• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python pymc3.summary函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pymc3.summary函数的典型用法代码示例。如果您正苦于以下问题:Python summary函数的具体用法?Python summary怎么用?Python summary使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了summary函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: run

def run(n=5000):
    with model_1:
        xstart = pm.find_MAP()
        xstep = pm.Slice()
        trace = pm.sample(5000, xstep, xstart, random_seed=123, progressbar=True)

        pm.summary(trace)
开发者ID:21hub,项目名称:pymc3,代码行数:7,代码来源:lightspeed_example.py


示例2: test_value_n_eff_rhat

 def test_value_n_eff_rhat(self):
     mu = -2.1
     tau = 1.3
     with Model():
         Normal('x0', mu, tau, testval=floatX_array(.1)) # 0d
         Normal('x1', mu, tau, shape=2, testval=floatX_array([.1, .1]))# 1d
         Normal('x2', mu, tau, shape=(2, 2),
                testval=floatX_array(np.tile(.1, (2, 2))))# 2d
         Normal('x3', mu, tau, shape=(2, 2, 3),
                testval=floatX_array(np.tile(.1, (2, 2, 3))))# 3d
         trace = pm.sample(100, step=pm.Metropolis())
     for varname in trace.varnames:
         # test effective_n value
         n_eff = pm.effective_n(trace, varnames=[varname])[varname]
         n_eff_df = np.asarray(
                 pm.summary(trace, varnames=[varname])['n_eff']
                              ).reshape(n_eff.shape)
         npt.assert_equal(n_eff, n_eff_df)
         
         # test Rhat value
         rhat = pm.gelman_rubin(trace, varnames=[varname])[varname]
         rhat_df = np.asarray(
                 pm.summary(trace, varnames=[varname])['Rhat']
                              ).reshape(rhat.shape)
         npt.assert_equal(rhat, rhat_df)
开发者ID:alexander-belikov,项目名称:pymc3,代码行数:25,代码来源:test_stats.py


示例3: test_summary_1d_variable_model

def test_summary_1d_variable_model():
    mu = -2.1
    tau = 1.3
    with Model() as model:
        x = Normal('x', mu, tau, shape=2, testval=[.1, .1])
        step = Metropolis(model.vars, np.diag([1.]), blocked=True)
        trace = pm.sample(100, step=step)
    pm.summary(trace)
开发者ID:jameshensman,项目名称:pymc3,代码行数:8,代码来源:test_stats.py


示例4: test_summary_2d_variable_model

 def test_summary_2d_variable_model(self):
     mu = -2.1
     tau = 1.3
     with Model() as model:
         Normal('x', mu, tau, shape=(2, 2),
                testval=floatX_array(np.tile(.1, (2, 2))))
         step = Metropolis(model.vars, np.diag([1.]), blocked=True)
         trace = pm.sample(100, step=step)
     pm.summary(trace)
开发者ID:springcoil,项目名称:pymc3,代码行数:9,代码来源:test_stats.py


示例5: __init__

    def __init__(self,X_train,y_train,n_hidden,lam=1):
        n_train = y_train.shape[0]
        n_dim = X_train.shape[1]
        print X_train.shape
        with pm.Model() as rbfnn:
            C = pm.Normal('C',mu=0,sd=10,shape=(n_hidden))
            #beta = pm.Gamma('beta',1,1)
            w = pm.Normal('w',mu=0,sd=10,shape=(n_hidden+1))
            
            #component, updates = theano.scan(fn=lambda x: T.sum(C-x)**2,sequences=[X_train])
            y_out=[]
            for x in X_train:
                #rbf_out =  T.exp(-lam*T.sum((C-x)**2,axis=1)) 
                #1d speed up
                rbf_out =  T.exp(-lam*(C-x)**2)
                #rbf_out = theano.printing.Print(rbf_out)                 
                rbf_out_biased = \
                        T.concatenate([ rbf_out, T.alloc(1,1) ], 0)
                y_out.append(T.dot(w,rbf_out_biased))
            
            y = pm.Normal('y',mu=y_out,sd=0.01,observed=y_train)
            
            start = pm.find_MAP(fmin=scipy.optimize.fmin_l_bfgs_b)
            print start
            step = pm.NUTS(scaling=start)
            trace = pm.sample(2000, step, progressbar=False)
            step = pm.NUTS(scaling=trace[-1])
            trace = pm.sample(20000,step,start=trace[-1])
            

            print summary(trace, vars=['C', 'w'])

            vars = trace.varnames   
            for i, v in enumerate(vars):
                for d in trace.get_values(v, combine=False, squeeze=False):
                    d=np.squeeze(d)
                    with open(str(v)+".txt","w+") as thefile:
                        for item in d:
                            print>>thefile, item

            traceplot(trace)
            plt.show()
开发者ID:jshe857,项目名称:thesis-rbfnn,代码行数:42,代码来源:MC_net.py


示例6: run

def run(n=1500):
    if n == 'short':
        n = 50

    with m:
        trace = pm.sample(n)

    pm.traceplot(trace, varnames=['mu_hat'])

    print('Example observed data: ')
    print(y[:30, :].T)
    print('The true ranking is: ')
    print(yreal.flatten())
    print('The Latent mean is: ')
    latentmu = np.hstack(([0], pm.summary(trace, varnames=['mu_hat'])['mean'].values))
    print(np.round(latentmu, 2))
    print('The estimated ranking is: ')
    print(np.argsort(latentmu))
开发者ID:aloctavodia,项目名称:pymc3,代码行数:18,代码来源:rankdata_ordered.py


示例7: print

import pymc3 as pm
import seaborn as sn
import matplotlib.pyplot as plt

with pm.Model() as model:
    uniform = pm.Uniform('uniform', lower=0, upper=1)
    normal = pm.Normal('normal', mu=0, sd=1)
    beta = pm.Beta('beta', alpha=0.5, beta=0.5)
    exponential = pm.Exponential('exponential', 1.0)

    trace = pm.sample(2000)

print(pm.summary(trace).round(2))

pm.traceplot(trace)
plt.show()
开发者ID:yaochitc,项目名称:learning_libraries,代码行数:16,代码来源:continuous.py


示例8: get_garch_model

}
"""


def get_garch_model():
    r = np.array([28, 8, -3, 7, -1, 1, 18, 12], dtype=np.float64)
    sigma1 = np.array([15, 10, 16, 11, 9, 11, 10, 18], dtype=np.float64)
    alpha0 = np.array([10, 10, 16, 8, 9, 11, 12, 18], dtype=np.float64)
    shape = r.shape

    with Model() as garch:
        alpha1 = Uniform('alpha1', 0., 1., shape=shape)
        beta1 = Uniform('beta1', 0., 1 - alpha1, shape=shape)
        mu = Normal('mu', mu=0., sd=100., shape=shape)
        theta = tt.sqrt(alpha0 + alpha1 * tt.pow(r - mu, 2) +
                        beta1 * tt.pow(sigma1, 2))
        Normal('obs', mu, sd=theta, observed=r)
    return garch


def run(n=1000):
    if n == "short":
        n = 50
    with get_garch_model():
        tr = sample(n, tune=1000)
    return tr


if __name__ == '__main__':
    summary(run())
开发者ID:alexander-belikov,项目名称:pymc3,代码行数:30,代码来源:garch_example.py


示例9: mixed_effects


#.........这里部分代码省略.........
                    )

        # Dependent Variable
        BoundedNegativeBinomial = pm.Bound(pm.NegativeBinomial, lower=1)
        y_est = BoundedNegativeBinomial('y_est', mu=mu, alpha=alpha, observed=y)
        y_pred = BoundedNegativeBinomial('y_pred', mu=mu, alpha=alpha, shape=y.shape)
        # y_est = pm.NegativeBinomial('y_est', mu=mu, alpha=alpha, observed=y)
        # y_pred = pm.NegativeBinomial('y_pred', mu=mu, alpha=alpha, shape=y.shape)
        # y_est = pm.Poisson('y_est', mu=mu, observed=data)
        # y_pred = pm.Poisson('y_pred', mu=mu, shape=data.shape)

        start = pm.find_MAP()
        step = pm.Metropolis(start=start)
        # step = pm.NUTS()
        # backend = pm.backends.Text('test')
        # trace = pm.sample(NSamples, step, start=start, chain=1, njobs=2, progressbar=True, trace=backend)
        trace = pm.sample(NSamples, step, start=start, njobs=1, progressbar=True)

        trace2 = trace
        trace = trace[-burn::thin]

        # waic = pm.waic(trace)
        # dic = pm.dic(trace)



    # with pm.Model() as model:
    #     trace_loaded = pm.backends.sqlite.load('FF49_industry.sqlite')
        # y_pred.dump('FF49_industry_missing/y_pred')


    ## POSTERIOR PREDICTIVE CHECKS
    y_pred = trace.get_values('y_pred')
    pm.summary(trace, vars=covariates)


    # PARAMETER POSTERIORS
    anno_kwargs = {'xycoords': 'data', 'textcoords': 'offset points',
                    'rotation': 90, 'va': 'bottom', 'fontsize': 'large'}
    anno_kwargs2 = {'xycoords': 'data', 'textcoords': 'offset points',
                    'rotation': 0, 'va': 'bottom', 'fontsize': 'large'}


    n0, n1, n2, n3 = 1, 5, 9, 14 # numbering for posterior plots
    # intercepts
    # mn = pm.df_summary(trace)['mean']['Intercept_log__0']
    # ax[0,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(0,15), color=blue, **anno_kwargs2)
    # mn = pm.df_summary(trace)['mean']['Intercept_log__1']
    # ax[0,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(0,15), color=purple, **anno_kwargs2)
    # coeffs
    # mn = pm.df_summary(trace)['mean'][2]
    # ax[1,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5, 10), color=red, **anno_kwargs)
    # mn = pm.df_summary(trace)['mean'][3]
    # ax[2,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5,10), color=red, **anno_kwargs)
    # mn = pm.df_summary(trace)['mean'][4]
    # ax[3,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5,10), color=red, **anno_kwargs)
    # plt.savefig('figure1_mixed.png')

    ax = pm.traceplot(trace, vars=['Intercept']+trace.varnames[n0:n1],
            lines={k: v['mean'] for k, v in pm.df_summary(trace).iterrows()}
            )

    for i, mn in enumerate(pm.df_summary(trace)['mean'][n0:n1]): # +1 because up and down intercept
        ax[i,0].annotate('{:.3f}'.format(mn), xy=(mn,0), xytext=(5,10), color=red, **anno_kwargs)
    plt.savefig('figure1_mixed.png')
开发者ID:peitalin,项目名称:CoarseClocks,代码行数:66,代码来源:bayesempirics.py


示例10: posterior_summary

 def posterior_summary(self, **kwargs):
     return pm.summary(self.posterior_, **kwargs)
开发者ID:eric-czech,项目名称:portfolio,代码行数:2,代码来源:models.py


示例11: print

    with mdl_ols:

        ## find MAP using Powell, seems to be more robust
        t1 = time.time()
        start_MAP = pm.find_MAP(fmin=optimize.fmin_powell)
        t2 = time.time()
        print("Found MAP, took %f seconds" % (t2 - t1))

        ## take samples
        t1 = time.time()
        traces_ols = pm.sample(2000, start=start_MAP, step=pm.NUTS(), progressbar=True)
        print()
        t2 = time.time()
        print("Done sampling, took %f seconds" % (t2 - t1))

    pm.summary(traces_ols)
    ## plot the samples and the marginal distributions
    _ = pm.traceplot(
        traces_ols,
        figsize=(12, len(traces_ols.varnames) * 1.5),
        lines={k: v["mean"] for k, v in pm.df_summary(traces_ols).iterrows()},
    )
    plt.show()


do_tstudent = False

if do_tstudent:

    print("Robust Student-t analysis...")
开发者ID:iastro-pt,项目名称:Bayes-IA,代码行数:30,代码来源:linear_regression_outliers.py


示例12: print

print(map_estimate)


from pymc3 import NUTS, sample
from pymc3 import traceplot

with basic_model:

    # obtain starting values via MAP
    start = find_MAP(fmin=optimize.fmin_powell)

    # instantiate sampler
    step = NUTS(scaling=start)

    # draw 2000 posterior samples
    trace = sample(2000, step, start=start)
    trace['alpha'][-5:]
    traceplot(trace)
    plt.show()




from pymc3 import summary
summary(trace)

n = 500
p = 0.3
with Model():
	x = Normal('alpha', mu=0, sd=10)
	print type(x)
开发者ID:shidanxu,项目名称:Meng-Finale,代码行数:31,代码来源:mengpymc.py


示例13: print

    else:
        fit_results = np.array([out.values['decay']*delta_t,
                            np.sqrt(out.covar[0,0])*delta_t,
                            out.values['amplitude'],
                            np.sqrt(out.covar[1,1])])
        print(out.fit_report(min_correl=0.25))

    trace = sm.run(x=data,
                    aB=alpha_B,
                    bB=beta_B,
                    aA=alpha_A,
                    bA=beta_A,
                    delta_t=delta_t,
                    N=N)

    pm.summary(trace)

    traceB_results = np.percentile(trace['B'],(2.5,25,50,75,97.5))
    traceB_results = np.concatenate((traceB_results, [np.std(trace['B'])], [np.mean(trace['B'])]))

    traceA_results=np.percentile(trace['A'],(2.5,25,50,75,97.5))
    traceA_results = np.concatenate((traceA_results, [np.std(trace['A'])], [np.mean(trace['A'])]))

    results = np.concatenate((data_results, fit_results, traceB_results, traceA_results))

    print(results)

    if result_array is None:
        result_array = results
    else:
        result_array = np.vstack((result_array, results))
开发者ID:hstrey,项目名称:Bayesian-Analysis,代码行数:31,代码来源:bayesian_mapping_BA.py


示例14: run

def run(n=5000):
    with model_1:
        trace = pm.sample(n)

        pm.summary(trace)
开发者ID:aloctavodia,项目名称:pymc3,代码行数:5,代码来源:lightspeed_example.py


示例15: two_gaussians

    log_like2 = - 0.5 * n * tt.log(2 * np.pi) \
                - 0.5 * tt.log(dsigma) \
                - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2)
    return tt.log(w1 * tt.exp(log_like1) + w2 * tt.exp(log_like2))

with pm.Model() as ATMIP_test:
    X = pm.Uniform('X',
                   shape=n,
                   lower=-2. * np.ones_like(mu1),
                   upper=2. * np.ones_like(mu1),
                   testval=-1. * np.ones_like(mu1),
                   transform=None)
    like = pm.Deterministic('like', two_gaussians(X))
    llk = pm.Potential('like', like)

with ATMIP_test:
    step = atmcmc.ATMCMC(n_chains=n_chains, tune_interval=tune_interval,
                         likelihood_name=ATMIP_test.deterministics[0].name)

trcs = atmcmc.ATMIP_sample(
                        n_steps=n_steps,
                        step=step,
                        njobs=njobs,
                        progressbar=True,
                        trace=test_folder,
                        model=ATMIP_test)

pm.summary(trcs)
Pltr = pm.traceplot(trcs, combined=True)
plt.show(Pltr[0][0])
开发者ID:21hub,项目名称:pymc3,代码行数:30,代码来源:ATMIP_2gaussians.py


示例16: real_func

                trace = mc.sample(nsamples, step=step, start=start, njobs=self.njobs, trace=backend)
        return trace




if __name__ == "__main__":
    def real_func():
        x = np.linspace(0.01, 1.0, 10)
        f = x + np.random.randn(len(x))*0.01
        return f
        
    def model_func(beta):
        x = np.linspace(0.01, 1.0, 10)
        f = beta
        return f

    data = real_func()
    tau_obs = np.eye(10)/.01**2
    tau_prior = np.eye(10)/1.0**2
    beta_prior = np.ones_like(data)*1.0
    beta_map = np.linspace(0.01, 1.0, 10) + np.random.randn(10)*0.1
    sampler = MCMCSampler(model_func, data, tau_obs, beta_prior, tau_prior, beta_map, is_cov=False, method=None)
    trace = sampler.sample(2000)
    mc.summary(trace)
    mc.traceplot(trace)
    plt.figure()
    plt.plot(beta_map, label='ACTUAL')
    plt.plot(np.mean(trace['beta'][:,:], axis=0), label='MCMC')
    plt.show()
开发者ID:anandpratap,项目名称:inverse_toy_problems,代码行数:30,代码来源:mcmc.py


示例17: runModel


#.........这里部分代码省略.........
            obstype         :   observed type, SN Ia=0, SNII=1 Marginalized over
            Luminosity      :

            """
            if observation['spectype'][i] == -1 :
                logluminosity = LogLuminosityMarginalizedOverType('logluminosity'+str(i), 
                    mus=[logL_snIa, logL_snII], \
                    sds = [numpy.log(10)/2.5*sigma_snIa,numpy.log(10)/2.5*sigma_snII], p=prob, \
                    testval = 1.)
            else:
                if observation['spectype'][i] == 0:
                    usemu = logL_snIa
                    usesd = numpy.log(10)/2.5*sigma_snIa
                    usep = prob
                else:
                    usemu = logL_snII
                    usesd = numpy.log(10)/2.5*sigma_snII
                    usep = 1-prob

                logluminosity = LogLuminosityGivenSpectype('logluminosity'+str(i), \
                        mu=usemu,sd=usesd, p=usep)
                
            luminosity = T.exp(logluminosity)

            """
            Redshift Node.

            Not considered explicitly in our model.

            """

            """
            Observed Redshift, Counts Node.

            pdf(observed redshift, Counts | Luminosity, Redshift, Cosmology, Calibration)
                = pdf(observed redshift| Redshift) *
                    pdf(Counts | Luminosity, Redshift, Cosmology, Calibration)

            The pdf of the observed redshift is assumed to be a sum of delta functions, perfectly
            measured redshift of the supernova or redshifts of potential galaxy hosts.

            pdf(observed redshift | Redshift) = sum_i p_i delta(observer redshift_i - Redshift)

            where p_i is the probability of observer redshift_i being the correct redshift.

            so

            pdf(observed redshift, Counts | Luminosity, Redshift, Cosmology, Calibration)
                = sum_i p_i pdf(Counts | Luminosity, Redshift=observer_redshift_i, Cosmology, Calibration)

            The class CountsWithThreshold handles this pdf

            Dependencies
            ------------

            luminosity  :   luminosity
            redshift    :   host redshift
            cosmology   :   cosmology
            Calibration :   calibration

            Parameters
            -----------

            observed_redshift   Marginalized over
            counts

            """

            lds=[]
            fluxes=[]
            for z_ in observation['specz'][i]:
                # ld = 0.5/h0*(z_+T.sqr(z_))* \
                #     (1+ 1//T.sqrt((1+z_)**3 * (Om0 + (1-Om0)*(1+z_)**(3*w0))))
                ld = luminosity_distance(z_, Om0, w0)
                lds.append(ld)
                fluxes.append(luminosity/4/numpy.pi/ld**2)

            counts = Counts('counts'+str(i),fluxes =fluxes,  \
                pzs = observation['zprob'][i], Z=zeropoints, observed=observation['counts'][i])

            if observation['spectype'][i] == -1 :
                pass
            else:
                normalization=SampleRenormalization('normalization'+str(i), threshold = 1e-9, 
                    logL_snIa=logL_snIa, sigma_snIa=sigma_snIa, logL_snII=logL_snII, sigma_snII=sigma_snII,
                    luminosity_distances=lds, Z=zeropoints, pzs=observation['zprob'][i], prob=prob, observed=1)

    from pymc3 import find_MAP, NUTS, sample, summary
    from scipy import optimize
    with basic_model:

        backend = SQLite('trace.sqlite')

        # obtain starting values via MAP
        start = find_MAP(fmin=optimize.fmin_bfgs, disp=True)

        # draw 2000 posterior samples
        trace = sample(500, start=start, trace=backend)

        summary(trace)
开发者ID:AlexGKim,项目名称:abc,代码行数:101,代码来源:Nodes.py


示例18: get_garch_model

def get_garch_model():
    r = np.array([28, 8, -3, 7, -1, 1, 18, 12])
    sigma1 = np.array([15, 10, 16, 11, 9, 11, 10, 18])
    alpha0 = np.array([10, 10, 16, 8, 9, 11, 12, 18])
    shape = r.shape

    with Model() as garch:
        alpha1 = Normal('alpha1', mu=np.zeros(shape=shape), sd=np.ones(shape=shape), shape=shape)
        BoundedNormal = Bound(Normal, upper=(1 - alpha1))
        beta1 = BoundedNormal('beta1',
                              mu=np.zeros(shape=shape),
                              sd=1e6 * np.ones(shape=shape),
                              shape=shape)
        mu = Normal('mu', mu=np.zeros(shape=shape), sd=1e6 * np.ones(shape=shape), shape=shape)
        theta = tt.sqrt(alpha0 + alpha1 * tt.pow(r - mu, 2) +
                        beta1 * tt.pow(sigma1, 2))
        Normal('obs', mu, sd=theta, observed=r)
    return garch


def run(n=1000):
    if n == "short":
        n = 50
    with get_garch_model():
        tr = sample(n, n_init=10000)
    return tr


if __name__ == '__main__':
    print(summary(run()))
开发者ID:hstm,项目名称:pymc3,代码行数:30,代码来源:garch_example.py


示例19: load_australian_credit

import theano.tensor as T
from load_data import load_australian_credit, load_german_credit, load_heart, load_pima_indian
import pymc3 as pm
import numpy as np
from pymc3 import summary
from pymc3 import traceplot

germanData, germanLabel = load_australian_credit()
# germanData, germanLabel = load_pima_indian()
# normalize to let each dimension have mean 1 and std 0
g_mean = np.mean(germanData, axis=0)
g_std = np.std(germanData, axis=0)
germanData = (germanData - g_mean) / g_std


with pm.Model() as model:
    alpha = pm.Normal("alpha_pymc3", mu=0.0, tau=1e-2)
    beta = pm.Normal("beta_pymc3", mu=0.0, tau=1e-2, shape=14)  # for australian data, it has 14 predictors
    y_hat_prob = 1.0 / (1.0 + T.exp(-(T.sum(beta * germanData, axis=1) + alpha)))
    yhat = pm.Bernoulli("yhat", y_hat_prob, observed=germanLabel)
    trace = pm.sample(10000, pm.NUTS())

trace1 = trace[5000:]  # get rid of the burn-in samples
summary(trace1)
traceplot(trace1)

alpha_mean = np.mean(trace1["alpha_pymc3"])
beta_mean = np.mean(trace1["beta_pymc3"], axis=0)
param_mean = (np.sum(alpha_mean) + np.sum(beta_mean)) / 15.0
print " the overall mean of the parameters: ", param_mean
开发者ID:hthth0801,项目名称:HMC_sample,代码行数:30,代码来源:pyMC3_getSamples.py


示例20:

Hans_Model = pm.Model()
with Hans_Model:
    # Define prior
    alpha = pm.Normal('alpha_est',mu=0,sd=10)
    beta = pm.Normal('beta_est',mu=0,sd=10,shape=2)
    sigma=pm.HalfNormal('sigma_est',sd=1)

    # Model parameter
    mu = alpha + beta[0]*X1 + beta[1]*X2

    # Likelihood
    Y_rv = pm.Normal('Y_rv',mu=mu,sd=sigma,observed=Y)



''' Model fitting'''
with Hans_Model:
# step = pm.Metropolis(vars=[alpha,beta,sigma])
    param_MAP = pm.find_MAP(fmin = sp.optimize.fmin_powell)
    Method = pm.Slice(vars=[alpha,beta,sigma])
    trace = pm.sample(Niter,step=Method,start=param_MAP)

pm.traceplot(trace)

print pm.summary(trace)

plt.show()
#
# plt.plot(trace['alpha_est'])
# print pm.summary(trace)
# plt.show()
开发者ID:HansJung,项目名称:ML_Implementation,代码行数:31,代码来源:Practice_pyMC2.py



注:本文中的pymc3.summary函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pymc3.traceplot函数代码示例发布时间:2022-05-27
下一篇:
Python pymc3.sample函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap