本文整理汇总了Python中pandas.types.missing.notnull函数的典型用法代码示例。如果您正苦于以下问题:Python notnull函数的具体用法?Python notnull怎么用?Python notnull使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了notnull函数的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_isnull_datetime
def test_isnull_datetime(self):
self.assertFalse(isnull(datetime.now()))
self.assertTrue(notnull(datetime.now()))
idx = date_range('1/1/1990', periods=20)
exp = np.ones(len(idx), dtype=bool)
tm.assert_numpy_array_equal(notnull(idx), exp)
idx = np.asarray(idx)
idx[0] = iNaT
idx = DatetimeIndex(idx)
mask = isnull(idx)
self.assertTrue(mask[0])
exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool)
self.assert_numpy_array_equal(mask, exp)
# GH 9129
pidx = idx.to_period(freq='M')
mask = isnull(pidx)
self.assertTrue(mask[0])
exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool)
self.assert_numpy_array_equal(mask, exp)
mask = isnull(pidx[1:])
exp = np.zeros(len(mask), dtype=bool)
self.assert_numpy_array_equal(mask, exp)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:26,代码来源:test_missing.py
示例2: na_op
def na_op(x, y):
try:
result = expressions.evaluate(op, str_rep, x, y,
raise_on_error=True, **eval_kwargs)
except TypeError:
xrav = x.ravel()
if isinstance(y, (np.ndarray, ABCSeries)):
dtype = np.find_common_type([x.dtype, y.dtype], [])
result = np.empty(x.size, dtype=dtype)
yrav = y.ravel()
mask = notnull(xrav) & notnull(yrav)
xrav = xrav[mask]
yrav = yrav[mask]
if np.prod(xrav.shape) and np.prod(yrav.shape):
result[mask] = op(xrav, yrav)
elif hasattr(x, 'size'):
result = np.empty(x.size, dtype=x.dtype)
mask = notnull(xrav)
xrav = xrav[mask]
if np.prod(xrav.shape):
result[mask] = op(xrav, y)
else:
raise TypeError("cannot perform operation {op} between "
"objects of type {x} and {y}".format(
op=name, x=type(x), y=type(y)))
result, changed = _maybe_upcast_putmask(result, ~mask, np.nan)
result = result.reshape(x.shape)
result = missing.fill_zeros(result, x, y, name, fill_zeros)
return result
开发者ID:craigyoung2016,项目名称:pandas,代码行数:32,代码来源:ops.py
示例3: test_notnull
def test_notnull():
assert notnull(1.)
assert not notnull(None)
assert not notnull(np.NaN)
with cf.option_context("mode.use_inf_as_null", False):
assert notnull(np.inf)
assert notnull(-np.inf)
arr = np.array([1.5, np.inf, 3.5, -np.inf])
result = notnull(arr)
assert result.all()
with cf.option_context("mode.use_inf_as_null", True):
assert not notnull(np.inf)
assert not notnull(-np.inf)
arr = np.array([1.5, np.inf, 3.5, -np.inf])
result = notnull(arr)
assert result.sum() == 2
with cf.option_context("mode.use_inf_as_null", False):
for s in [tm.makeFloatSeries(), tm.makeStringSeries(),
tm.makeObjectSeries(), tm.makeTimeSeries(),
tm.makePeriodSeries()]:
assert (isinstance(isnull(s), Series))
开发者ID:joaoweissmann,项目名称:pandas,代码行数:26,代码来源:test_missing.py
示例4: test_period
def test_period(self):
idx = pd.PeriodIndex(['2011-01', 'NaT', '2012-01'], freq='M')
exp = np.array([False, True, False])
tm.assert_numpy_array_equal(isnull(idx), exp)
tm.assert_numpy_array_equal(notnull(idx), ~exp)
exp = pd.Series([False, True, False])
s = pd.Series(idx)
tm.assert_series_equal(isnull(s), exp)
tm.assert_series_equal(notnull(s), ~exp)
s = pd.Series(idx, dtype=object)
tm.assert_series_equal(isnull(s), exp)
tm.assert_series_equal(notnull(s), ~exp)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:13,代码来源:test_missing.py
示例5: nancov
def nancov(a, b, min_periods=None):
if len(a) != len(b):
raise AssertionError('Operands to nancov must have same size')
if min_periods is None:
min_periods = 1
valid = notnull(a) & notnull(b)
if not valid.all():
a = a[valid]
b = b[valid]
if len(a) < min_periods:
return np.nan
return np.cov(a, b)[0, 1]
开发者ID:andrewkittredge,项目名称:pandas,代码行数:16,代码来源:nanops.py
示例6: make_sparse
def make_sparse(arr, kind='block', fill_value=nan):
"""
Convert ndarray to sparse format
Parameters
----------
arr : ndarray
kind : {'block', 'integer'}
fill_value : NaN or another value
Returns
-------
(sparse_values, index) : (ndarray, SparseIndex)
"""
arr = _sanitize_values(arr)
if arr.ndim > 1:
raise TypeError("expected dimension <= 1 data")
if isnull(fill_value):
mask = notnull(arr)
else:
mask = arr != fill_value
length = len(arr)
if length != mask.size:
# the arr is a SparseArray
indices = mask.sp_index.indices
else:
indices = np.arange(length, dtype=np.int32)[mask]
index = _make_index(length, indices, kind)
sparsified_values = arr[mask]
return sparsified_values, index
开发者ID:adrian-stepien,项目名称:pandas,代码行数:35,代码来源:array.py
示例7: nancorr
def nancorr(a, b, method='pearson', min_periods=None):
"""
a, b: ndarrays
"""
if len(a) != len(b):
raise AssertionError('Operands to nancorr must have same size')
if min_periods is None:
min_periods = 1
valid = notnull(a) & notnull(b)
if not valid.all():
a = a[valid]
b = b[valid]
if len(a) < min_periods:
return np.nan
f = get_corr_func(method)
return f(a, b)
开发者ID:andrewkittredge,项目名称:pandas,代码行数:20,代码来源:nanops.py
示例8: stack
def stack(frame, level=-1, dropna=True):
"""
Convert DataFrame to Series with multi-level Index. Columns become the
second level of the resulting hierarchical index
Returns
-------
stacked : Series
"""
def factorize(index):
if index.is_unique:
return index, np.arange(len(index))
codes, categories = _factorize_from_iterable(index)
return categories, codes
N, K = frame.shape
if isinstance(frame.columns, MultiIndex):
if frame.columns._reference_duplicate_name(level):
msg = ("Ambiguous reference to {0}. The column "
"names are not unique.".format(level))
raise ValueError(msg)
# Will also convert negative level numbers and check if out of bounds.
level_num = frame.columns._get_level_number(level)
if isinstance(frame.columns, MultiIndex):
return _stack_multi_columns(frame, level_num=level_num, dropna=dropna)
elif isinstance(frame.index, MultiIndex):
new_levels = list(frame.index.levels)
new_labels = [lab.repeat(K) for lab in frame.index.labels]
clev, clab = factorize(frame.columns)
new_levels.append(clev)
new_labels.append(np.tile(clab, N).ravel())
new_names = list(frame.index.names)
new_names.append(frame.columns.name)
new_index = MultiIndex(levels=new_levels, labels=new_labels,
names=new_names, verify_integrity=False)
else:
levels, (ilab, clab) = zip(*map(factorize, (frame.index,
frame.columns)))
labels = ilab.repeat(K), np.tile(clab, N).ravel()
new_index = MultiIndex(levels=levels, labels=labels,
names=[frame.index.name, frame.columns.name],
verify_integrity=False)
new_values = frame.values.ravel()
if dropna:
mask = notnull(new_values)
new_values = new_values[mask]
new_index = new_index[mask]
return Series(new_values, index=new_index)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:54,代码来源:reshape.py
示例9: test_isnull_datetime
def test_isnull_datetime():
assert (not isnull(datetime.now()))
assert notnull(datetime.now())
idx = date_range('1/1/1990', periods=20)
assert (notnull(idx).all())
idx = np.asarray(idx)
idx[0] = iNaT
idx = DatetimeIndex(idx)
mask = isnull(idx)
assert (mask[0])
assert (not mask[1:].any())
# GH 9129
pidx = idx.to_period(freq='M')
mask = isnull(pidx)
assert (mask[0])
assert (not mask[1:].any())
mask = isnull(pidx[1:])
assert (not mask.any())
开发者ID:joaoweissmann,项目名称:pandas,代码行数:22,代码来源:test_missing.py
示例10: _guess_time_format_for_array
def _guess_time_format_for_array(arr):
# Try to guess the format based on the first non-NaN element
non_nan_elements = notnull(arr).nonzero()[0]
if len(non_nan_elements):
element = arr[non_nan_elements[0]]
for time_format in _time_formats:
try:
datetime.strptime(element, time_format)
return time_format
except ValueError:
pass
return None
开发者ID:AlexisMignon,项目名称:pandas,代码行数:13,代码来源:tools.py
示例11: test_datetime_other_units
def test_datetime_other_units(self):
idx = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-02'])
exp = np.array([False, True, False])
tm.assert_numpy_array_equal(isnull(idx), exp)
tm.assert_numpy_array_equal(notnull(idx), ~exp)
tm.assert_numpy_array_equal(isnull(idx.values), exp)
tm.assert_numpy_array_equal(notnull(idx.values), ~exp)
for dtype in ['datetime64[D]', 'datetime64[h]', 'datetime64[m]',
'datetime64[s]', 'datetime64[ms]', 'datetime64[us]',
'datetime64[ns]']:
values = idx.values.astype(dtype)
exp = np.array([False, True, False])
tm.assert_numpy_array_equal(isnull(values), exp)
tm.assert_numpy_array_equal(notnull(values), ~exp)
exp = pd.Series([False, True, False])
s = pd.Series(values)
tm.assert_series_equal(isnull(s), exp)
tm.assert_series_equal(notnull(s), ~exp)
s = pd.Series(values, dtype=object)
tm.assert_series_equal(isnull(s), exp)
tm.assert_series_equal(notnull(s), ~exp)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:24,代码来源:test_missing.py
示例12: test_timedelta_other_units
def test_timedelta_other_units(self):
idx = pd.TimedeltaIndex(['1 days', 'NaT', '2 days'])
exp = np.array([False, True, False])
tm.assert_numpy_array_equal(isnull(idx), exp)
tm.assert_numpy_array_equal(notnull(idx), ~exp)
tm.assert_numpy_array_equal(isnull(idx.values), exp)
tm.assert_numpy_array_equal(notnull(idx.values), ~exp)
for dtype in ['timedelta64[D]', 'timedelta64[h]', 'timedelta64[m]',
'timedelta64[s]', 'timedelta64[ms]', 'timedelta64[us]',
'timedelta64[ns]']:
values = idx.values.astype(dtype)
exp = np.array([False, True, False])
tm.assert_numpy_array_equal(isnull(values), exp)
tm.assert_numpy_array_equal(notnull(values), ~exp)
exp = pd.Series([False, True, False])
s = pd.Series(values)
tm.assert_series_equal(isnull(s), exp)
tm.assert_series_equal(notnull(s), ~exp)
s = pd.Series(values, dtype=object)
tm.assert_series_equal(isnull(s), exp)
tm.assert_series_equal(notnull(s), ~exp)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:24,代码来源:test_missing.py
示例13: _attempt_YYYYMMDD
def _attempt_YYYYMMDD(arg, errors):
""" try to parse the YYYYMMDD/%Y%m%d format, try to deal with NaT-like,
arg is a passed in as an object dtype, but could really be ints/strings
with nan-like/or floats (e.g. with nan)
Parameters
----------
arg : passed value
errors : 'raise','ignore','coerce'
"""
def calc(carg):
# calculate the actual result
carg = carg.astype(object)
parsed = lib.try_parse_year_month_day(carg / 10000,
carg / 100 % 100,
carg % 100)
return tslib.array_to_datetime(parsed, errors=errors)
def calc_with_mask(carg, mask):
result = np.empty(carg.shape, dtype='M8[ns]')
iresult = result.view('i8')
iresult[~mask] = tslib.iNaT
result[mask] = calc(carg[mask].astype(np.float64).astype(np.int64)). \
astype('M8[ns]')
return result
# try intlike / strings that are ints
try:
return calc(arg.astype(np.int64))
except:
pass
# a float with actual np.nan
try:
carg = arg.astype(np.float64)
return calc_with_mask(carg, notnull(carg))
except:
pass
# string with NaN-like
try:
mask = ~lib.ismember(arg, tslib._nat_strings)
return calc_with_mask(arg, mask)
except:
pass
return None
开发者ID:AlexisMignon,项目名称:pandas,代码行数:48,代码来源:tools.py
示例14: make_sparse
def make_sparse(arr, kind='block', fill_value=None):
"""
Convert ndarray to sparse format
Parameters
----------
arr : ndarray
kind : {'block', 'integer'}
fill_value : NaN or another value
Returns
-------
(sparse_values, index) : (ndarray, SparseIndex)
"""
arr = _sanitize_values(arr)
if arr.ndim > 1:
raise TypeError("expected dimension <= 1 data")
if fill_value is None:
fill_value = na_value_for_dtype(arr.dtype)
if isnull(fill_value):
mask = notnull(arr)
else:
# For str arrays in NumPy 1.12.0, operator!= below isn't
# element-wise but just returns False if fill_value is not str,
# so cast to object comparison to be safe
if is_string_dtype(arr):
arr = arr.astype(object)
mask = arr != fill_value
length = len(arr)
if length != mask.size:
# the arr is a SparseArray
indices = mask.sp_index.indices
else:
indices = mask.nonzero()[0].astype(np.int32)
index = _make_index(length, indices, kind)
sparsified_values = arr[mask]
return sparsified_values, index, fill_value
开发者ID:RogerThomas,项目名称:pandas,代码行数:44,代码来源:array.py
示例15: _guess_datetime_format_for_array
def _guess_datetime_format_for_array(arr, **kwargs):
# Try to guess the format based on the first non-NaN element
non_nan_elements = notnull(arr).nonzero()[0]
if len(non_nan_elements):
return _guess_datetime_format(arr[non_nan_elements[0]], **kwargs)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:5,代码来源:tools.py
示例16: lreshape
def lreshape(data, groups, dropna=True, label=None):
"""
Reshape long-format data to wide. Generalized inverse of DataFrame.pivot
Parameters
----------
data : DataFrame
groups : dict
{new_name : list_of_columns}
dropna : boolean, default True
Examples
--------
>>> import pandas as pd
>>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526],
... 'team': ['Red Sox', 'Yankees'],
... 'year1': [2007, 2008], 'year2': [2008, 2008]})
>>> data
hr1 hr2 team year1 year2
0 514 545 Red Sox 2007 2008
1 573 526 Yankees 2007 2008
>>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']})
team hr year
0 Red Sox 514 2007
1 Yankees 573 2007
2 Red Sox 545 2008
3 Yankees 526 2008
Returns
-------
reshaped : DataFrame
"""
if isinstance(groups, dict):
keys = list(groups.keys())
values = list(groups.values())
else:
keys, values = zip(*groups)
all_cols = list(set.union(*[set(x) for x in values]))
id_cols = list(data.columns.difference(all_cols))
K = len(values[0])
for seq in values:
if len(seq) != K:
raise ValueError("All column lists must be same length")
mdata = {}
pivot_cols = []
for target, names in zip(keys, values):
to_concat = [data[col].values for col in names]
mdata[target] = _concat._concat_compat(to_concat)
pivot_cols.append(target)
for col in id_cols:
mdata[col] = np.tile(data[col].values, K)
if dropna:
mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool)
for c in pivot_cols:
mask &= notnull(mdata[c])
if not mask.all():
mdata = dict((k, v[mask]) for k, v in compat.iteritems(mdata))
return DataFrame(mdata, columns=id_cols + pivot_cols)
开发者ID:aechase,项目名称:pandas,代码行数:67,代码来源:reshape.py
示例17: _valid_sp_values
def _valid_sp_values(self):
sp_vals = self.sp_values
mask = notnull(sp_vals)
return sp_vals[mask]
开发者ID:adrian-stepien,项目名称:pandas,代码行数:4,代码来源:array.py
示例18: isnotnull
def isnotnull(self):
arr = SparseArray(notnull(self.values.sp_values),
sparse_index=self.values.sp_index,
fill_value=notnull(self.fill_value))
return self._constructor(arr, index=self.index).__finalize__(self)
开发者ID:AlexisMignon,项目名称:pandas,代码行数:5,代码来源:series.py
示例19: get_median
def get_median(x):
mask = notnull(x)
if not skipna and not mask.all():
return np.nan
return algos.median(_values_from_object(x[mask]))
开发者ID:andrewkittredge,项目名称:pandas,代码行数:5,代码来源:nanops.py
注:本文中的pandas.types.missing.notnull函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论