本文整理汇总了Python中pyspark.sql.types.to_arrow_type函数的典型用法代码示例。如果您正苦于以下问题:Python to_arrow_type函数的具体用法?Python to_arrow_type怎么用?Python to_arrow_type使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了to_arrow_type函数的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _create_from_pandas_with_arrow
def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
"""
Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
data types will be used to coerce the data in Pandas to Arrow conversion.
"""
from pyspark.serializers import ArrowStreamSerializer, _create_batch
from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType
from pyspark.sql.utils import require_minimum_pandas_version, \
require_minimum_pyarrow_version
require_minimum_pandas_version()
require_minimum_pyarrow_version()
from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
# Determine arrow types to coerce data when creating batches
if isinstance(schema, StructType):
arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
elif isinstance(schema, DataType):
raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
else:
# Any timestamps must be coerced to be compatible with Spark
arrow_types = [to_arrow_type(TimestampType())
if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
for t in pdf.dtypes]
# Slice the DataFrame to be batched
step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up
pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))
# Create Arrow record batches
safecheck = self._wrapped._conf.arrowSafeTypeConversion()
batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
timezone, safecheck)
for pdf_slice in pdf_slices]
# Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
if isinstance(schema, (list, tuple)):
struct = from_arrow_schema(batches[0].schema)
for i, name in enumerate(schema):
struct.fields[i].name = name
struct.names[i] = name
schema = struct
jsqlContext = self._wrapped._jsqlContext
def reader_func(temp_filename):
return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)
def create_RDD_server():
return self._jvm.ArrowRDDServer(jsqlContext)
# Create Spark DataFrame from Arrow stream file, using one batch per partition
jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func,
create_RDD_server)
jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
df = DataFrame(jdf, self._wrapped)
df._schema = schema
return df
开发者ID:CodingCat,项目名称:spark,代码行数:60,代码来源:session.py
示例2: _create_from_pandas_with_arrow
def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
"""
Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
data types will be used to coerce the data in Pandas to Arrow conversion.
"""
from pyspark.serializers import ArrowSerializer, _create_batch
from pyspark.sql.types import from_arrow_schema, to_arrow_type, \
_old_pandas_exception_message, TimestampType
from pyspark.sql.utils import _require_minimum_pyarrow_version
try:
from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
except ImportError as e:
raise ImportError(_old_pandas_exception_message(e))
_require_minimum_pyarrow_version()
# Determine arrow types to coerce data when creating batches
if isinstance(schema, StructType):
arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
elif isinstance(schema, DataType):
raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
else:
# Any timestamps must be coerced to be compatible with Spark
arrow_types = [to_arrow_type(TimestampType())
if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
for t in pdf.dtypes]
# Slice the DataFrame to be batched
step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up
pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))
# Create Arrow record batches
batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)],
timezone)
for pdf_slice in pdf_slices]
# Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing)
if isinstance(schema, (list, tuple)):
struct = from_arrow_schema(batches[0].schema)
for i, name in enumerate(schema):
struct.fields[i].name = name
struct.names[i] = name
schema = struct
# Create the Spark DataFrame directly from the Arrow data and schema
jrdd = self._sc._serialize_to_jvm(batches, len(batches), ArrowSerializer())
jdf = self._jvm.PythonSQLUtils.arrowPayloadToDataFrame(
jrdd, schema.json(), self._wrapped._jsqlContext)
df = DataFrame(jdf, self._wrapped)
df._schema = schema
return df
开发者ID:aa8y,项目名称:spark,代码行数:52,代码来源:session.py
示例3: wrap_bounded_window_agg_pandas_udf
def wrap_bounded_window_agg_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def wrapped(begin_index, end_index, *series):
import pandas as pd
result = []
# Index operation is faster on np.ndarray,
# So we turn the index series into np array
# here for performance
begin_array = begin_index.values
end_array = end_index.values
for i in range(len(begin_array)):
# Note: Create a slice from a series for each window is
# actually pretty expensive. However, there
# is no easy way to reduce cost here.
# Note: s.iloc[i : j] is about 30% faster than s[i: j], with
# the caveat that the created slices shares the same
# memory with s. Therefore, user are not allowed to
# change the value of input series inside the window
# function. It is rare that user needs to modify the
# input series in the window function, and therefore,
# it is be a reasonable restriction.
# Note: Calling reset_index on the slices will increase the cost
# of creating slices by about 100%. Therefore, for performance
# reasons we don't do it here.
series_slices = [s.iloc[begin_array[i]: end_array[i]] for s in series]
result.append(f(*series_slices))
return pd.Series(result)
return lambda *a: (wrapped(*a), arrow_return_type)
开发者ID:Brett-A,项目名称:spark,代码行数:32,代码来源:worker.py
示例4: wrap_grouped_agg_pandas_udf
def wrap_grouped_agg_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def wrapped(*series):
import pandas as pd
result = f(*series)
return pd.Series([result])
return lambda *a: (wrapped(*a), arrow_return_type)
开发者ID:Brett-A,项目名称:spark,代码行数:9,代码来源:worker.py
示例5: wrap_unbounded_window_agg_pandas_udf
def wrap_unbounded_window_agg_pandas_udf(f, return_type):
# This is similar to grouped_agg_pandas_udf, the only difference
# is that window_agg_pandas_udf needs to repeat the return value
# to match window length, where grouped_agg_pandas_udf just returns
# the scalar value.
arrow_return_type = to_arrow_type(return_type)
def wrapped(*series):
import pandas as pd
result = f(*series)
return pd.Series([result]).repeat(len(series[0]))
return lambda *a: (wrapped(*a), arrow_return_type)
开发者ID:Brett-A,项目名称:spark,代码行数:13,代码来源:worker.py
示例6: wrap_scalar_pandas_udf
def wrap_scalar_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def verify_result_length(*a):
result = f(*a)
if not hasattr(result, "__len__"):
raise TypeError("Return type of the user-defined functon should be "
"Pandas.Series, but is {}".format(type(result)))
if len(result) != len(a[0]):
raise RuntimeError("Result vector from pandas_udf was not the required length: "
"expected %d, got %d" % (len(a[0]), len(result)))
return result
return lambda *a: (verify_result_length(*a), arrow_return_type)
开发者ID:Tongzhenguo,项目名称:spark,代码行数:14,代码来源:worker.py
示例7: wrapped
def wrapped(key_series, value_series):
import pandas as pd
if len(argspec.args) == 1:
result = f(pd.concat(value_series, axis=1))
elif len(argspec.args) == 2:
key = tuple(s[0] for s in key_series)
result = f(key, pd.concat(value_series, axis=1))
if not isinstance(result, pd.DataFrame):
raise TypeError("Return type of the user-defined function should be "
"pandas.DataFrame, but is {}".format(type(result)))
if not len(result.columns) == len(return_type):
raise RuntimeError(
"Number of columns of the returned pandas.DataFrame "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns)))
# Assign result columns by schema name if user labeled with strings, else use position
if assign_cols_by_name and any(isinstance(name, basestring) for name in result.columns):
return [(result[field.name], to_arrow_type(field.dataType)) for field in return_type]
else:
return [(result[result.columns[i]], to_arrow_type(field.dataType))
for i, field in enumerate(return_type)]
开发者ID:Brett-A,项目名称:spark,代码行数:24,代码来源:worker.py
示例8: wrapped
def wrapped(*series):
import pandas as pd
result = f(pd.concat(series, axis=1))
if not isinstance(result, pd.DataFrame):
raise TypeError("Return type of the user-defined function should be "
"pandas.DataFrame, but is {}".format(type(result)))
if not len(result.columns) == len(return_type):
raise RuntimeError(
"Number of columns of the returned pandas.DataFrame "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns)))
arrow_return_types = (to_arrow_type(field.dataType) for field in return_type)
return [(result[result.columns[i]], arrow_type)
for i, arrow_type in enumerate(arrow_return_types)]
开发者ID:Tongzhenguo,项目名称:spark,代码行数:15,代码来源:worker.py
示例9: returnType
def returnType(self):
# This makes sure this is called after SparkContext is initialized.
# ``_parse_datatype_string`` accesses to JVM for parsing a DDL formatted string.
if self._returnType_placeholder is None:
if isinstance(self._returnType, DataType):
self._returnType_placeholder = self._returnType
else:
self._returnType_placeholder = _parse_datatype_string(self._returnType)
if self.evalType == PythonEvalType.SQL_SCALAR_PANDAS_UDF:
try:
to_arrow_type(self._returnType_placeholder)
except TypeError:
raise NotImplementedError(
"Invalid returnType with scalar Pandas UDFs: %s is "
"not supported" % str(self._returnType_placeholder))
elif self.evalType == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF:
if isinstance(self._returnType_placeholder, StructType):
try:
to_arrow_schema(self._returnType_placeholder)
except TypeError:
raise NotImplementedError(
"Invalid returnType with grouped map Pandas UDFs: "
"%s is not supported" % str(self._returnType_placeholder))
else:
raise TypeError("Invalid returnType for grouped map Pandas "
"UDFs: returnType must be a StructType.")
elif self.evalType == PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF:
try:
to_arrow_type(self._returnType_placeholder)
except TypeError:
raise NotImplementedError(
"Invalid returnType with grouped aggregate Pandas UDFs: "
"%s is not supported" % str(self._returnType_placeholder))
return self._returnType_placeholder
开发者ID:Tongzhenguo,项目名称:spark,代码行数:36,代码来源:udf.py
示例10: wrap_grouped_map_pandas_udf
def wrap_grouped_map_pandas_udf(f, return_type, argspec):
def wrapped(key_series, value_series):
import pandas as pd
if len(argspec.args) == 1:
result = f(pd.concat(value_series, axis=1))
elif len(argspec.args) == 2:
key = tuple(s[0] for s in key_series)
result = f(key, pd.concat(value_series, axis=1))
if not isinstance(result, pd.DataFrame):
raise TypeError("Return type of the user-defined function should be "
"pandas.DataFrame, but is {}".format(type(result)))
if not len(result.columns) == len(return_type):
raise RuntimeError(
"Number of columns of the returned pandas.DataFrame "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns)))
return result
return lambda k, v: [(wrapped(k, v), to_arrow_type(return_type))]
开发者ID:amolthacker,项目名称:spark,代码行数:22,代码来源:worker.py
示例11: wrap_pandas_udf
def wrap_pandas_udf(f, return_type):
# If the return_type is a StructType, it indicates this is a groupby apply udf,
# and has already been wrapped under apply(), otherwise, it's a vectorized column udf.
# We can distinguish these two by return type because in groupby apply, we always specify
# returnType as a StructType, and in vectorized column udf, StructType is not supported.
#
# TODO: Look into refactoring use of StructType to be more flexible for future pandas_udfs
if isinstance(return_type, StructType):
return lambda *a: f(*a)
else:
arrow_return_type = to_arrow_type(return_type)
def verify_result_length(*a):
result = f(*a)
if not hasattr(result, "__len__"):
raise TypeError("Return type of the user-defined functon should be "
"Pandas.Series, but is {}".format(type(result)))
if len(result) != len(a[0]):
raise RuntimeError("Result vector from pandas_udf was not the required length: "
"expected %d, got %d" % (len(a[0]), len(result)))
return result
return lambda *a: (verify_result_length(*a), arrow_return_type)
开发者ID:FavioVazquez,项目名称:spark,代码行数:23,代码来源:worker.py
示例12: _create_from_pandas_with_arrow
def _create_from_pandas_with_arrow(self, pdf, schema, timezone):
"""
Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting
to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the
data types will be used to coerce the data in Pandas to Arrow conversion.
"""
from distutils.version import LooseVersion
from pyspark.serializers import ArrowStreamPandasSerializer
from pyspark.sql.types import from_arrow_type, to_arrow_type, TimestampType
from pyspark.sql.utils import require_minimum_pandas_version, \
require_minimum_pyarrow_version
require_minimum_pandas_version()
require_minimum_pyarrow_version()
from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype
import pyarrow as pa
# Create the Spark schema from list of names passed in with Arrow types
if isinstance(schema, (list, tuple)):
if LooseVersion(pa.__version__) < LooseVersion("0.12.0"):
temp_batch = pa.RecordBatch.from_pandas(pdf[0:100], preserve_index=False)
arrow_schema = temp_batch.schema
else:
arrow_schema = pa.Schema.from_pandas(pdf, preserve_index=False)
struct = StructType()
for name, field in zip(schema, arrow_schema):
struct.add(name, from_arrow_type(field.type), nullable=field.nullable)
schema = struct
# Determine arrow types to coerce data when creating batches
if isinstance(schema, StructType):
arrow_types = [to_arrow_type(f.dataType) for f in schema.fields]
elif isinstance(schema, DataType):
raise ValueError("Single data type %s is not supported with Arrow" % str(schema))
else:
# Any timestamps must be coerced to be compatible with Spark
arrow_types = [to_arrow_type(TimestampType())
if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None
for t in pdf.dtypes]
# Slice the DataFrame to be batched
step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up
pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step))
# Create list of Arrow (columns, type) for serializer dump_stream
arrow_data = [[(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)]
for pdf_slice in pdf_slices]
jsqlContext = self._wrapped._jsqlContext
safecheck = self._wrapped._conf.arrowSafeTypeConversion()
col_by_name = True # col by name only applies to StructType columns, can't happen here
ser = ArrowStreamPandasSerializer(timezone, safecheck, col_by_name)
def reader_func(temp_filename):
return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename)
def create_RDD_server():
return self._jvm.ArrowRDDServer(jsqlContext)
# Create Spark DataFrame from Arrow stream file, using one batch per partition
jrdd = self._sc._serialize_to_jvm(arrow_data, ser, reader_func, create_RDD_server)
jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext)
df = DataFrame(jdf, self._wrapped)
df._schema = schema
return df
开发者ID:amolthacker,项目名称:spark,代码行数:67,代码来源:session.py
注:本文中的pyspark.sql.types.to_arrow_type函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论