan2(xm, ym)))
assert_(eq(np.absolute(x), absolute(xm)))
assert_(eq(np.equal(x, y), equal(xm, ym)))
assert_(eq(np.not_equal(x, y), not_equal(xm, ym)))
assert_(eq(np.less(x, y), less(xm, ym)))
assert_(eq(np.greater(x, y), greater(xm, ym)))
assert_(eq(np.less_equal(x, y), less_equal(xm, ym)))
assert_(eq(np.greater_equal(x, y), greater_equal(xm, ym)))
assert_(eq(np.conjugate(x), conjugate(xm)))
assert_(eq(np.concatenate((x, y)), concatenate((xm, ym))))
assert_(eq(np.concatenate((x, y)), concatenate((x, y))))
assert_(eq(np.concatenate((x, y)), concatenate((xm, y))))
assert_(eq(np.concatenate((x, y, x)), concatenate((x, ym, x))))
开发者ID:numpy,项目名称:numpy,代码行数:30,代码来源:test_old_ma.py
示例13: dewpoint
def dewpoint(e):
r'''Calculate the ambient dewpoint given the vapor pressure.
Parameters
----------
e : array_like
Water vapor partial pressure in mb
Returns
-------
array_like
Dew point temperature in degrees Celsius.
See Also
--------
dewpoint_rh, saturation_vapor_pressure, vapor_pressure
Notes
-----
This function inverts the Bolton 1980 [3] formula for saturation vapor
pressure to instead calculate the temperature. This yield the following
formula for dewpoint in degrees Celsius:
.. math:: T = \frac{243.5 log(e / 6.112)}{17.67 - log(e / 6.112)}
References
----------
.. [3] Bolton, D., 1980: The Computation of Equivalent Potential
Temperature. Mon. Wea. Rev., 108, 1046-1053.
'''
val = log(e / sat_pressure_0c)
return 243.5 * val / (17.67 - val)
开发者ID:mmorello1,项目名称:MetPy,代码行数:33,代码来源:thermo.py
示例14: geometric_mean
def geometric_mean(array, axis=0):
'''return the geometric mean of an array removing all zero-values but
retaining total length
'''
non_zero = ma.masked_values(array, 0)
log_a = ma.log(non_zero)
return ma.exp(log_a.mean(axis=axis))
开发者ID:BioXiao,项目名称:cgat,代码行数:7,代码来源:Counts.py
示例15: transform
def transform(self, a):
sign = np.sign(a)
masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
log = sign * self.linthresh * (1 + ma.log(np.abs(masked) / self.linthresh))
if masked.mask.any():
return ma.where(masked.mask, a, log)
else:
return log
开发者ID:KiranPanesar,项目名称:wolfpy,代码行数:8,代码来源:scale.py
示例16: transform_non_affine
def transform_non_affine(self, a):
sign = np.sign(a)
masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
log = sign * self.linthresh * (self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base)
if masked.mask.any():
return ma.where(masked.mask, a * self._linscale_adj, log)
else:
return log
开发者ID:Kojoley,项目名称:matplotlib,代码行数:8,代码来源:scale.py
示例17: transform
def transform(self, a):
sign = np.sign(np.asarray(a))
masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
log = sign * ma.log(np.abs(masked)) / self._log_base
if masked.mask.any():
return np.asarray(ma.where(masked.mask, a * self._linadjust, log))
else:
return np.asarray(log)
开发者ID:mattfoster,项目名称:matplotlib,代码行数:8,代码来源:scale.py
示例18: ln_shifted_auto
def ln_shifted_auto(v):
"""If 'v' has values <= 0, it is shifted in a way that min(v)=1 before doing log.
Otherwise the log is done on the original 'v'."""
vmin = ma.minimum(v)
if vmin <= 0:
values = v - vmin + 1
else:
values = v
return ma.log(values)
开发者ID:christianurich,项目名称:VIBe2UrbanSim,代码行数:9,代码来源:variable.py
示例19: trainNB1
def trainNB1(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWord = len(trainMatrix[0])
pAbusive = sum(trainCategory) / float(numTrainDocs)
p0Num = ones(numWord)
p1Num = ones(numWord)
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p0Vect = log(p0Num / p0Denom)
p1Vect = log(p1Num / p1Denom)
return p0Vect, p1Vect, pAbusive
开发者ID:shenhd,项目名称:Machine-Learning-Practice,代码行数:18,代码来源:bayes.py
示例20: transform
def transform(self, a):
a = np.asarray(a)
sign = np.sign(a)
masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
if masked.mask.any():
log = sign * (ma.log(np.abs(masked)) / self._log_base + self._linadjust)
return np.asarray(ma.where(masked.mask, a * self._linscale, log))
else:
return sign * (np.log(np.abs(a)) / self._log_base + self._linadjust)
开发者ID:AlexSzatmary,项目名称:matplotlib,代码行数:9,代码来源:scale.py
注:本文中的numpy.ma.log函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论