• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python timeseriescalcs.TimeSeriesCalcs类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs的典型用法代码示例。如果您正苦于以下问题:Python TimeSeriesCalcs类的具体用法?Python TimeSeriesCalcs怎么用?Python TimeSeriesCalcs使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了TimeSeriesCalcs类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: run_strategy_returns_stats

    def run_strategy_returns_stats(self, strategy):
        """
        run_strategy_returns_stats - Plots useful statistics for the trading strategy (using PyFolio)

        Parameters
        ----------
        strategy : StrategyTemplate
            defining trading strategy

        """

        pnl = strategy.get_strategy_pnl()
        tz = TimeSeriesTimezone()
        tsc = TimeSeriesCalcs()

        # PyFolio assumes UTC time based DataFrames (so force this localisation)
        try:
            pnl = tz.localise_index_as_UTC(pnl)
        except: pass

        # TODO for intraday strategy make daily

        # convert DataFrame (assumed to have only one column) to Series
        pnl = tsc.calculate_returns(pnl)
        pnl = pnl[pnl.columns[0]]

        fig = pf.create_returns_tear_sheet(pnl, return_fig=True)

        try:
            plt.savefig (strategy.DUMP_PATH + "stats.png")
        except: pass

        plt.show()
开发者ID:poeticcapybara,项目名称:pythalesians,代码行数:33,代码来源:tradeanalysis.py


示例2: calculate_ret_stats

    def calculate_ret_stats(self, returns_df, ann_factor):
        """
        calculate_ret_stats - Calculates return statistics for an asset's returns including IR, vol, ret and drawdowns

        Parameters
        ----------
        returns_df : DataFrame
            asset returns
        ann_factor : int
            annualisation factor to use on return statistics

        Returns
        -------
        DataFrame
        """
        tsc = TimeSeriesCalcs()

        self._rets = returns_df.mean(axis=0) * ann_factor
        self._vol = returns_df.std(axis=0) * math.sqrt(ann_factor)
        self._inforatio = self._rets / self._vol
        self._kurtosis = returns_df.kurtosis(axis=0)

        index_df = tsc.create_mult_index(returns_df)
        max2here = pandas.expanding_max(index_df)
        dd2here = index_df / max2here - 1

        self._dd = dd2here.min()
开发者ID:DDDDavid,项目名称:pythalesians,代码行数:27,代码来源:timeseriesdesc.py


示例3: bus_day_of_month_seasonality

    def bus_day_of_month_seasonality(
        self,
        data_frame,
        month_list=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
        cum=True,
        cal="FX",
        partition_by_month=True,
    ):

        tsc = TimeSeriesCalcs()
        tsf = TimeSeriesFilter()

        data_frame.index = pandas.to_datetime(data_frame.index)
        data_frame = tsf.filter_time_series_by_holidays(data_frame, cal)

        monthly_seasonality = tsc.average_by_month_day_by_bus_day(data_frame, cal)
        monthly_seasonality = monthly_seasonality.loc[month_list]

        if partition_by_month:
            monthly_seasonality = monthly_seasonality.unstack(level=0)

        if cum is True:
            monthly_seasonality.ix[0] = numpy.zeros(len(monthly_seasonality.columns))

            if partition_by_month:
                monthly_seasonality.index = monthly_seasonality.index + 1  # shifting index
                monthly_seasonality = monthly_seasonality.sort()  # sorting by index

            monthly_seasonality = tsc.create_mult_index(monthly_seasonality)

        return monthly_seasonality
开发者ID:humdings,项目名称:pythalesians,代码行数:31,代码来源:seasonality.py


示例4: calculate_vol_adjusted_returns

    def calculate_vol_adjusted_returns(self, returns_df, br, returns = True):
        """
        calculate_vol_adjusted_returns - Adjusts returns for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        returns_a_df : pandas.DataFrame
            Asset returns to be traded

        Returns
        -------
        pandas.DataFrame
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        if not(hasattr(br, 'portfolio_vol_resample_type')):
            br.portfolio_vol_resample_type = 'mean'

        leverage_df = self.calculate_leverage_factor(returns_df,
                                                               br.portfolio_vol_target, br.portfolio_vol_max_leverage,
                                                               br.portfolio_vol_periods, br.portfolio_vol_obs_in_year,
                                                               br.portfolio_vol_rebalance_freq, br.portfolio_vol_resample_freq,
                                                               br.portfolio_vol_resample_type)

        vol_returns_df = tsc.calculate_signal_returns_with_tc_matrix(leverage_df, returns_df, tc = br.spot_tc_bp)
        vol_returns_df.columns = returns_df.columns

        return vol_returns_df, leverage_df
开发者ID:Sahanduiuc,项目名称:pythalesians,代码行数:34,代码来源:cashbacktest.py


示例5: bus_day_of_month_seasonality

    def bus_day_of_month_seasonality(self, data_frame,
                                 month_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], cum = True,
                                 cal = "FX", partition_by_month = True, add_average = False, price_index = False):

        tsc = TimeSeriesCalcs()
        tsf = TimeSeriesFilter()

        if price_index:
            data_frame = data_frame.resample('B')           # resample into business days
            data_frame = tsc.calculate_returns(data_frame)

        data_frame.index = pandas.to_datetime(data_frame.index)
        data_frame = tsf.filter_time_series_by_holidays(data_frame, cal)

        monthly_seasonality = tsc.average_by_month_day_by_bus_day(data_frame, cal)
        monthly_seasonality = monthly_seasonality.loc[month_list]

        if partition_by_month:
            monthly_seasonality = monthly_seasonality.unstack(level=0)

            if add_average:
               monthly_seasonality['Avg'] = monthly_seasonality.mean(axis=1)

        if cum is True:
            if partition_by_month:
                monthly_seasonality.loc[0] = numpy.zeros(len(monthly_seasonality.columns))
                # monthly_seasonality.index = monthly_seasonality.index + 1       # shifting index
                monthly_seasonality = monthly_seasonality.sort()

            monthly_seasonality = tsc.create_mult_index(monthly_seasonality)

        return monthly_seasonality
开发者ID:BryanFletcher,项目名称:pythalesians,代码行数:32,代码来源:seasonality.py


示例6: time_of_day_seasonality

    def time_of_day_seasonality(self, data_frame, years=False):

        tsc = TimeSeriesCalcs()

        if years is False:
            return tsc.average_by_hour_min_of_day_pretty_output(data_frame)

        set_year = set(data_frame.index.year)
        year = sorted(list(set_year))

        intraday_seasonality = None

        commonman = CommonMan()

        for i in year:
            temp_seasonality = tsc.average_by_hour_min_of_day_pretty_output(data_frame[data_frame.index.year == i])

            temp_seasonality.columns = commonman.postfix_list(temp_seasonality.columns.values, " " + str(i))

            if intraday_seasonality is None:
                intraday_seasonality = temp_seasonality
            else:
                intraday_seasonality = intraday_seasonality.join(temp_seasonality)

        return intraday_seasonality
开发者ID:humdings,项目名称:pythalesians,代码行数:25,代码来源:seasonality.py


示例7: compare_strategy_vs_benchmark

    def compare_strategy_vs_benchmark(self, br, strategy_df, benchmark_df):
        """
        compare_strategy_vs_benchmark - Compares the trading strategy we are backtesting against a benchmark

        Parameters
        ----------
        br : BacktestRequest
            Parameters for backtest such as start and finish dates

        strategy_df : pandas.DataFrame
            Strategy time series

        benchmark_df : pandas.DataFrame
            Benchmark time series
        """

        include_benchmark = False
        calc_stats = False

        if hasattr(br, 'include_benchmark'): include_benchmark = br.include_benchmark
        if hasattr(br, 'calc_stats'): calc_stats = br.calc_stats

        if include_benchmark:
            tsd = TimeSeriesDesc()
            cash_backtest = CashBacktest()
            ts_filter = TimeSeriesFilter()
            ts_calcs = TimeSeriesCalcs()

            # align strategy time series with that of benchmark
            strategy_df, benchmark_df = strategy_df.align(benchmark_df, join='left', axis = 0)

            # if necessary apply vol target to benchmark (to make it comparable with strategy)
            if hasattr(br, 'portfolio_vol_adjust'):
                if br.portfolio_vol_adjust is True:
                    benchmark_df = cash_backtest.calculate_vol_adjusted_index_from_prices(benchmark_df, br = br)

            # only calculate return statistics if this has been specified (note when different frequencies of data
            # might underrepresent vol
            if calc_stats:
                benchmark_df = benchmark_df.fillna(method='ffill')
                tsd.calculate_ret_stats_from_prices(benchmark_df, br.ann_factor)
                benchmark_df.columns = tsd.summary()

            # realign strategy & benchmark
            strategy_benchmark_df = strategy_df.join(benchmark_df, how='inner')
            strategy_benchmark_df = strategy_benchmark_df.fillna(method='ffill')

            strategy_benchmark_df = ts_filter.filter_time_series_by_date(br.plot_start, br.finish_date, strategy_benchmark_df)
            strategy_benchmark_df = ts_calcs.create_mult_index_from_prices(strategy_benchmark_df)

            self._benchmark_pnl = benchmark_df
            self._benchmark_tsd = tsd

            return strategy_benchmark_df

        return strategy_df
开发者ID:hedgefair,项目名称:pythalesians,代码行数:56,代码来源:strategytemplate.py


示例8: calculate_leverage_factor

    def calculate_leverage_factor(self, returns_df, vol_target, vol_max_leverage, vol_periods = 60, vol_obs_in_year = 252,
                                  vol_rebalance_freq = 'BM', returns = True, period_shift = 0):
        """
        calculate_leverage_factor - Calculates the time series of leverage for a specified vol target

        Parameters
        ----------
        returns_df : DataFrame
            Asset returns

        vol_target : float
            vol target for assets

        vol_max_leverage : float
            maximum leverage allowed

        vol_periods : int
            number of periods to calculate volatility

        vol_obs_in_year : int
            number of observations in the year

        vol_rebalance_freq : str
            how often to rebalance

        returns : boolean
            is this returns time series or prices?

        period_shift : int
            should we delay the signal by a number of periods?

        Returns
        -------
        pandas.Dataframe
        """

        tsc = TimeSeriesCalcs()

        if not returns: returns_df = tsc.calculate_returns(returns_df)

        roll_vol_df = tsc.rolling_volatility(returns_df,
                                        periods = vol_periods, obs_in_year = vol_obs_in_year).shift(period_shift)

        # calculate the leverage as function of vol target (with max lev constraint)
        lev_df = vol_target / roll_vol_df
        lev_df[lev_df > vol_max_leverage] = vol_max_leverage

        # only allow the leverage change at resampling frequency (eg. monthly 'BM')
        lev_df = lev_df.resample(vol_rebalance_freq)

        returns_df, lev_df = returns_df.align(lev_df, join='left', axis = 0)

        lev_df = lev_df.fillna(method='ffill')

        return lev_df
开发者ID:humdings,项目名称:pythalesians,代码行数:55,代码来源:cashbacktest.py


示例9: calculate_ret_stats

    def calculate_ret_stats(self, returns_df, ann_factor):
        tsc = TimeSeriesCalcs()

        self._rets = returns_df.mean(axis=0) * ann_factor
        self._vol = returns_df.std(axis=0) * math.sqrt(ann_factor)
        self._inforatio = self._rets / self._vol

        index_df = tsc.create_mult_index(returns_df)
        max2here = pandas.expanding_max(index_df)
        dd2here = index_df / max2here - 1

        self._dd = dd2here.min()
开发者ID:quantcruncher,项目名称:pythalesians,代码行数:12,代码来源:timeseriesdesc.py


示例10: get_pnl_trades

    def get_pnl_trades(self):
        """
        get_pnl_trades - Gets P&L of each individual trade per signal

        Returns
        -------
        pandas.Dataframe
        """

        if self._pnl_trades is None:
            tsc = TimeSeriesCalcs()
            self._pnl_trades = tsc.calculate_individual_trade_gains(self._signal, self._pnl)

        return self._pnl_trades
开发者ID:Sahanduiuc,项目名称:pythalesians,代码行数:14,代码来源:cashbacktest.py


示例11: run_day_of_month_analysis

    def run_day_of_month_analysis(self, strat):
        from pythalesians.economics.seasonality.seasonality import Seasonality
        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs

        tsc = TimeSeriesCalcs()
        seas = Seasonality()
        strat.construct_strategy()
        pnl = strat.get_strategy_pnl()

        # get seasonality by day of the month
        pnl = pnl.resample('B').mean()
        rets = tsc.calculate_returns(pnl)
        bus_day = seas.bus_day_of_month_seasonality(rets, add_average = True)

        # get seasonality by month
        pnl = pnl.resample('BM').mean()
        rets = tsc.calculate_returns(pnl)
        month = seas.monthly_seasonality(rets)

        self.logger.info("About to plot seasonality...")
        gp = GraphProperties()
        pf = PlotFactory()

        # Plotting spot over day of month/month of year
        gp.color = 'Blues'
        gp.scale_factor = self.SCALE_FACTOR
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.png'
        gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.html'
        gp.title = strat.FINAL_STRATEGY + ' day of month seasonality'
        gp.display_legend = False
        gp.color_2_series = [bus_day.columns[-1]]
        gp.color_2 = ['red'] # red, pink
        gp.linewidth_2 = 4
        gp.linewidth_2_series = [bus_day.columns[-1]]
        gp.y_axis_2_series = [bus_day.columns[-1]]

        pf.plot_line_graph(bus_day, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp)

        gp = GraphProperties()

        gp.scale_factor = self.SCALE_FACTOR
        gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.png'
        gp.html_file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.html'
        gp.title = strat.FINAL_STRATEGY + ' month of year seasonality'

        pf.plot_line_graph(month, adapter = self.DEFAULT_PLOT_ENGINE, gp = gp)

        return month
开发者ID:neverspill,项目名称:pythalesians,代码行数:48,代码来源:tradeanalysis.py


示例12: calculate_ret_stats_from_prices

    def calculate_ret_stats_from_prices(self, prices_df, ann_factor):
        """
        calculate_ret_stats_from_prices - Calculates return statistics for an asset's price

        Parameters
        ----------
        prices_df : DataFrame
            asset prices
        ann_factor : int
            annualisation factor to use on return statistics

        Returns
        -------
        DataFrame
        """
        tsc = TimeSeriesCalcs()

        self.calculate_ret_stats(tsc.calculate_returns(prices_df), ann_factor)
开发者ID:DDDDavid,项目名称:pythalesians,代码行数:18,代码来源:timeseriesdesc.py


示例13: run_strategy_returns_stats

    def run_strategy_returns_stats(self, strategy):
        """
        run_strategy_returns_stats - Plots useful statistics for the trading strategy (using PyFolio)

        Parameters
        ----------
        strategy : StrategyTemplate
            defining trading strategy

        """

        pnl = strategy.get_strategy_pnl()
        tz = TimeSeriesTimezone()
        tsc = TimeSeriesCalcs()

        # PyFolio assumes UTC time based DataFrames (so force this localisation)
        try:
            pnl = tz.localise_index_as_UTC(pnl)
        except: pass

        # set the matplotlib style sheet & defaults
        # at present this only works in Matplotlib engine
        try:
            matplotlib.rcdefaults()
            plt.style.use(GraphicsConstants().plotfactory_pythalesians_style_sheet['pythalesians-pyfolio'])
        except: pass

        # TODO for intraday strategies, make daily

        # convert DataFrame (assumed to have only one column) to Series
        pnl = tsc.calculate_returns(pnl)
        pnl = pnl.dropna()
        pnl = pnl[pnl.columns[0]]
        fig = pf.create_returns_tear_sheet(pnl, return_fig=True)

        try:
            plt.savefig (strategy.DUMP_PATH + "stats.png")
        except: pass

        plt.show()
开发者ID:neverspill,项目名称:pythalesians,代码行数:40,代码来源:tradeanalysis.py


示例14: calculate_vol_adjusted_index_from_prices

    def calculate_vol_adjusted_index_from_prices(self, prices_df, br):
        """
        calculate_vol_adjusted_index_from_price - Adjusts an index of prices for a vol target

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        Returns
        -------
        pandas.Dataframe containing vol adjusted index
        """

        tsc = TimeSeriesCalcs()

        returns_df, leverage_df = self.calculate_vol_adjusted_returns(prices_df, br, returns = False)

        return tsc.create_mult_index(returns_df)
开发者ID:Sahanduiuc,项目名称:pythalesians,代码行数:22,代码来源:cashbacktest.py


示例15: g10_line_plot_gdp

    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from pythalesians_graphics.graphs import PlotFactory
        from pythalesians_graphics.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type = 'line', adapter = 'pythalesians', gp = gp)
开发者ID:NunoEdgarGub1,项目名称:pythalesians,代码行数:24,代码来源:commonecondatafactory.py


示例16: monthly_seasonality

    def monthly_seasonality(self, data_frame,
                                  cum = True,
                                  add_average = False, price_index = False):

        tsc = TimeSeriesCalcs()

        if price_index:
            data_frame = data_frame.resample('BM')          # resample into month end
            data_frame = tsc.calculate_returns(data_frame)

        data_frame.index = pandas.to_datetime(data_frame.index)

        monthly_seasonality = tsc.average_by_month(data_frame)

        if add_average:
            monthly_seasonality['Avg'] = monthly_seasonality.mean(axis=1)

        if cum is True:
            monthly_seasonality.loc[0] = numpy.zeros(len(monthly_seasonality.columns))
            monthly_seasonality = monthly_seasonality.sort()

            monthly_seasonality = tsc.create_mult_index(monthly_seasonality)

        return monthly_seasonality
开发者ID:BryanFletcher,项目名称:pythalesians,代码行数:24,代码来源:seasonality.py


示例17: Seasonality

# process data
from pythalesians.economics.seasonality.seasonality import Seasonality
from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs

# displaying data
from pythalesians.graphics.graphs.plotfactory import PlotFactory
from pythalesians.graphics.graphs.graphproperties import GraphProperties

# logging
from pythalesians.util.loggermanager import LoggerManager

import datetime

seasonality = Seasonality()
tsc = TimeSeriesCalcs()
logger = LoggerManager().getLogger(__name__)

pf = PlotFactory()

###### calculate seasonal moves in EUR/USD and GBP/USD (using Quandl data)
if True:
    time_series_request = TimeSeriesRequest(
                start_date = "01 Jan 1970",                     # start date
                finish_date = datetime.date.today(),            # finish date
                freq = 'daily',                                 # daily data
                data_source = 'quandl',                         # use Quandl as data source
                tickers = ['EURUSD',                            # ticker (Thalesians)
                           'GBPUSD'],
                fields = ['close'],                                 # which fields to download
                vendor_tickers = ['FRED/DEXUSEU', 'FRED/DEXUSUK'],  # ticker (Quandl)
开发者ID:humdings,项目名称:pythalesians,代码行数:30,代码来源:seasonality_examples.py


示例18: fetch_group_time_series

    def fetch_group_time_series(self, time_series_request_list):

        data_frame_agg = None

        time_series_calcs = TimeSeriesCalcs()

        # depends on the nature of operation as to whether we should use threading or multiprocessing library
        if Constants().time_series_factory_thread_technique is "thread":
            from multiprocessing.dummy import Pool
        else:
            # most of the time is spend waiting for Bloomberg to return, so can use threads rather than multiprocessing
            # must use the multiprocessing_on_dill library otherwise can't pickle objects correctly
            # note: currently not very stable
            from multiprocessing_on_dill import Pool

        thread_no = Constants().time_series_factory_thread_no['other']

        if time_series_request_list[0].data_source in Constants().time_series_factory_thread_no:
            thread_no = Constants().time_series_factory_thread_no[time_series_request_list[0].data_source]

        pool = Pool(thread_no)

        # open the market data downloads in their own threads and return the results
        result = pool.map_async(self.fetch_single_time_series, time_series_request_list)
        data_frame_group = result.get()

        pool.close()
        pool.join()

        # data_frame_group = results.get()
        # data_frame_group = results
        # data_frame_group = None

        # import multiprocessing as multiprocessing
        # close the pool and wait for the work to finish

        # processes = []

        # for x in range(0, len(time_series_request_list)):
        #    time_series_request = time_series_request_list[x]
        # processes =   [multiprocessing.Process(target = self.fetch_single_time_series,
        #                                           args = (x)) for x in time_series_request_list]

        # pool.apply_async(tsf.harvest_category, args = (category_desc, environment, freq,
        #             exclude_freq_cat, force_new_download_freq_cat, include_freq_cat))

        # Run processes
        # for p in processes: p.start()

        # Exit the completed processes
        # for p in processes: p.join()

        # collect together all the time series
        if data_frame_group is not None:
            data_frame_group = [i for i in data_frame_group if i is not None]

            if data_frame_group is not None:
                data_frame_agg = time_series_calcs.pandas_outer_join(data_frame_group)

            # for data_frame_single in data_frame_group:
            #     # if you call for returning multiple tickers, be careful with memory considerations!
            #     if data_frame_single is not None:
            #         if data_frame_agg is not None:
            #             data_frame_agg = data_frame_agg.join(data_frame_single, how='outer')
            #         else:
            #             data_frame_agg = data_frame_single

        return data_frame_agg
开发者ID:BryanFletcher,项目名称:pythalesians,代码行数:68,代码来源:lighttimeseriesfactory.py


示例19: calculate_trading_PnL

    def calculate_trading_PnL(self, br, asset_a_df, signal_df):
        """
        calculate_trading_PnL - Calculates P&L of a trading strategy and statistics to be retrieved later

        Parameters
        ----------
        br : BacktestRequest
            Parameters for the backtest specifying start date, finish data, transaction costs etc.

        asset_a_df : pandas.DataFrame
            Asset prices to be traded

        signal_df : pandas.DataFrame
            Signals for the trading strategy
        """

        tsc = TimeSeriesCalcs()
        # signal_df.to_csv('e:/temp0.csv')
        # make sure the dates of both traded asset and signal are aligned properly
        asset_df, signal_df = asset_a_df.align(signal_df, join='left', axis = 'index')

        # only allow signals to change on the days when we can trade assets
        signal_df = signal_df.mask(numpy.isnan(asset_df.values))    # fill asset holidays with NaN signals
        signal_df = signal_df.fillna(method='ffill')                # fill these down
        asset_df = asset_df.fillna(method='ffill')                  # fill down asset holidays

        returns_df = tsc.calculate_returns(asset_df)
        tc = br.spot_tc_bp

        signal_cols = signal_df.columns.values
        returns_cols = returns_df.columns.values

        pnl_cols = []

        for i in range(0, len(returns_cols)):
            pnl_cols.append(returns_cols[i] + " / " + signal_cols[i])

        # do we have a vol target for individual signals?
        if hasattr(br, 'signal_vol_adjust'):
            if br.signal_vol_adjust is True:
                if not(hasattr(br, 'signal_vol_resample_type')):
                    br.signal_vol_resample_type = 'mean'

                leverage_df = self.calculate_leverage_factor(returns_df, br.signal_vol_target, br.signal_vol_max_leverage,
                                               br.signal_vol_periods, br.signal_vol_obs_in_year,
                                               br.signal_vol_rebalance_freq, br.signal_vol_resample_freq,
                                               br.signal_vol_resample_type)

                signal_df = pandas.DataFrame(
                    signal_df.values * leverage_df.values, index = signal_df.index, columns = signal_df.columns)

                self._individual_leverage = leverage_df     # contains leverage of individual signal (before portfolio vol target)

        _pnl = tsc.calculate_signal_returns_with_tc_matrix(signal_df, returns_df, tc = tc)
        _pnl.columns = pnl_cols

        # portfolio is average of the underlying signals: should we sum them or average them?
        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                 portfolio = pandas.DataFrame(data = _pnl.sum(axis = 1), index = _pnl.index, columns = ['Portfolio'])
            elif br.portfolio_combination == 'mean':
                 portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])
        else:
            portfolio = pandas.DataFrame(data = _pnl.mean(axis = 1), index = _pnl.index, columns = ['Portfolio'])

        portfolio_leverage_df = pandas.DataFrame(data = numpy.ones(len(_pnl.index)), index = _pnl.index, columns = ['Portfolio'])

        # should we apply vol target on a portfolio level basis?
        if hasattr(br, 'portfolio_vol_adjust'):
            if br.portfolio_vol_adjust is True:
                portfolio, portfolio_leverage_df = self.calculate_vol_adjusted_returns(portfolio, br = br)

        self._portfolio = portfolio
        self._signal = signal_df                            # individual signals (before portfolio leverage)
        self._portfolio_leverage = portfolio_leverage_df    # leverage on portfolio

        # multiply portfolio leverage * individual signals to get final position signals
        length_cols = len(signal_df.columns)
        leverage_matrix = numpy.repeat(portfolio_leverage_df.values.flatten()[numpy.newaxis,:], length_cols, 0)

        # final portfolio signals (including signal & portfolio leverage)
        self._portfolio_signal = pandas.DataFrame(
            data = numpy.multiply(numpy.transpose(leverage_matrix), signal_df.values),
            index = signal_df.index, columns = signal_df.columns)

        if hasattr(br, 'portfolio_combination'):
            if br.portfolio_combination == 'sum':
                pass
            elif br.portfolio_combination == 'mean':
                self._portfolio_signal = self._portfolio_signal / float(length_cols)
        else:
            self._portfolio_signal = self._portfolio_signal / float(length_cols)

        self._pnl = _pnl                                                            # individual signals P&L

        # TODO FIX very slow - hence only calculate on demand
        _pnl_trades = None
        # _pnl_trades = tsc.calculate_individual_trade_gains(signal_df, _pnl)
        self._pnl_trades = _pnl_trades

#.........这里部分代码省略.........
开发者ID:Sahanduiuc,项目名称:pythalesians,代码行数:101,代码来源:cashbacktest.py


示例20: create_tech_ind

    def create_tech_ind(self, data_frame_non_nan, name, tech_params):
        self._signal = None

        data_frame = data_frame_non_nan.fillna(method="ffill")

        if name == "SMA":
            self._techind = pandas.rolling_mean(data_frame, tech_params.sma_period)

            narray = numpy.where(data_frame > self._techind, 1, -1)

            self._signal = pandas.DataFrame(index = data_frame.index, data = narray)
            self._signal.columns = [x + " SMA Signal" for x in data_frame.columns.values]

            self._techind.columns = [x + " SMA" for x in data_frame.columns.values]
        elif name == "ROC":
            tsc = TimeSeriesCalcs()

            data_frame = tsc.calculate_returns(data_frame)

            self._techind = pandas.rolling_mean(data_frame, tech_params.roc_period)

            narray = numpy.where(self._techind > 0, 1, -1)

            self._signal = pandas.DataFrame(index = data_frame.index, data = narray)
            self._signal.columns = [x + " ROC Signal" for x in data_frame.columns.values]

            self._techind.columns = [x + " ROC" for x in data_frame.columns.values]

        elif name == "SMA2":
            sma = pandas.rolling_mean(data_frame, tech_params.sma_period)
            sma2 = pandas.rolling_mean(data_frame, tech_params.sma2_period)

            narray = numpy.where(sma > sma2, 1, -1)

            self._signal = pandas.DataFrame(index = data_frame.index, data = narray)
            self._signal.columns = [x + " SMA2 Signal" for x in data_frame.columns.values]

            sma.columns = [x + " SMA" for x in data_frame.columns.values]
            sma2.columns = [x + " SMA2" for x in data_frame.columns.values]
            self._techind = pandas.concat([sma, sma2], axis = 1)

        elif name in ['RSI']:
            # delta = data_frame.diff()
            #
            # dUp, dDown = delta.copy(), delta.copy()
            # dUp[dUp < 0] = 0
            # dDown[dDown > 0] = 0
            #
            # rolUp = pandas.rolling_mean(dUp, tech_params.rsi_period)
            # rolDown = pandas.rolling_mean(dDown, tech_params.rsi_period).abs()
            #
            # rsi = rolUp / rolDown

            # Get the difference in price from previous step
            delta = data_frame.diff()
            # Get rid of the first row, which is NaN since it did not have a previous
            # row to calculate the differences
            delta = delta[1:]

            # Make the positive gains (up) and negative gains (down) Series
            up, down = delta.copy(), delta.copy()
            up[up < 0] = 0
            down[down > 0] = 0

            # Calculate the EWMA
            roll_up1 = pandas.stats.moments.ewma(up, tech_params.rsi_period)
            roll_down1 = pandas.stats.moments.ewma(down.abs(), tech_params.rsi_period)

            # Calculate the RSI based on EWMA
            RS1 = roll_up1 / roll_down1
            RSI1 = 100.0 - (100.0 / (1.0 + RS1))

            # Calculate the SMA
            roll_up2 = pandas.rolling_mean(up, tech_params.rsi_period)
            roll_down2 = pandas.rolling_mean(down.abs(), tech_params.rsi_period)

            # Calculate the RSI based on SMA
            RS2 = roll_up2 / roll_down2
            RSI2 = 100.0 - (100.0 / (1.0 + RS2))

            self._techind = RSI2
            self._techind.columns = [x + " RSI" for x in data_frame.columns.values]

            signal = data_frame.copy()

            sells = (signal.shift(-1) < tech_params.rsi_lower) & (signal > tech_params.rsi_lower)
            buys = (signal.shift(-1) > tech_params.rsi_upper) & (signal < tech_params.rsi_upper)

            # print (buys[buys == True])

            # buys
            signal[buys] =  1
            signal[sells] = -1
            signal[~(buys | sells)] = numpy.nan
            signal = signal.fillna(method = 'ffill')

            self._signal = signal
            self._signal.columns = [x + " RSI Signal" for x in data_frame.columns.values]

        elif name in ["BB"]:
#.........这里部分代码省略.........
开发者ID:CARLOSMANZUETA2000,项目名称:pythalesians,代码行数:101,代码来源:techindicator.py



注:本文中的pythalesians.timeseries.calcs.timeseriescalcs.TimeSeriesCalcs类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python loggermanager.LoggerManager类代码示例发布时间:2022-05-27
下一篇:
Python lighttimeseriesfactory.LightTimeSeriesFactory类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap