本文整理汇总了Python中pystruct.learners.NSlackSSVM类的典型用法代码示例。如果您正苦于以下问题:Python NSlackSSVM类的具体用法?Python NSlackSSVM怎么用?Python NSlackSSVM使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了NSlackSSVM类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_binary_blocks_cutting_plane
def test_binary_blocks_cutting_plane():
#testing cutting plane ssvm on easy binary dataset
# generate graphs explicitly for each example
for inference_method in get_installed(["lp", "qpbo", "ad3", 'ogm']):
X, Y = generate_blocks(n_samples=3)
crf = GraphCRF(inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=20, C=100, check_constraints=True,
break_on_bad=False, n_jobs=1)
x1, x2, x3 = X
y1, y2, y3 = Y
n_states = len(np.unique(Y))
# delete some rows to make it more fun
x1, y1 = x1[:, :-1], y1[:, :-1]
x2, y2 = x2[:-1], y2[:-1]
# generate graphs
X_ = [x1, x2, x3]
G = [make_grid_edges(x) for x in X_]
# reshape / flatten x and y
X_ = [x.reshape(-1, n_states) for x in X_]
Y = [y.ravel() for y in [y1, y2, y3]]
X = list(zip(X_, G))
clf.fit(X, Y)
Y_pred = clf.predict(X)
for y, y_pred in zip(Y, Y_pred):
assert_array_equal(y, y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:28,代码来源:test_graph_svm.py
示例2: test_logging
def test_logging():
iris = load_iris()
X, y = iris.data, iris.target
X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
Y = y.reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X_, Y, random_state=1)
_, file_name = mkstemp()
pbl = GraphCRF(n_features=4, n_states=3, inference_method=inference_method)
logger = SaveLogger(file_name)
svm = NSlackSSVM(pbl, C=100, n_jobs=1, logger=logger)
svm.fit(X_train, y_train)
score_current = svm.score(X_test, y_test)
score_auto_saved = logger.load().score(X_test, y_test)
alt_file_name = file_name + "alt"
logger.save(svm, alt_file_name)
logger.file_name = alt_file_name
logger.load()
score_manual_saved = logger.load().score(X_test, y_test)
assert_less(.97, score_current)
assert_less(.97, score_auto_saved)
assert_less(.97, score_manual_saved)
assert_almost_equal(score_auto_saved, score_manual_saved)
开发者ID:KentChun33333,项目名称:pystruct,代码行数:28,代码来源:test_utils_logging.py
示例3: test_multinomial_checker_cutting_plane
def test_multinomial_checker_cutting_plane():
X, Y = generate_checker_multinomial(n_samples=10, noise=.1)
n_labels = len(np.unique(Y))
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=20, C=100000, check_constraints=True)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:8,代码来源:test_n_slack_ssvm.py
示例4: test_binary_blocks_batches_n_slack
def test_binary_blocks_batches_n_slack():
#testing cutting plane ssvm on easy binary dataset
X, Y = generate_blocks(n_samples=5)
crf = GridCRF(inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=20, batch_size=1, C=100)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:8,代码来源:test_n_slack_ssvm.py
示例5: test_binary_blocks_cutting_plane
def test_binary_blocks_cutting_plane():
#testing cutting plane ssvm on easy binary dataset
X, Y = generate_blocks(n_samples=5)
crf = GridCRF(inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=20, C=100,
check_constraints=True, break_on_bad=False)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:9,代码来源:test_n_slack_ssvm.py
示例6: test_binary_blocks_batches_n_slack
def test_binary_blocks_batches_n_slack():
#testing cutting plane ssvm on easy binary dataset
X, Y = toy.generate_blocks(n_samples=5)
crf = GridCRF()
clf = NSlackSSVM(model=crf, max_iter=20, C=100, check_constraints=True,
break_on_bad=False, n_jobs=1, batch_size=1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:abhijitbendale,项目名称:pystruct,代码行数:9,代码来源:test_binary_grid.py
示例7: test_simple_1d_dataset_cutting_plane
def test_simple_1d_dataset_cutting_plane():
# 10 1d datapoints between 0 and 1
X = np.random.uniform(size=(30, 1))
Y = (X.ravel() > 0.5).astype(np.int)
# we have to add a constant 1 feature by hand :-/
X = np.hstack([X, np.ones((X.shape[0], 1))])
pbl = MultiClassClf(n_features=2)
svm = NSlackSSVM(pbl, check_constraints=True, C=10000)
svm.fit(X, Y)
assert_array_equal(Y, np.hstack(svm.predict(X)))
开发者ID:DerThorsten,项目名称:pystruct,代码行数:10,代码来源:test_crammer_singer_svm.py
示例8: test_multinomial_blocks_cutting_plane
def test_multinomial_blocks_cutting_plane():
#testing cutting plane ssvm on easy multinomial dataset
X, Y = generate_blocks_multinomial(n_samples=40, noise=0.5, seed=0)
n_labels = len(np.unique(Y))
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=100, C=100, check_constraints=False,
batch_size=1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:DATAQC,项目名称:pystruct,代码行数:10,代码来源:test_n_slack_ssvm.py
示例9: test_switch_to_ad3
def test_switch_to_ad3():
# test if switching between qpbo and ad3 works
if not get_installed(['qpbo']) or not get_installed(['ad3']):
return
X, Y = toy.generate_blocks_multinomial(n_samples=5, noise=1.5,
seed=0)
crf = GridCRF(n_states=3, inference_method='qpbo')
ssvm = NSlackSSVM(crf, max_iter=10000)
ssvm_with_switch = NSlackSSVM(crf, max_iter=10000, switch_to=('ad3'))
ssvm.fit(X, Y)
ssvm_with_switch.fit(X, Y)
assert_equal(ssvm_with_switch.model.inference_method, 'ad3')
# we check that the dual is higher with ad3 inference
# as it might use the relaxation, that is pretty much guraranteed
assert_greater(ssvm_with_switch.objective_curve_[-1],
ssvm.objective_curve_[-1])
print(ssvm_with_switch.objective_curve_[-1], ssvm.objective_curve_[-1])
# test that convergence also results in switch
ssvm_with_switch = NSlackSSVM(crf, max_iter=10000, switch_to=('ad3'),
tol=10)
ssvm_with_switch.fit(X, Y)
assert_equal(ssvm_with_switch.model.inference_method, 'ad3')
开发者ID:abhijitbendale,项目名称:pystruct,代码行数:26,代码来源:test_n_slack_ssvm.py
示例10: test_binary_ssvm_attractive_potentials
def test_binary_ssvm_attractive_potentials():
# test that submodular SSVM can learn the block dataset
X, Y = generate_blocks(n_samples=10)
crf = GridCRF(inference_method=inference_method)
submodular_clf = NSlackSSVM(model=crf, max_iter=200, C=100,
check_constraints=True,
negativity_constraint=[5])
submodular_clf.fit(X, Y)
Y_pred = submodular_clf.predict(X)
assert_array_equal(Y, Y_pred)
assert_true(submodular_clf.w[5] < 0)
开发者ID:DATAQC,项目名称:pystruct,代码行数:11,代码来源:test_n_slack_ssvm.py
示例11: test_multinomial_blocks_directional
def test_multinomial_blocks_directional():
# testing cutting plane ssvm with directional CRF on easy multinomial
# dataset
X, Y = toy.generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
n_labels = len(np.unique(Y))
crf = DirectionalGridCRF(n_states=n_labels)
clf = NSlackSSVM(model=crf, max_iter=100, C=100, verbose=0,
check_constraints=True, batch_size=1)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:abhijitbendale,项目名称:pystruct,代码行数:11,代码来源:test_n_slack_ssvm.py
示例12: test_binary_ssvm_attractive_potentials
def test_binary_ssvm_attractive_potentials():
# test that submodular SSVM can learn the block dataset
X, Y = toy.generate_blocks(n_samples=10)
crf = GridCRF()
submodular_clf = NSlackSSVM(model=crf, max_iter=200, C=100,
check_constraints=True,
positive_constraint=[5])
submodular_clf.fit(X, Y)
Y_pred = submodular_clf.predict(X)
assert_array_equal(Y, Y_pred)
assert_true(submodular_clf.w[5] < 0) # don't ask me about signs
开发者ID:abhijitbendale,项目名称:pystruct,代码行数:11,代码来源:test_binary_grid.py
示例13: CRF_oneNode
def CRF_oneNode(x_train, x_test, y_train, y_test):
pbl = GraphCRF(n_states = 4,n_features=20)
svm = NSlackSSVM(pbl,max_iter=200, C=10,n_jobs=2)
svm.fit(x_train,y_train)
y_pred = svm.predict(x_test)
target_names = ['Start','Mid','End','Others']
#eclf = EnsembleClassifier(clfs=[pipe1, pipe2],voting='soft',weights=[0.5,0.2])
#eclf.fit(x_train,y_train)
#y_pred = eclf.predict(x_test)
print classification_report(y_test, y_pred, target_names=target_names)
开发者ID:wingsrc,项目名称:newsReports,代码行数:11,代码来源:model.py
示例14: test_simple_1d_dataset_cutting_plane
def test_simple_1d_dataset_cutting_plane():
# 10 1d datapoints between 0 and 1
X = np.random.uniform(size=(30, 1))
# linearly separable labels
Y = 1 - 2 * (X.ravel() < .5)
# we have to add a constant 1 feature by hand :-/
X = np.hstack([X, np.ones((X.shape[0], 1))])
pbl = BinaryClf(n_features=2)
svm = NSlackSSVM(pbl, check_constraints=True, C=1000)
svm.fit(X, Y)
assert_array_equal(Y, np.hstack(svm.predict(X)))
开发者ID:DerThorsten,项目名称:pystruct,代码行数:12,代码来源:test_binary_svm.py
示例15: test_multinomial_blocks_cutting_plane
def test_multinomial_blocks_cutting_plane():
#testing cutting plane ssvm on easy multinomial dataset
X, Y = toy.generate_blocks_multinomial(n_samples=10, noise=0.3,
seed=0)
n_labels = len(np.unique(Y))
for inference_method in get_installed(['lp', 'qpbo', 'ad3']):
crf = GridCRF(n_states=n_labels, inference_method=inference_method)
clf = NSlackSSVM(model=crf, max_iter=10, C=100,
check_constraints=False)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:aurora1625,项目名称:pystruct,代码行数:12,代码来源:test_multinomial_grid.py
示例16: test_blobs_2d_cutting_plane
def test_blobs_2d_cutting_plane():
# make two gaussian blobs
X, Y = make_blobs(n_samples=80, centers=2, random_state=1)
Y = 2 * Y - 1
# we have to add a constant 1 feature by hand :-/
X = np.hstack([X, np.ones((X.shape[0], 1))])
X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]
pbl = BinaryClf(n_features=3)
svm = NSlackSSVM(pbl, check_constraints=True, C=1000)
svm.fit(X_train, Y_train)
assert_array_equal(Y_test, np.hstack(svm.predict(X_test)))
开发者ID:DerThorsten,项目名称:pystruct,代码行数:13,代码来源:test_binary_svm.py
示例17: test_multinomial_blocks_directional_simple
def test_multinomial_blocks_directional_simple():
# testing cutting plane ssvm with directional CRF on easy multinomial
# dataset
X_, Y_ = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
G = [make_grid_edges(x, return_lists=True) for x in X_]
edge_features = [edge_list_to_features(edge_list) for edge_list in G]
edges = [np.vstack(g) for g in G]
X = list(zip([x.reshape(-1, 3) for x in X_], edges, edge_features))
Y = [y.ravel() for y in Y_]
crf = EdgeFeatureGraphCRF(n_states=3, n_edge_features=2)
clf = NSlackSSVM(model=crf, max_iter=10, C=1, check_constraints=False)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
开发者ID:shengshuyang,项目名称:pystruct,代码行数:15,代码来源:test_edge_feature_graph_learning.py
示例18: test_n_slack_svm_as_crf_pickling
def test_n_slack_svm_as_crf_pickling():
iris = load_iris()
X, y = iris.data, iris.target
X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
Y = y.reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X_, Y, random_state=1)
_, file_name = mkstemp()
pbl = GraphCRF(n_features=4, n_states=3, inference_method='lp')
logger = SaveLogger(file_name)
svm = NSlackSSVM(pbl, C=100, n_jobs=1, logger=logger)
svm.fit(X_train, y_train)
assert_less(.97, svm.score(X_test, y_test))
assert_less(.97, logger.load().score(X_test, y_test))
开发者ID:DATAQC,项目名称:pystruct,代码行数:17,代码来源:test_n_slack_ssvm.py
示例19: multiClf
def multiClf(x_train, x_test, y_train, y_test):
#lb = preprocessing.LabelBinarizer()
#y=y_train.reshape((1,y_train.shape[0]))
#lb.fit(y_train)
#y=lb.transform(y_train)
x_train = np.array(x_train)
y_train = np.array(y_train)
#full = np.vstack([x for x in itertools.combinations(range(4), 2)])
clf = pystruct.models.MultiClassClf(n_features=x_train.shape[1],n_classes=4)
ssvm = NSlackSSVM(clf, C=.1, tol=0.01)
ssvm.fit(x_train,y_train)
y_pred = clf.predict(np.array(x_test))
target_names = ['Start','Mid','End','Others']
#eclf = EnsembleClassifier(clfs=[pipe1, pipe2],voting='soft',weights=[0.5,0.2])
#eclf.fit(x_train,y_train)
#y_pred = eclf.predict(x_test)
print classification_report(y_test, y_pred, target_names=target_names)
开发者ID:wingsrc,项目名称:newsReports,代码行数:18,代码来源:model.py
示例20: runIt
def runIt(train_list):
X_org = list2features(train_list)
X = np.array(X_org)
y = list2labels_sleep(train_list)
y_org = np.array(y)
Y = y_org.reshape(-1, 1)
X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
X_train, X_test, y_train, y_test = train_test_split(X_, Y, test_size=.5)
pbl = GraphCRF(inference_method='unary')
svm = NSlackSSVM(pbl, C=100)
start = time()
svm.fit(X_train, y_train)
time_svm = time() - start
y_pred = np.vstack(svm.predict(X_test))
print("Score with pystruct crf svm: %f (took %f seconds)"
% (np.mean(y_pred == y_test), time_svm))
开发者ID:Sapphirine,项目名称:Reversal-Prediction-from-Physiology-Data,代码行数:19,代码来源:prediction_score.py
注:本文中的pystruct.learners.NSlackSSVM类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论