• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python defaults.default_minimum_needs函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中safe.defaults.default_minimum_needs函数的典型用法代码示例。如果您正苦于以下问题:Python default_minimum_needs函数的具体用法?Python default_minimum_needs怎么用?Python default_minimum_needs使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了default_minimum_needs函数的18个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: evacuated_population_weekly_needs

def evacuated_population_weekly_needs(
        population,
        minimum_needs=None):
    """Calculate estimated needs using minimum needs as specified or the
    default.

    :param population: The number of evacuated population.
    :type: int, float

    :param minimum_needs: Ratios used to calculate weekly needs in parameter
     form.
    :type minimum_needs: list,

    :returns: The needs for the evacuated population.
    :rtype: dict
    """
    if not minimum_needs:
        minimum_needs = default_minimum_needs()

    minimum_needs = filter_needs_parameters(minimum_needs)
    population_needs = OrderedDict()
    for resource in minimum_needs:
        resource = resource.serialize()
        amount = resource['value']
        name = resource['name']
        population_needs[name] = int(ceil(population * float(amount)))

    return population_needs
开发者ID:lucernae,项目名称:inasafe,代码行数:28,代码来源:core.py


示例2: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'PAGFatalityFunction',
            'name': tr('Earthquake PAGER fatality function'),
            'impact': tr('Die or be displaced according Pager model'),
            'title': tr('Die or be displaced according Pager model'),
            'function_type': 'old-style',
            'author': 'Helen Crowley',
            'date_implemented': 'N/A',
            'overview': tr(
                'To assess the impact of an earthquake on population based '
                'on the Population Vulnerability Pager Model.'),
            'detailed_description': '',
            'hazard_input': '',
            'exposure_input': '',
            'output': '',
            'actions': '',
            'limitations': [],
            'citations': [
                tr('Jaiswal, K. S., Wald, D. J., and Hearne, M. (2009a). '
                   'Estimating casualties for large worldwide earthquakes '
                   'using an empirical approach. U.S. Geological Survey '
                   'Open-File Report 2009-1136.')
            ],
            'categories': {
                'hazard': {
                    'definition': hazard_definition,
                    'subcategories': [hazard_earthquake],
                    'units': [unit_mmi],
                    'layer_constraints': [layer_raster_continuous]
                },
                'exposure': {
                    'definition': exposure_definition,
                    'subcategories': [exposure_population],
                    'units': [unit_people_per_pixel],
                    'layer_constraints': [layer_raster_continuous]
                }
            },
            'parameters': OrderedDict([
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                    ])),
                ('minimum needs', default_minimum_needs()),
                ('provenance', default_provenance())])

        }
        return dict_meta
开发者ID:Charlotte-Morgan,项目名称:inasafe,代码行数:58,代码来源:metadata_definitions.py


示例3: setUp

    def setUp(self):
        """Run before each test."""

        params = {
            'impact_total': 146458,
            'function_params': {
                'minimum needs': default_minimum_needs()
            }
        }

        POSTPROCESSOR.setup(params)
开发者ID:Samweli,项目名称:inasafe,代码行数:11,代码来源:test_minimum_needs_postprocessor.py


示例4: test_default_needs

    def test_default_needs(self):
        """default calculated needs are as expected
        """
        minimum_needs = [
            parameter.serialize() for parameter in default_minimum_needs()]
        # 20 Happens to be the smallest number at which integer rounding
        # won't make a difference to the result
        result = evacuated_population_needs(20, minimum_needs)['weekly']
        result = OrderedDict([[r['table name'], r['amount']] for r in result])

        assert (result['Rice [kg]'] == 56
                and result['Drinking Water [l]'] == 350
                and result['Clean Water [l]'] == 1340
                and result['Family Kits'] == 4)

        result = evacuated_population_needs(10, minimum_needs)['single']
        result = OrderedDict([[r['table name'], r['amount']] for r in result])
        assert result['Toilets'] == 1
开发者ID:cccs-ip,项目名称:inasafe,代码行数:18,代码来源:test_plugin_core.py


示例5: test_arbitrary_needs

    def test_arbitrary_needs(self):
        """custom need ratios calculated are as expected
        """
        minimum_needs = [
            parameter.serialize() for parameter in default_minimum_needs()]
        minimum_needs[0]['value'] = 4
        minimum_needs[1]['value'] = 3
        minimum_needs[2]['value'] = 2
        minimum_needs[3]['value'] = 1
        minimum_needs[4]['value'] = 0.2
        result = evacuated_population_needs(10, minimum_needs)['weekly']
        result = OrderedDict([[r['table name'], r['amount']] for r in result])

        assert (result['Rice [kg]'] == 40
                and result['Drinking Water [l]'] == 30
                and result['Clean Water [l]'] == 20
                and result['Family Kits'] == 10)
        result = evacuated_population_needs(10, minimum_needs)['single']
        result = OrderedDict([[r['table name'], r['amount']] for r in result])
        assert result['Toilets'] == 2
开发者ID:cccs-ip,项目名称:inasafe,代码行数:20,代码来源:test_plugin_core.py


示例6: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'VolcanoPolygonPopulationFunction',
            'name': tr('Polygon volcano on population'),
            'impact': tr('Need evacuation'),
            'title': tr('Need evacuation'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'hazard_input': tr(
                'The hazard layer must be a polygon layer. This layer '
                'must have an attribute representing the volcano hazard '
                'zone that can be specified in the impact function option. '
                'There are three classes low, medium, and high. The default '
                'values are "Kawasan Rawan Bencana I" for low, "Kawasan Rawan '
                'Bencana II" for medium, and "Kawasan  Rawan Bencana III for '
                'high." If you want to see the name of the volcano in the '
                'result, you need to specify the volcano name attribute in '
                'the Impact Function options.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represents a '
                'population count for that cell.'),
            'output': tr(
                'A vector layer containing people affected per hazard zone '
                'and the minimum needs based on the number of people '
                'affected.'),
            'actions': tr(
                'Provide details about the number of people that are within '
                'each hazard zone.'),
            'limitations': [],
            'citations': [
                {
                    'text': None,
                    'link': None
                }
            ],
            'map_title': tr('People affected by Volcano Hazard Zones'),
            'legend_title': tr('Population'),
            'legend_units': tr('(people per cell)'),
            'legend_notes': tr(
                'Thousand separator is represented by  %s' %
                get_thousand_separator()),
            'layer_name': tr('People affected by volcano hazard zones'),
            'overview': tr(
                'To assess the impact of a volcano eruption on people.'),
            'detailed_description': '',
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_classified,
                    'layer_geometries': [layer_geometry_polygon],
                    'hazard_categories': [
                        hazard_category_multiple_event,
                        hazard_category_single_event
                    ],
                    'hazard_types': [hazard_volcano],
                    'continuous_hazard_units': [],
                    'vector_hazard_classifications': [
                        volcano_vector_hazard_classes],
                    'raster_hazard_classifications': [],
                    'additional_keywords': [
                        volcano_name_field]
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:easmetz,项目名称:inasafe,代码行数:90,代码来源:metadata_definitions.py


示例7: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'VolcanoPointPopulationFunction',
            'name': tr('Point volcano on population'),
            'impact': tr('Be impacted'),
            'title': tr('Be impacted'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'hazard_input': tr(
                'A point vector layer.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represent '
                'population count.'),
            'output': tr(
                'Vector layer contains people affected and the minimum '
                'needs based on the number of people affected.'),
            'actions': tr(
                'Provide details about how many people would likely '
                'be affected by each hazard zone.'),
            'limitations': [],
            'citations': [],
            'map_title': tr('People affected by the buffered point volcano'),
            'legend_title': tr('Population'),
            'legend_units': tr('(people per cell)'),
            'legend_notes': tr(
                'Thousand separator is represented by  %s' %
                get_thousand_separator()),
            'layer_name': tr('People affected by the buffered point volcano'),
            'overview': tr(
                'To assess the impacts of volcano eruption on '
                'population.'),
            'detailed_description': '',
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_classified,
                    'layer_geometries': [layer_geometry_point],
                    'hazard_categories': [
                        hazard_category_multiple_event,
                        hazard_category_single_event
                    ],
                    'hazard_types': [hazard_volcano],
                    'continuous_hazard_units': [],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': [volcano_name_field]
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                # The radii
                ('distances', distance()),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:jobel-openscience,项目名称:inasafe,代码行数:77,代码来源:metadata_definitions.py


示例8: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            "id": "ClassifiedRasterHazardPopulationFunction",
            "name": tr("Classified raster hazard on population"),
            "impact": tr("Be affected by each class"),
            "title": tr("Be affected by each hazard class"),
            "function_type": "old-style",
            "author": "Dianne Bencito",
            "date_implemented": "N/A",
            "overview": tr(
                "To assess the impacts of classified hazards in raster " "format on a population raster layer."
            ),
            "detailed_description": tr(
                "This function will treat the values in the hazard raster "
                "layer as classes representing low, medium and high "
                "impact. You need to ensure that the keywords for the hazard "
                "layer have been set appropriately to define these classes."
                "The number of people that will be affected will be "
                "calculated for each class. The report will show the total "
                "number of people that will be affected for each "
                "hazard class."
            ),
            "hazard_input": tr(
                "A hazard raster layer where each cell represents the "
                "class of the hazard. There should be three classes: e.g. "
                "1, 2, and 3."
            ),
            "exposure_input": tr(
                "An exposure raster layer where each cell represents the" "population count for that cell."
            ),
            "output": tr(
                "Map of population exposed to the highest class and a table " "with the number of people in each class"
            ),
            "actions": tr("Provide details about how many people would likely be " "affected for each hazard class."),
            "limitations": [tr("The number of classes is three.")],
            "citations": [],
            "categories": {
                "hazard": {
                    "definition": hazard_definition,
                    "subcategories": hazard_all,
                    "units": [unit_classified],
                    "layer_constraints": [layer_raster_classified],
                },
                "exposure": {
                    "definition": exposure_definition,
                    "subcategories": [exposure_population],
                    "units": [unit_people_per_pixel],
                    "layer_constraints": [layer_raster_continuous],
                },
            },
            "parameters": OrderedDict(
                [
                    ("low_hazard_class", 1.0),
                    ("medium_hazard_class", 2.0),
                    ("high_hazard_class", 3.0),
                    (
                        "postprocessors",
                        OrderedDict(
                            [
                                ("Gender", default_gender_postprocessor()),
                                ("Age", age_postprocessor()),
                                ("MinimumNeeds", minimum_needs_selector()),
                            ]
                        ),
                    ),
                    ("minimum needs", default_minimum_needs()),
                    ("provenance", default_provenance()),
                ]
            ),
        }
        return dict_meta
开发者ID:ekaakurniawan,项目名称:jaksafe,代码行数:80,代码来源:metadata_definitions.py


示例9: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'VolcanoPolygonPopulationFunction',
            'name': tr('Polygon volcano on population'),
            'impact': tr('Need evacuation'),
            'title': tr('Need evacuation'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'hazard_input': tr(
                'The hazard vector layer must be a polygon that has a '
                'specific hazard zone attribute.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represents a '
                'population count for that cell.'),
            'output': tr(
                'A vector layer containing people affected per hazard zone '
                'and the minimum needs based on the number of people '
                'affected.'),
            'actions': tr(
                'Provide details about the number of people that are within '
                'each hazard zone.'),
            'limitations': [],
            'citations': [],
            'overview': tr(
                'To assess the impact of a volcano eruption on people.'),
            'detailed_description': '',
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_classified,
                    'layer_geometries': [layer_geometry_polygon],
                    'hazard_categories': [
                        hazard_category_multiple_event,
                        hazard_category_single_event
                    ],
                    'hazard_types': [hazard_volcano],
                    'continuous_hazard_units': [],
                    'vector_hazard_classifications': [
                        volcano_vector_hazard_classes],
                    'raster_hazard_classifications': [],
                    'additional_keywords': [
                        volcano_name_field]
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:tomkralidis,项目名称:inasafe,代码行数:71,代码来源:metadata_definitions.py


示例10: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'ContinuousHazardPopulationFunction',
            'name': tr('Continuous raster hazard on population'),
            'impact': tr('Be impacted'),
            'title': tr('Be impacted'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'overview': tr(
                'To assess the impacts of continuous hazards in raster '
                'format on population raster layer.'),
            'detailed_description': tr(
                'This function will categorised the continuous hazard '
                'level into 3 category based on the threshold that has '
                'been input by the user. After that, this function will '
                'calculate how many people will be impacted per category '
                'for all categories in the hazard layer.'),
            'hazard_input': tr(
                'A hazard raster layer where each cell represents the '
                'level of the hazard. The hazard has continuous value of '
                'hazard level.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represent '
                'population count.'),
            'output': tr(
                'Map of population exposed to high category and a table '
                'with number of people in each category'),
            'actions': tr(
                'Provide details about how many people would likely '
                'be impacted in each category.'),
            'limitations': [tr('Only three categories can be used.')],
            'citations': [],
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'hazard_categories': [
                        hazard_category_multiple_event,
                        hazard_category_single_event
                    ],
                    'hazard_types': hazard_all,
                    'continuous_hazard_units': [unit_generic],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': []
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [
                        count_exposure_unit, density_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            # Configurable parameters
            'parameters': OrderedDict([
                ('Categorical thresholds', categorical_thresholds()),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:Mloweedgar,项目名称:inasafe,代码行数:78,代码来源:metadata_definitions.py


示例11: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'FloodEvacuationVectorHazardFunction',
            'name': tr('Polygon flood on people'),
            'impact': tr('Need evacuation'),
            'title': tr('Need evacuation'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'overview': tr(
                'To assess the impacts of flood inundation in vector '
                'format on population.'),
            'detailed_description': tr(
                'The population subject to inundation is determined by '
                'whether they are in a flood affected area or not. You can '
                'also set an evacuation percentage to calculate what '
                'percentage of the affected population should be '
                'evacuated. This number will be used to estimate needs '
                'based on the user defined minimum needs file.'),
            'hazard_input': tr(
                'A hazard vector layer which has an affected attribute. If '
                'it does not have that attribute, all polygons will be '
                'considered as affected.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represents a '
                'population count.'),
            'output': tr(
                'A vector layer containing the number of people affected '
                'per flood area and the minimum needs based on '
                'evacuation percentage.'),
            'actions': tr(
                'Provide details about how many people would likely need '
                'to be evacuated, where they are located and what '
                'resources would be required to support them.'),
            'limitations': [],
            'citations': [],
            'map_title': tr('People affected by flood prone areas'),
            'legend_title': tr('Population Count'),
            'legend_units': tr('(people per polygon)'),
            'legend_notes': tr(
                'Thousand separator is represented by %s' %
                get_thousand_separator()),
            'layer_name': tr('People affected by flood prone areas'),
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_classified,
                    'layer_geometries': [layer_geometry_polygon],
                    'hazard_categories': [
                        hazard_category_single_event,
                        hazard_category_multiple_event
                    ],
                    'hazard_types': [hazard_flood],
                    'continuous_hazard_units': [],
                    'vector_hazard_classifications': [
                        flood_vector_hazard_classes],
                    'raster_hazard_classifications': [],
                    'additional_keywords': []
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                # Percent of affected needing evacuation
                ('evacuation_percentage',
                 parameter_definitions.evacuation_percentage()),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:jobel-openscience,项目名称:inasafe,代码行数:89,代码来源:metadata_definitions.py


示例12: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'ITBBayesianFatalityFunction',
            'name': tr(
                'Earthquake ITB fatality function based on a Bayesian '
                'approach'),
            'impact': tr('Die or be displaced according ITB bayesian model'),
            'title': tr('Die or be displaced according ITB bayesian model'),
            'function_type': 'old-style',
            'author': 'ITB and GA',  # FIXME
            'date_implemented': 'N/A',
            'overview': tr(
                'Estimates the number of fatalities resulting from an '
                'earthquake. Uses data from an Indonesian database of '
                'earthquake events to calculate fatality rates. Based on the '
                'Population Vulnerability ITB Bayesian Model. This model is '
                'better at capturing uncertainty in the results.'),
            'detailed_description': '',
            'hazard_input': '',
            'exposure_input': '',
            'output': '',
            'actions': '',
            'limitations': [],
            'citations': [
                {
                    'text': tr(
                        'Sengara, W., Suarjana, M., Yulman, M.A., Ghasemi, '
                        'H., and Ryu, H. (2015). An empirical fatality model '
                        'for Indonesia based on a Bayesian approach. '
                        'Submitted for Journal of the Geological Society'),
                    'link': None
                }
            ],
            'map_title': 'Earthquake impact to population',
            'legend_title': '',
            'legend_units': '',
            'legend_notes': '',
            'layer_name': '',
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'hazard_categories': [hazard_category_single_event],
                    'hazard_types': [hazard_earthquake],
                    'continuous_hazard_units': [unit_mmi],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': []
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                    ])),
                ('minimum needs', default_minimum_needs())
            ])

        }
        return dict_meta
开发者ID:easmetz,项目名称:inasafe,代码行数:78,代码来源:metadata_definitions.py


示例13: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'VolcanoPointPopulationFunction',
            'name': tr('Point volcano on population'),
            'impact': tr('Be impacted'),
            'title': tr('Be impacted'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'hazard_input': tr(
                'A point vector layer.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represent '
                'population count.'),
            'output': tr(
                'Vector layer contains people affected and the minimum '
                'needs based on the number of people affected.'),
            'actions': tr(
                'Provide details about how many people would likely '
                'be affected by each hazard zone.'),
            'limitations': [],
            'citations': [],
            'overview': tr(
                'To assess the impacts of volcano eruption on '
                'population.'),
            'detailed_description': '',
            'categories': {
                'hazard': {
                    'definition': hazard_definition,
                    'subcategories': [hazard_volcano],
                    'units': [unit_volcano_categorical],
                    'layer_constraints': [
                        layer_vector_point
                    ]
                },
                'exposure': {
                    'definition': exposure_definition,
                    'subcategories': [exposure_population],
                    'units': [unit_people_per_pixel],
                    'layer_constraints': [layer_raster_continuous]
                }
            },
            'parameters': OrderedDict([
                # The radii
                ('distance [km]', [3, 5, 10]),
                # The attribute for name of the volcano in hazard layer
                ('volcano name attribute', 'NAME'),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs()),
                ('provenance', default_provenance())
            ])
        }
        return dict_meta
开发者ID:Charlotte-Morgan,项目名称:inasafe,代码行数:66,代码来源:metadata_definitions.py


示例14: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'AshRasterHazardPopulationFunctionMetadata',
            'name': tr('Ash raster on population'),
            'impact': tr('Be affected'),
            'title': tr('Be affected'),
            'function_type': 'old-style',
            'author': 'Ismail Sunni',
            'date_implemented': '13/07/2016',
            'overview': tr(
                'To assess the impact of each hazard zone on population.'),
            'detailed_description': '',
            'hazard_input': tr(
                'The hazard layer must be an ash raster layer.'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represents the '
                'population count for that cell.'),
            'output': tr(
                'Map of population exposed to the highest hazard zone and a '
                'table with the number of population in each hazard zone'),
            'actions': tr(
                'Provide details about how big area fall within '
                'each hazard zone.'),
            'limitations': [],
            'citations': [
                {
                    'text': None,
                    'link': None
                }
            ],
            'legend_title': '',
            'legend_units': '',
            'legend_notes': '',
            'map_title': tr('Affected Population'),
            'layer_name': tr('Population affected'),
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'hazard_categories': [
                        hazard_category_single_event,
                        hazard_category_multiple_event
                    ],
                    'hazard_types': [hazard_volcanic_ash],
                    'continuous_hazard_units': [unit_centimetres],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': []
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict(
                [
                    ('group_threshold', threshold_group_parameter()),
                    ('postprocessors', OrderedDict([
                        ('Gender', default_gender_postprocessor()),
                        ('Age', age_postprocessor()),
                        ('MinimumNeeds', minimum_needs_selector()),
                    ])),
                    ('minimum needs', default_minimum_needs())
                ])
        }
        return dict_meta
开发者ID:easmetz,项目名称:inasafe,代码行数:79,代码来源:metadata_definitions.py


示例15: as_dict

    def as_dict():
        """Return metadata as a dictionary.

        This is a static method. You can use it to get the metadata in
        dictionary format for an impact function.

        :returns: A dictionary representing all the metadata for the
            concrete impact function.
        :rtype: dict
        """
        dict_meta = {
            'id': 'FloodEvacuationRasterHazardFunction',
            'name': tr('Raster flood on population'),
            'impact': tr('Need evacuation'),
            'title': tr('Need evacuation'),
            'function_type': 'old-style',
            'author': 'AIFDR',
            'date_implemented': 'N/A',
            'overview': tr(
                'To assess the impacts of flood inundation in raster '
                'format on population.'),
            'detailed_description': tr(
                'The population subject to inundation exceeding a '
                'threshold (default 1m) is calculated and returned as a '
                'raster layer. In addition the total number of affected '
                'people and the required needs based on the user '
                'defined minimum needs are reported. The threshold can be '
                'changed and even contain multiple numbers in which case '
                'evacuation and needs are calculated using the largest number '
                'with population breakdowns provided for the smaller numbers. '
                'The population raster is resampled to the resolution of the '
                'hazard raster and is rescaled so that the resampled '
                'population counts reflect estimates of population count '
                'per resampled cell. The resulting impact layer has the '
                'same resolution and reflects population count per cell '
                'which are affected by inundation.'),
            'hazard_input': tr(
                'A hazard raster layer where each cell represents flood '
                'depth (in meters).'),
            'exposure_input': tr(
                'An exposure raster layer where each cell represent '
                'population count.'),
            'output': tr(
                'Raster layer contains population affected and the minimum '
                'needs based on number of the population affected.'),
            'actions': tr(
                'Provide details about how many people would likely need '
                'to be evacuated, where they are located and what '
                'resources would be required to support them.'),
            'limitations': [
                tr('The default threshold of 1 meter was selected based '
                   'on consensus, not hard evidence.')
            ],
            'citations': [
                {
                    'text': None,
                    'link': None
                }
            ],
            'map_title': tr('People in need of evacuation'),
            'legend_title': tr('Population Count'),
            'legend_units': tr('(people per cell)'),
            'legend_notes': tr(
                'Thousand separator is represented by %s' %
                get_thousand_separator()),
            'layer_name': tr('Population which need evacuation'),
            'layer_requirements': {
                'hazard': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'hazard_categories': [
                        hazard_category_single_event,
                        hazard_category_multiple_event
                    ],
                    'hazard_types': [hazard_flood],
                    'continuous_hazard_units': [unit_feet, unit_metres],
                    'vector_hazard_classifications': [],
                    'raster_hazard_classifications': [],
                    'additional_keywords': []
                },
                'exposure': {
                    'layer_mode': layer_mode_continuous,
                    'layer_geometries': [layer_geometry_raster],
                    'exposure_types': [exposure_population],
                    'exposure_units': [count_exposure_unit],
                    'exposure_class_fields': [],
                    'additional_keywords': []
                }
            },
            'parameters': OrderedDict([
                ('thresholds', threshold()),
                ('postprocessors', OrderedDict([
                    ('Gender', default_gender_postprocessor()),
                    ('Age', age_postprocessor()),
                    ('MinimumNeeds', minimum_needs_selector()),
                ])),
                ('minimum needs', default_minimum_needs())
            ])
        }
        return dict_meta
开发者ID:easmetz,项目名称:inasafe,代码行数:100,代码来源:metadata_definitions.py


示例16: as_dict


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python defaults.default_north_arrow_path函数代码示例发布时间:2022-05-27
下一篇:
Python version.get_version函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap