• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python tensor.tensor函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sage.categories.tensor.tensor函数的典型用法代码示例。如果您正苦于以下问题:Python tensor函数的具体用法?Python tensor怎么用?Python tensor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了tensor函数的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: coproduct_by_coercion

    def coproduct_by_coercion(self, elt):
        r"""
        Returns the coproduct of the element ``elt`` by coercion to the Schur basis.

        INPUT:

        - ``elt`` -- an instance of the ``Qp`` basis

        OUTPUT:

        - The coproduct acting on ``elt``, the result is an element of the
          tensor squared of the ``Qp`` symmetric function basis

        EXAMPLES::

            sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
            sage: JQp = Sym.jack().Qp()
            sage: JQp[2,2].coproduct()   #indirect doctest
            JackQp[] # JackQp[2, 2] + (2*t/(t+1))*JackQp[1] # JackQp[2, 1] + JackQp[1, 1] # JackQp[1, 1] + ((4*t^3+8*t^2)/(2*t^3+5*t^2+4*t+1))*JackQp[2] # JackQp[2] + (2*t/(t+1))*JackQp[2, 1] # JackQp[1] + JackQp[2, 2] # JackQp[]
        """
        h = elt.parent().realization_of().h()
        parent = elt.parent()
        from sage.categories.tensor import tensor

        cfunc = lambda x, y: tensor([parent(x), parent(y)])
        cprod = h(elt).coproduct().apply_multilinear_morphism(cfunc)
        normalize = lambda c: normalize_coefficients(parent, c)
        return cprod.parent().sum(normalize(coeff) * tensor([parent(x), parent(y)]) for ((x, y), coeff) in cprod)
开发者ID:imark83,项目名称:sage,代码行数:28,代码来源:jack.py


示例2: coproduct

        def coproduct(self):
            r"""
            Returns the coproduct operation on ``self``.

            The coproduct is first computed on the homogeneous basis if `t=1` and
            on the Hall-Littlewood ``Qp`` basis otherwise.  The result is computed
            then converted to the tensor squared of ``self.parent()``

            EXAMPLES::

                sage: Sym = SymmetricFunctions(QQ)
                sage: ks3 = Sym.kschur(3,1)
                sage: ks3[2,1].coproduct()
                ks3[] # ks3[2, 1] + ks3[1] # ks3[1, 1] + ks3[1] # ks3[2] + ks3[1, 1] # ks3[1] + ks3[2] # ks3[1] + ks3[2, 1] # ks3[]
                sage: h3 = Sym.khomogeneous(3)
                sage: h3[2,1].coproduct()
                h3[] # h3[2, 1] + h3[1] # h3[1, 1] + h3[1] # h3[2] + h3[1, 1] # h3[1] + h3[2] # h3[1] + h3[2, 1] # h3[]
                sage: ks3t = SymmetricFunctions(FractionField(QQ['t'])).kschur(3)
                sage: ks3t[2,1].coproduct()
                ks3[] # ks3[2, 1] + ks3[1] # ks3[1, 1] + ks3[1] # ks3[2] + ks3[1, 1] # ks3[1] + ks3[2] # ks3[1] + ks3[2, 1] # ks3[]
                sage: ks3t[3,1].coproduct()
                ks3[] # ks3[3, 1] + ks3[1] # ks3[2, 1] + (t+1)*ks3[1] # ks3[3] + ks3[1, 1] # ks3[2] + ks3[2] # ks3[1, 1]
                + (t+1)*ks3[2] # ks3[2] + ks3[2, 1] # ks3[1] + (t+1)*ks3[3] # ks3[1] + ks3[3, 1] # ks3[]
            """
            lifted = self.lift()
            target_basis = self.parent()
            ambient = self.parent().realization_of().ambient()
            t = self.parent().realization_of().t
            if t==1:
                source_basis = ambient.h()
            else:
                source_basis = ambient.hall_littlewood(t=t).Qp()
            cpfunc = lambda x,y: tensor([ target_basis(x), target_basis(y) ])
            return source_basis(lifted).coproduct().apply_multilinear_morphism( cpfunc )
开发者ID:chos9,项目名称:sage,代码行数:34,代码来源:new_kschur.py


示例3: coproduct_by_coercion

            def coproduct_by_coercion(self, x):
                r"""
                Returns the coproduct by coercion if coproduct_by_basis is not implemented.

                EXAMPLES::

                    sage: Sym = SymmetricFunctions(QQ)
                    sage: m = Sym.monomial()
                    sage: f = m[2,1]
                    sage: f.coproduct.__module__
                    'sage.categories.coalgebras'
                    sage: m.coproduct_on_basis
                    NotImplemented
                    sage: m.coproduct == m.coproduct_by_coercion
                    True
                    sage: f.coproduct()
                    m[] # m[2, 1] + m[1] # m[2] + m[2] # m[1] + m[2, 1] # m[]

                ::

                    sage: N = NonCommutativeSymmetricFunctions(QQ)
                    sage: R = N.ribbon()
                    sage: R.coproduct_by_coercion.__module__
                    'sage.categories.coalgebras'
                    sage: R.coproduct_on_basis
                    NotImplemented
                    sage: R.coproduct == R.coproduct_by_coercion
                    True
                    sage: R[1].coproduct()
                    R[] # R[1] + R[1] # R[]
                """
                from sage.categories.tensor import tensor
                R = self.realization_of().a_realization()
                return self.tensor_square().sum(coeff * tensor([self(R[I]), self(R[J])])
                                                for ((I, J), coeff) in R(x).coproduct())
开发者ID:sageb0t,项目名称:testsage,代码行数:35,代码来源:coalgebras.py


示例4: product_on_basis

            def product_on_basis(self, t1, t2):
                """
                The product of the algebra on the basis, as per
                ``AlgebrasWithBasis.ParentMethods.product_on_basis``.

                EXAMPLES::

                    sage: A = AlgebrasWithBasis(QQ).example(); A
                    An example of an algebra with basis: the free algebra on the generators ('a', 'b', 'c') over Rational Field
                    sage: (a,b,c) = A.algebra_generators()

                    sage: x = tensor( (a, b, c) ); x
                    B[word: a] # B[word: b] # B[word: c]
                    sage: y = tensor( (c, b, a) ); y
                    B[word: c] # B[word: b] # B[word: a]
                    sage: x*y
                    B[word: ac] # B[word: bb] # B[word: ca]

                    sage: x = tensor( ((a+2*b), c) )    ; x
                    B[word: a] # B[word: c] + 2*B[word: b] # B[word: c]
                    sage: y = tensor( (c,       a) ) + 1; y
                    B[word: ] # B[word: ] + B[word: c] # B[word: a]
                    sage: x*y
                    B[word: a] # B[word: c] + B[word: ac] # B[word: ca] + 2*B[word: b] # B[word: c] + 2*B[word: bc] # B[word: ca]

                TODO: optimize this implementation!
                """
                return tensor( (module.monomial(x1)*module.monomial(x2) for (module, x1, x2) in zip(self._sets, t1, t2)) ) #.
开发者ID:sageb0t,项目名称:testsage,代码行数:28,代码来源:algebras_with_basis.py


示例5: tensor_square

        def tensor_square(self):
            """
            Returns the tensor square of ``self``

            EXAMPLES::

                sage: A = HopfAlgebrasWithBasis(QQ).example()
                sage: A.tensor_square()
                An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field # An example of Hopf algebra with basis: the group algebra of the Dihedral group of order 6 as a permutation group over Rational Field
            """
            return tensor([self, self])
开发者ID:sageb0t,项目名称:testsage,代码行数:11,代码来源:coalgebras.py


示例6: antipode_on_basis

            def antipode_on_basis(self, index):
                r"""
                The antipode on the basis element indexed by ``index``.

                INPUT:

                - ``index`` -- an element of the index set

                For a filtered connected Hopf algebra, we can define
                an antipode recursively by

                .. MATH::

                    S(x) := -\sum_{x^L \neq x} S(x^L) \times x^R + \epsilon(x)

                for all `x`, using the Sweedler notation.
                Also, `S(x) = x` for all `x` with `|x| = 0`.

                TESTS::

                    sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
                    sage: H.monomial(0).antipode() # indirect doctest
                    P0
                    sage: H.monomial(1).antipode() # indirect doctest
                    -P1
                    sage: H.monomial(2).antipode() # indirect doctest
                    P2
                    sage: H.monomial(3).antipode() # indirect doctest
                    -P3
                """
                if self.monomial(index) == self.one():
                    return self.one()

                S = self.antipode_on_basis
                x__S_Id = tensor([self, self]).module_morphism(
                    lambda ab: S(ab[0]) * self.monomial(ab[1]),
                    codomain=self)
                smi = self.monomial(index)
                return -x__S_Id(smi.coproduct()
                                - tensor([smi, self.one()])
                               ) + smi.counit()
开发者ID:saraedum,项目名称:sage-renamed,代码行数:41,代码来源:filtered_hopf_algebras_with_basis.py


示例7: coproduct

    def coproduct(self, elt):
        r"""
        Return the coproduct of the element ``elt``.

        INPUT:

        - ``elt`` -- a symmetric function written in this basis

        OUTPUT:

        - The coproduct acting on ``elt``; the result is an element of the
          tensor squared of the basis ``self``

        EXAMPLES::

            sage: w = SymmetricFunctions(QQ).w()
            sage: w[2].coproduct()
            w[] # w[2] - w[1] # w[1] + w[2] # w[]
            sage: w.coproduct(w[2])
            w[] # w[2] - w[1] # w[1] + w[2] # w[]
            sage: w[2,1].coproduct()
            w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] + w[2, 1] # w[]
            sage: w.coproduct(w[2,1])
            w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] + w[2, 1] # w[]

        TESTS:

        The same, but with other settings::

            sage: w = SymmetricFunctions(QQ).w(coerce_h=False, coerce_e=True)
            sage: w[2].coproduct()
            w[] # w[2] - w[1] # w[1] + w[2] # w[]
            sage: w.coproduct(w[2])
            w[] # w[2] - w[1] # w[1] + w[2] # w[]
            sage: w[2,1].coproduct()
            w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] + w[2, 1] # w[]
            sage: w.coproduct(w[2,1])
            w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] + w[2, 1] # w[]

            sage: w = SymmetricFunctions(QQ).w(coerce_h=False, coerce_p=True)
            sage: w[2].coproduct()
            w[] # w[2] - w[1] # w[1] + w[2] # w[]
            sage: w.coproduct(w[2])
            w[] # w[2] - w[1] # w[1] + w[2] # w[]
            sage: w[2,1].coproduct()
            w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] + w[2, 1] # w[]
            sage: w.coproduct(w[2,1])
            w[] # w[2, 1] - w[1] # w[1, 1] + w[1] # w[2] - w[1, 1] # w[1] + w[2] # w[1] + w[2, 1] # w[]
        """
        from sage.categories.tensor import tensor
        friendly = self._friendly
        return self.tensor_square().sum(coeff * tensor([self(friendly[x]), self(friendly[y])])
                                        for ((x,y), coeff) in friendly(elt).coproduct())
开发者ID:CETHop,项目名称:sage,代码行数:53,代码来源:witt.py


示例8: antipode_on_basis

            def antipode_on_basis(self, index):
                r"""
                The antipode on the basis element indexed by ``index``.

                INPUT:

                - ``index`` -- an element of the index set

                For a graded connected Hopf algebra, we can define
                an antipode recursively by

                .. MATH::

                    S(x) := -\sum_{x^L \neq x} S(x^L) \times x^R

                when `|x| > 0`, and by `S(x) = x` when `|x| = 0`.

                TESTS::

                    sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
                    sage: H.monomial(0).antipode() # indirect doctest
                    P0
                    sage: H.monomial(1).antipode() # indirect doctest
                    -P1
                    sage: H.monomial(2).antipode() # indirect doctest
                    P2
                    sage: H.monomial(3).antipode() # indirect doctest
                    -P3
                """
                if self.monomial(index) == self.one():
                    return self.one()

                S = self.antipode_on_basis
                x__S_Id = tensor([self, self]).module_morphism(
                    lambda ab: S(ab[0]) * self.monomial(ab[1]),
                    codomain=self)
                return -x__S_Id(
                    self.monomial(index).coproduct()
                    - tensor([self.monomial(index), self.one()])
                )
开发者ID:sagemath,项目名称:sage,代码行数:40,代码来源:graded_hopf_algebras_with_basis.py


示例9: antipode_on_basis

                def antipode_on_basis(self, index):
                    r"""
                    The antipode on the basis element indexed by ``index``.

                    INPUT:

                    - ``index`` -- an element of the index set

                    .. MATH::

                        S(x) := -\sum_{x^L\neq x} S(x^L) \times x^R

                    in general or `x` if `|x| = 0`.

                    TESTS::

                        sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example()
                        sage: H.monomial(0).antipode() #indirect doctest
                        P0
                        sage: H.monomial(1).antipode() #indirect doctest
                        -P1
                        sage: H.monomial(2).antipode() #indirect doctest
                        P2
                        sage: H.monomial(3).antipode() #indirect doctest
                        -P3

                    """
                    if self.monomial(index) == self.one():
                        return self.one()
                    else:
                        S = self.antipode_on_basis
                        x__S_Id = tensor([self, self]).module_morphism(
                            lambda (a, b): S(a) * self.monomial(b),
                            codomain=self)
                        return -x__S_Id(
                            self.monomial(index).coproduct()
                            - tensor([self.monomial(index), self.one()])
                        )
开发者ID:Findstat,项目名称:sage,代码行数:38,代码来源:graded_hopf_algebras_with_basis.py


示例10: coproduct_on_basis

            def coproduct_on_basis(self, g):
                r"""
                Returns the coproduct of the element of the basis (which are
                group-like). Used to compute the coproduct of any element.

                EXAMPLES::

                    sage: A=CyclicPermutationGroup(6).algebra(ZZ);A
                    Group algebra of Cyclic group of order 6 as a permutation group over Integer Ring
                    sage: g=CyclicPermutationGroup(6).an_element();g
                    (1,2,3,4,5,6)
                    sage: A.coproduct_on_basis(g)
                    B[(1,2,3,4,5,6)] # B[(1,2,3,4,5,6)]
                    sage: a=A.an_element();a
                    B[()] + 3*B[(1,2,3,4,5,6)] + 3*B[(1,3,5)(2,4,6)]
                    sage: a.coproduct()
                    B[()] # B[()] + 3*B[(1,2,3,4,5,6)] # B[(1,2,3,4,5,6)] + 3*B[(1,3,5)(2,4,6)] # B[(1,3,5)(2,4,6)]
                """
                from sage.categories.tensor import tensor
                g = self.term(g)
                return tensor([g, g])
开发者ID:sageb0t,项目名称:testsage,代码行数:21,代码来源:groups.py


示例11: free_module

    def free_module(self, d):
        """
        Return the free module in degree ``d``.

        EXAMPLES::

            sage: SGA = SymmetricGroupAlgebra(QQ, 3)
            sage: T = SGA.trivial_representation()
            sage: H = SGA.hochschild_complex(T)
            sage: H.free_module(0)
            Trivial representation of Standard permutations of 3 over Rational Field
            sage: H.free_module(1)
            Trivial representation of Standard permutations of 3 over Rational Field
             # Symmetric group algebra of order 3 over Rational Field
            sage: H.free_module(2)
            Trivial representation of Standard permutations of 3 over Rational Field
             # Symmetric group algebra of order 3 over Rational Field
             # Symmetric group algebra of order 3 over Rational Field
        """
        if d < 0:
            raise ValueError("only defined for non-negative degree")
        return tensor([self._M] + [self._A]*d)
开发者ID:Babyll,项目名称:sage,代码行数:22,代码来源:hochschild_complex.py


示例12: coproduct_on_basis

        def coproduct_on_basis(self, g):
            r"""
            Return the coproduct of the element ``g`` of the basis.

            Each basis element ``g`` is group-like. This method is
            used to compute the coproduct of any element.

            EXAMPLES::

                sage: A = CyclicPermutationGroup(6).algebra(ZZ); A
                Algebra of Cyclic group of order 6 as a permutation group over Integer Ring
                sage: g = CyclicPermutationGroup(6).an_element(); g
                (1,2,3,4,5,6)
                sage: A.coproduct_on_basis(g)
                (1,2,3,4,5,6) # (1,2,3,4,5,6)
                sage: a = A.an_element(); a
                () + (1,2,3,4,5,6) + 3*(1,3,5)(2,4,6) + 2*(1,5,3)(2,6,4)
                sage: a.coproduct()
                () # () + (1,2,3,4,5,6) # (1,2,3,4,5,6) + 3*(1,3,5)(2,4,6) # (1,3,5)(2,4,6) + 2*(1,5,3)(2,6,4) # (1,5,3)(2,6,4)
            """
            from sage.categories.tensor import tensor
            g = self.term(g)
            return tensor([g, g])
开发者ID:sagemath,项目名称:sage,代码行数:23,代码来源:group_algebras.py


示例13: convolution_product


#.........这里部分代码省略.........
                sage: x.convolution_product(Id, Id)
                5*[1, 2, 3] + 2*[2, 3, 1] + 2*[3, 1, 2]
                sage: x.convolution_product(Id, Id, Id)
                4*[1, 2, 3] + [1, 3, 2] + [2, 1, 3] + 3*[3, 2, 1]
                sage: x.convolution_product([Id]*6)
                9*[1, 2, 3]

            TESTS::

                sage: Id = lambda x: x
                sage: Antipode = lambda x: x.antipode()

            ::

                sage: h = SymmetricFunctions(QQ).h()
                sage: h[5].convolution_product([Id, Id])
                2*h[3, 2] + 2*h[4, 1] + 2*h[5]
                sage: h.one().convolution_product([Id, Antipode])
                h[]
                sage: h[3,2].convolution_product([Id, Antipode])
                0
                sage: h.one().convolution_product([Id, Antipode]) == h.one().convolution_product()
                True

            ::

                sage: S = NonCommutativeSymmetricFunctions(QQ).S()
                sage: S[4].convolution_product([Id]*5)
                5*S[1, 1, 1, 1] + 10*S[1, 1, 2] + 10*S[1, 2, 1] + 10*S[1, 3]
                 + 10*S[2, 1, 1] + 10*S[2, 2] + 10*S[3, 1] + 5*S[4]

            ::

                sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
                sage: m[[1,3],[2]].convolution_product([Antipode, Antipode])
                3*m{{1}, {2, 3}} + 3*m{{1, 2}, {3}} + 6*m{{1, 2, 3}} - 2*m{{1, 3}, {2}}
                sage: m[[]].convolution_product([])
                m{}
                sage: m[[1,3],[2]].convolution_product([])
                0

            ::

                sage: QS = SymmetricGroupAlgebra(QQ, 5)
                sage: x = QS.sum_of_terms(zip(Permutations(5)[3:6],[1,2,3])); x
                [1, 2, 4, 5, 3] + 2*[1, 2, 5, 3, 4] + 3*[1, 2, 5, 4, 3]
                sage: x.convolution_product([Antipode, Id])
                6*[1, 2, 3, 4, 5]
                sage: x.convolution_product(Id, Antipode, Antipode, Antipode)
                3*[1, 2, 3, 4, 5] + [1, 2, 4, 5, 3] + 2*[1, 2, 5, 3, 4]

            ::

                sage: G = SymmetricGroup(3)
                sage: QG = GroupAlgebra(G,QQ)
                sage: x = QG.sum_of_terms([(p,p.length()) for p in Permutations(3)]); x
                [1, 3, 2] + [2, 1, 3] + 2*[2, 3, 1] + 2*[3, 1, 2] + 3*[3, 2, 1]
                sage: x.convolution_product(Antipode, Id)
                9*[1, 2, 3]
                sage: x.convolution_product([Id, Antipode, Antipode, Antipode])
                5*[1, 2, 3] + 2*[2, 3, 1] + 2*[3, 1, 2]

            ::

                sage: s[3,2].counit().parent() == s[3,2].convolution_product().parent()
                False
            """
            # Be flexible on how the maps are entered: accept a list/tuple of
            # maps as well as multiple arguments
            if len(maps) == 1 and isinstance(maps[0], (list, tuple)):
                T = tuple(maps[0])
            else:
                T = maps

            H = self.parent()

            n = len(T)
            if n == 0:
                return H.one() * self.counit()
            if n == 1:
                return T[0](self)

            # We apply the maps T_i and products concurrently with coproducts, as this
            # seems to be faster than applying a composition of maps, e.g., (H.nfold_product) * tensor(T) * (H.nfold_coproduct).

            out = tensor((H.one(),self))
            HH = tensor((H,H))

            for mor in T[:-1]:
                #ALGORITHM:
                #`split_convolve` moves terms of the form x # y to x*Ti(y1) # y2 in Sweedler notation.
                def split_convolve(x_y):
                    x, y = x_y
                    return (((xy1,y2),c*d)
                        for ((y1,y2),d) in H.term(y).coproduct()
                        for (xy1,c) in H.term(x)*mor(H.term(y1)))
                out = HH.module_morphism(on_basis=lambda t: HH.sum_of_terms(split_convolve(t)), codomain=HH)(out)

            #Apply final map `T_n` to last term, `y`, and multiply.
            return HH.module_morphism(on_basis=lambda xy: H.term(xy[0])*T[-1](H.term(xy[1])), codomain=H)(out)
开发者ID:Babyll,项目名称:sage,代码行数:101,代码来源:bialgebras_with_basis.py



注:本文中的sage.categories.tensor.tensor函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python combinat.CombinatorialObject类代码示例发布时间:2022-05-27
下一篇:
Python morphism.Morphism类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap