本文整理汇总了Python中sage.functions.other.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sqrt函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _eval_
def _eval_(self, n, x):
"""
EXAMPLES::
sage: y=var('y')
sage: bessel_I(y,x)
bessel_I(y, x)
sage: bessel_I(0.0, 1.0)
1.26606587775201
sage: bessel_I(1/2, 1)
sqrt(2)*sinh(1)/sqrt(pi)
sage: bessel_I(-1/2, pi)
sqrt(2)*cosh(pi)/pi
"""
if (not isinstance(n, Expression) and not isinstance(x, Expression) and
(is_inexact(n) or is_inexact(x))):
coercion_model = get_coercion_model()
n, x = coercion_model.canonical_coercion(n, x)
return self._evalf_(n, x, parent(n))
# special identities
if n == Integer(1) / Integer(2):
return sqrt(2 / (pi * x)) * sinh(x)
elif n == -Integer(1) / Integer(2):
return sqrt(2 / (pi * x)) * cosh(x)
return None # leaves the expression unevaluated
开发者ID:acrlakshman,项目名称:sage,代码行数:27,代码来源:bessel.py
示例2: get_s
def get_s(self):
"""Returns a single value of s as required for the Elligator map while there may even be two of them, in which case the returned values is the smaller of the two
"""
try:
return self._s
except AttributeError:
pass
s = []
d = self.__E.get_d()
if is_square(-d):
c = ( 2*(d-1) + 4*sqrt(-d) ) / ( 2*(d+1) )
s_2 = 2/c
if is_square(s_2):
s.append(sqrt(s_2))
c = ( 2*(d-1) - 4*sqrt(-d) ) / ( 2*(d+1) )
s_2 = 2/c
if is_square(s_2):
s.append(sqrt(s_2))
if len(s) == 0:
return None
elif len(s) == 1:
return s[0]
else:
if s[0] < s[1]:
return s[0]
else:
return s[1]
开发者ID:adarshsaraf123,项目名称:Dissertation,代码行数:28,代码来源:ecc.py
示例3: platonic_dodecahedron
def platonic_dodecahedron():
r"""Produce a triple consisting of a polyhedral version of the platonic dodecahedron,
the associated cone surface, and a ConeSurfaceToPolyhedronMap from the surface
to the polyhedron.
EXAMPLES::
sage: from flatsurf.geometry.polyhedra import platonic_dodecahedron
sage: polyhedron,surface,surface_to_polyhedron = platonic_dodecahedron()
sage: TestSuite(surface).run()
r"""
vertices=[]
phi=AA(1+sqrt(5))/2
F=NumberField(phi.minpoly(),"phi",embedding=phi)
phi=F.gen()
for x in xrange(-1,3,2):
for y in xrange(-1,3,2):
for z in xrange(-1,3,2):
vertices.append(vector(F,(x,y,z)))
for x in xrange(-1,3,2):
for y in xrange(-1,3,2):
vertices.append(vector(F,(0,x*phi,y/phi)))
vertices.append(vector(F,(y/phi,0,x*phi)))
vertices.append(vector(F,(x*phi,y/phi,0)))
scale=AA(2/sqrt(1+(phi-1)**2+(1/phi-1)**2))
p=Polyhedron(vertices=vertices)
s,m = polyhedron_to_cone_surface(p,scaling_factor=scale)
return p,s,m
开发者ID:videlec,项目名称:sage-flatsurf,代码行数:28,代码来源:polyhedra.py
示例4: _eval_
def _eval_(self, a, z):
"""
EXAMPLES::
sage: struve_H(0,0)
0
sage: struve_H(pi,0)
0
sage: struve_H(-1/2,x)
sqrt(2)*sqrt(1/(pi*x))*sin(x)
sage: struve_H(1/2,-1)
-sqrt(2)*sqrt(-1/pi)*(cos(1) - 1)
sage: struve_H(1/2,pi)
2*sqrt(2)/pi
sage: struve_H(2,x)
struve_H(2, x)
sage: struve_H(-3/2,x)
-bessel_J(3/2, x)
"""
from sage.symbolic.ring import SR
if z.is_zero() \
and (SR(a).is_numeric() or SR(a).is_constant()) \
and a.real() >= -1:
return ZZ(0)
if a == -Integer(1)/2:
from sage.functions.trig import sin
return sqrt(2/(pi*z)) * sin(z)
if a == Integer(1)/2:
from sage.functions.trig import cos
return sqrt(2/(pi*z)) * (1-cos(z))
if a < 0 and not SR(a).is_integer() and SR(2*a).is_integer():
from sage.rings.rational_field import QQ
n = (a*(-2) - 1)/2
return Integer(-1)**n * bessel_J(n+QQ(1)/2, z)
开发者ID:Babyll,项目名称:sage,代码行数:34,代码来源:bessel.py
示例5: __eq__
def __eq__(self, other):
r"""
Return ``True`` if the isometries are the same and ``False`` otherwise.
EXAMPLES::
sage: UHP = HyperbolicPlane().UHP()
sage: A = UHP.get_isometry(identity_matrix(2))
sage: B = UHP.get_isometry(-identity_matrix(2))
sage: A == B
True
sage: HM = HyperbolicPlane().HM()
sage: A = HM.random_isometry()
sage: A == A
True
"""
if not isinstance(other, HyperbolicIsometry):
return False
test_matrix = bool((self.matrix() - other.matrix()).norm() < EPSILON)
if self.domain().is_isometry_group_projective():
A,B = self.matrix(), other.matrix() # Rename for simplicity
m = self.matrix().ncols()
A = A / sqrt(A.det(), m) # Normalized to have determinant 1
B = B / sqrt(B.det(), m)
test_matrix = ((A - B).norm() < EPSILON
or (A + B).norm() < EPSILON)
return self.domain() is other.domain() and test_matrix
开发者ID:aaditya-thakkar,项目名称:sage,代码行数:28,代码来源:hyperbolic_isometry.py
示例6: SO21_to_SL2R
def SO21_to_SL2R(M):
r"""
A homomorphism from `SO(2, 1)` to `SL(2, \RR)`.
Note that this is not the only homomorphism, but it is the only one
that works in the context of the implemented 2D hyperbolic geometry
models.
EXAMPLES::
sage: from sage.geometry.hyperbolic_space.hyperbolic_coercion import SO21_to_SL2R
sage: (SO21_to_SL2R(identity_matrix(3)) - identity_matrix(2)).norm() < 10**-4
True
"""
####################################################################
# SL(2,R) is the double cover of SO (2,1)^+, so we need to choose #
# a lift. I have formulas for the absolute values of each entry #
# a,b ,c,d of the lift matrix(2,[a,b,c,d]), but we need to choose #
# one entry to be positive. I choose d for no particular reason, #
# unless d = 0, then we choose c > 0. The basic strategy for this #
# function is to find the linear map induced by the SO(2,1) #
# element on the Lie algebra sl(2, R). This corresponds to the #
# Adjoint action by a matrix A or -A in SL(2,R). To find which #
# matrix let X,Y,Z be a basis for sl(2,R) and look at the images #
# of X,Y,Z as well as the second and third standard basis vectors #
# for 2x2 matrices (these are traceless, so are in the Lie #
# algebra). These corresponds to AXA^-1 etc and give formulas #
# for the entries of A. #
####################################################################
(m_1,m_2,m_3,m_4,m_5,m_6,m_7,m_8,m_9) = M.list()
d = sqrt(Integer(1)/Integer(2)*m_5 - Integer(1)/Integer(2)*m_6 -
Integer(1)/Integer(2)*m_8 + Integer(1)/Integer(2)*m_9)
if M.det() > 0: # EPSILON?
det_sign = 1
elif M.det() < 0: # EPSILON?
det_sign = -1
if d > 0: # EPSILON?
c = (-Integer(1)/Integer(2)*m_4 + Integer(1)/Integer(2)*m_7)/d
b = (-Integer(1)/Integer(2)*m_2 + Integer(1)/Integer(2)*m_3)/d
ad = det_sign*1 + b*c # ad - bc = pm 1
a = ad/d
else: # d is 0, so we make c > 0
c = sqrt(-Integer(1)/Integer(2)*m_5 - Integer(1)/Integer(2)*m_6 +
Integer(1)/Integer(2)*m_8 + Integer(1)/Integer(2)*m_9)
d = (-Integer(1)/Integer(2)*m_4 + Integer(1)/Integer(2)*m_7)/c
# d = 0, so ad - bc = -bc = pm 1.
b = - (det_sign*1)/c
a = (Integer(1)/Integer(2)*m_4 + Integer(1)/Integer(2)*m_7)/b
A = matrix(2, [a, b, c, d])
return A
开发者ID:saraedum,项目名称:sage-renamed,代码行数:50,代码来源:hyperbolic_coercion.py
示例7: _0f1
def _0f1(b, z):
F12 = cosh(2 * sqrt(z))
F32 = sinh(2 * sqrt(z)) / (2 * sqrt(z))
if 2 * b == 1:
return F12
if 2 * b == 3:
return F32
if 2 * b > 3:
return ((b - 2) * (b - 1) / z * (_0f1(b - 2, z) -
_0f1(b - 1, z)))
if 2 * b < 1:
return (_0f1(b + 1, z) + z / (b * (b + 1)) *
_0f1(b + 2, z))
raise ValueError
开发者ID:drupel,项目名称:sage,代码行数:14,代码来源:hypergeometric.py
示例8: RankingScale_USAU_2013
def RankingScale_USAU_2013():
r"""
EXAMPLES::
sage: from slabbe.ranking_scale import RankingScale_USAU_2013
sage: R = RankingScale_USAU_2013()
sage: R.table()
Position Serie 1500 Serie 1000 Serie 500 Serie 250
1 1500 1000 500 250
2 1366 911 455 228
3 1252 835 417 209
4 1152 768 384 192
5 1061 708 354 177
6 979 653 326 163
7 903 602 301 151
8 832 555 278 139
9 767 511 256 128
10 706 471 236 118
11 648 432 217 109
12 595 397 199 100
13 544 363 182 91
14 497 332 166 83
15 452 302 151 76
16 410 274 137 69
17 371 248 124 62
18 334 223 112 56
19 299 199 100 50
20 266 177 89 45
21 235 157 79 40
22 206 137 69 35
23 178 119 60 30
24 152 102 51 26
25 128 86 43 22
26 106 71 36 18
27 85 57 29 15
28 66 44 22 12
29 47 32 16 9
30 31 21 11 6
31 15 10 6 3
32 1 1 1 1
"""
L1500 = [0] + discrete_curve(32, 1500, K=1, R=sqrt(2), base=e)
L1000 = [0] + discrete_curve(32, 1000, K=1, R=sqrt(2), base=e)
L500 = [0] + discrete_curve(32, 500, K=1, R=sqrt(2), base=e)
L250 = [0] + discrete_curve(32, 250, K=1, R=sqrt(2), base=e)
scales = L1500, L1000, L500, L250
names = ['Serie 1500', 'Serie 1000', 'Serie 500', 'Serie 250']
return RankingScale(names, scales)
开发者ID:seblabbe,项目名称:slabbe,代码行数:49,代码来源:ranking_scale.py
示例9: platonic_icosahedron
def platonic_icosahedron():
r"""Produce a triple consisting of a polyhedral version of the platonic icosahedron,
the associated cone surface, and a ConeSurfaceToPolyhedronMap from the surface
to the polyhedron.
EXAMPLES::
sage: from flatsurf.geometry.polyhedra import platonic_icosahedron
sage: polyhedron,surface,surface_to_polyhedron = platonic_icosahedron()
sage: TestSuite(surface).run()
r"""
vertices=[]
phi=AA(1+sqrt(5))/2
F=NumberField(phi.minpoly(),"phi",embedding=phi)
phi=F.gen()
for i in xrange(3):
for s1 in xrange(-1,3,2):
for s2 in xrange(-1,3,2):
p=3*[None]
p[i]=s1*phi
p[(i+1)%3]=s2
p[(i+2)%3]=0
vertices.append(vector(F,p))
p=Polyhedron(vertices=vertices)
s,m = polyhedron_to_cone_surface(p)
return p,s,m
开发者ID:videlec,项目名称:sage-flatsurf,代码行数:27,代码来源:polyhedra.py
示例10: _test_representation
def _test_representation(self, **options):
"""
Check (on some elements) that ``self`` is a representation of the
given semigroup.
EXAMPLES::
sage: G = groups.permutation.Dihedral(4)
sage: R = G.regular_representation()
sage: R._test_representation()
sage: G = CoxeterGroup(['A',4,1], base_ring=ZZ)
sage: M = CombinatorialFreeModule(QQ, ['v'])
sage: from sage.modules.with_basis.representation import Representation
sage: on_basis = lambda g,m: M.term(m, (-1)**g.length())
sage: R = Representation(G, M, on_basis, side="right")
sage: R._test_representation(max_runs=500)
"""
from sage.functions.other import sqrt
tester = self._tester(**options)
S = tester.some_elements()
L = []
max_len = int(sqrt(tester._max_runs)) + 1
for i,x in enumerate(self._semigroup):
L.append(x)
if i >= max_len:
break
for x in L:
for y in L:
for elt in S:
if self._left_repr:
tester.assertEqual(x*(y*elt), (x*y)*elt)
else:
tester.assertEqual((elt*y)*x, elt*(y*x))
开发者ID:mcognetta,项目名称:sage,代码行数:34,代码来源:representation.py
示例11: random_point
def random_point(self):
while(1):
x = self.base_ring().random_element()
test = (x**2 - 1)/(self._d*(x**2) - 1)
if is_square(test):
y = sqrt(test)
return self([x,y,1])
开发者ID:adarshsaraf123,项目名称:Dissertation,代码行数:7,代码来源:edwards_curve.py
示例12: solve_degree2_to_integer_range
def solve_degree2_to_integer_range(a,b,c):
r"""
Returns the greatest integer range `[i_1, i_2]` such that
`i_1 > x_1` and `i_2 < x_2` where `x_1, x_2` are the two zeroes of the equation in `x`:
`ax^2+bx+c=0`.
If there is no real solution to the equation, it returns an empty range with negative coefficients.
INPUT:
- ``a``, ``b`` and ``c`` -- coefficients of a second degree equation, ``a`` being the coefficient of
the higher degree term.
EXAMPLES::
sage: from sage.coding.guruswami_sudan.utils import solve_degree2_to_integer_range
sage: solve_degree2_to_integer_range(1, -5, 1)
(1, 4)
If there is no real solution::
sage: solve_degree2_to_integer_range(50, 5, 42)
(-2, -1)
"""
D = b**2 - 4*a*c
if D < 0:
return (-2,-1)
sD = float(sqrt(D))
minx, maxx = (-b-sD)/2.0/a , (-b+sD)/2.0/a
mini, maxi = (ligt(minx), gilt(maxx))
if mini > maxi:
return (-2,-1)
else:
return (mini,maxi)
开发者ID:mcognetta,项目名称:sage,代码行数:34,代码来源:utils.py
示例13: cmp_ir
def cmp_ir(self,z):
"""
returns -1 for left, 0 for in, and 1 for right from initial region
cut line is on the north ray from L.
"""
L = self.L
x0 = self.x0
if x0 > 0.5:
if real(z) > real(L) and abs(z) < abs(L):
return 0
if real(z) < real(L):
return -1
if real(z) > real(L):
return 1
else:
if imag(z) > imag(L):
if real(z) > real(L):
return 1
if real(z) < real(L):
return -1
if real(z) < real(L) and real(z) > log(real(L)) + log(sqrt(1+tan(imag(z))**2)):
return 0
if real(z) > real(L):
return 1
if real(z) < real(L):
return -1
开发者ID:bo198214,项目名称:hyperops,代码行数:26,代码来源:matrixpower_tetration.py
示例14: cmp_ir
def cmp_ir(self,z):
"""
returns -1 for left, 0 for in, and 1 for right from initial region
cut line is on the north ray from pfp.
Works only for real x0.
"""
pfp = self.pfp
x0 = self.x0
if x0 > 0.5:
print z,abs(z)
if real(z) >= real(pfp) and abs(z) < abs(pfp):
return 0
if real(z) < real(pfp):
return -1
if real(z) > real(pfp):
return 1
else:
if imag(z) > imag(pfp):
if real(z) > real(pfp):
return 1
if real(z) < real(pfp):
return -1
if real(z) < real(pfp) and real(z) > log(real(pfp)) + log(sqrt(1+tan(imag(z))**2)):
return 0
if real(z) > real(pfp):
return 1
if real(z) < real(pfp):
return -1
开发者ID:bo198214,项目名称:hyperops,代码行数:29,代码来源:intuitive_tetration.py
示例15: iter_positive_forms_with_content
def iter_positive_forms_with_content(self) :
if self.__disc is infinity :
raise ValueError, "infinity is not a true filter index"
if self.__reduced :
for a in xrange(1,isqrt(self.__disc // 3) + 1) :
for b in xrange(a+1) :
g = gcd(a, b)
for c in xrange(a, (b**2 + (self.__disc - 1))//(4*a) + 1) :
yield (a,b,c), gcd(g,c)
else :
maxtrace = floor(5*self.__disc / 15 + sqrt(self.__disc)/2)
for a in xrange(1, maxtrace + 1) :
for c in xrange(1, maxtrace - a + 1) :
g = gcd(a,c)
Bu = isqrt(4*a*c - 1)
di = 4*a*c - self.__disc
if di >= 0 :
Bl = isqrt(di) + 1
else :
Bl = 0
for b in xrange(-Bu, -Bl + 1) :
yield (a,b,c), gcd(g,b)
for b in xrange(Bl, Bu + 1) :
yield (a,b,c), gcd(g,b)
#! if self.__reduced
raise StopIteration
开发者ID:fredstro,项目名称:psage,代码行数:32,代码来源:siegelmodularformg2_fourierexpansion.py
示例16: show
def show(self, show_hyperboloid=True, **graphics_options):
r"""
Plot ``self``.
EXAMPLES::
sage: from sage.geometry.hyperbolic_space.hyperbolic_geodesic import *
sage: g = HyperbolicPlane().HM().random_geodesic()
sage: g.show()
Graphics3d Object
"""
x = SR.var('x')
opts = self.graphics_options()
opts.update(graphics_options)
v1, u2 = [vector(k.coordinates()) for k in self.endpoints()]
# Lorentzian Gram Shmidt. The original vectors will be
# u1, u2 and the orthogonal ones will be v1, v2. Except
# v1 = u1, and I don't want to declare another variable,
# hence the odd naming convention above.
# We need the Lorentz dot product of v1 and u2.
v1_ldot_u2 = u2[0]*v1[0] + u2[1]*v1[1] - u2[2]*v1[2]
v2 = u2 + v1_ldot_u2 * v1
v2_norm = sqrt(v2[0]**2 + v2[1]**2 - v2[2]**2)
v2 = v2 / v2_norm
v2_ldot_u2 = u2[0]*v2[0] + u2[1]*v2[1] - u2[2]*v2[2]
# Now v1 and v2 are Lorentz orthogonal, and |v1| = -1, |v2|=1
# That is, v1 is unit timelike and v2 is unit spacelike.
# This means that cosh(x)*v1 + sinh(x)*v2 is unit timelike.
hyperbola = cosh(x)*v1 + sinh(x)*v2
endtime = arcsinh(v2_ldot_u2)
from sage.plot.plot3d.all import parametric_plot3d
pic = parametric_plot3d(hyperbola, (x, 0, endtime), **graphics_options)
if show_hyperboloid:
pic += self._model.get_background_graphic()
return pic
开发者ID:BlairArchibald,项目名称:sage,代码行数:35,代码来源:hyperbolic_geodesic.py
示例17: perpendicular_bisector
def perpendicular_bisector(self): #UHP
r"""
Return the perpendicular bisector of the hyperbolic geodesic ``self``
if that geodesic has finite length.
EXAMPLES::
sage: UHP = HyperbolicPlane().UHP()
sage: g = UHP.random_geodesic()
sage: h = g.perpendicular_bisector()
sage: c = lambda x: x.coordinates()
sage: bool(c(g.intersection(h)[0]) - c(g.midpoint()) < 10**-9)
True
Infinite geodesics cannot be bisected::
sage: UHP.get_geodesic(0, 1).perpendicular_bisector()
Traceback (most recent call last):
...
ValueError: the length must be finite
"""
if self.length() == infinity:
raise ValueError("the length must be finite")
start = self._start.coordinates()
d = self._model._dist_points(start, self._end.coordinates()) / 2
S = self.complete()._to_std_geod(start)
T1 = matrix([[exp(d/2), 0], [0, exp(-d/2)]])
s2 = sqrt(2) * 0.5
T2 = matrix([[s2, -s2], [s2, s2]])
isom_mtrx = S.inverse() * (T1 * T2) * S # We need to clean this matrix up.
if (isom_mtrx - isom_mtrx.conjugate()).norm() < 5*EPSILON: # Imaginary part is small.
isom_mtrx = (isom_mtrx + isom_mtrx.conjugate()) / 2 # Set it to its real part.
H = self._model.get_isometry(isom_mtrx)
return self._model.get_geodesic(H(self._start), H(self._end))
开发者ID:rgbkrk,项目名称:sage,代码行数:34,代码来源:hyperbolic_geodesic.py
示例18: RankingScale_CQU4_2011
def RankingScale_CQU4_2011():
r"""
EXEMPLES::
sage: from slabbe.ranking_scale import RankingScale_CQU4_2011
sage: R = RankingScale_CQU4_2011()
sage: R.table()
Position Grand Chelem Mars Attaque La Flotte Petit Chelem
1 1000 1000 800 400
2 938 938 728 355
3 884 884 668 317
4 835 835 614 285
5 791 791 566 256
6 750 750 522 230
7 711 711 482 206
8 675 675 444 184
9 641 641 409 164
10 609 609 377 146
...
95 0 11 0 0
96 0 10 0 0
97 0 9 0 0
98 0 8 0 0
99 0 7 0 0
100 0 6 0 0
101 0 4 0 0
102 0 3 0 0
103 0 2 0 0
104 0 1 0 0
"""
from sage.rings.integer_ring import ZZ
serieA = [0] + discrete_curve(50, 1000, K=1, R=sqrt(2), base=e) #Movember, Bye Bye, Cdf, MA
la_flotte = [0] + discrete_curve(32, 800, K=1, R=sqrt(2), base=e) # la flotte
serieB = [0] + discrete_curve(24, 400, K=1, R=sqrt(2), base=e) # october fest, funenuf, la viree
nb_ma = 104
pivot_x = 40
pivot_y = serieA[pivot_x]
slope = (1-pivot_y) / (nb_ma-pivot_x)
L = [pivot_y + slope * (p-pivot_x) for p in range(pivot_x, nb_ma+1)]
L = [ZZ(round(_)) for _ in L]
mars_attaque = serieA[:pivot_x] + L
scales = serieA, mars_attaque, la_flotte, serieB
names = ["Grand Chelem", "Mars Attaque", "La Flotte", "Petit Chelem"]
return RankingScale(names, scales)
开发者ID:seblabbe,项目名称:slabbe,代码行数:46,代码来源:ranking_scale.py
示例19: _2f1
def _2f1(a, b, c, z):
"""
Evaluation of 2F1(a, b; c; z), assuming a, b, c positive
integers or half-integers
"""
if b == c:
return (1 - z) ** (-a)
if a == c:
return (1 - z) ** (-b)
if a == 0 or b == 0:
return Integer(1)
if a > b:
a, b = b, a
if b >= 2:
F1 = _2f1(a, b - 1, c, z)
F2 = _2f1(a, b - 2, c, z)
q = (b - 1) * (z - 1)
return (((c - 2 * b + 2 + (b - a - 1) * z) * F1 +
(b - c - 1) * F2) / q)
if c > 2:
# how to handle this case?
if a - c + 1 == 0 or b - c + 1 == 0:
raise NotImplementedError
F1 = _2f1(a, b, c - 1, z)
F2 = _2f1(a, b, c - 2, z)
r1 = (c - 1) * (2 - c - (a + b - 2 * c + 3) * z)
r2 = (c - 1) * (c - 2) * (1 - z)
q = (a - c + 1) * (b - c + 1) * z
return (r1 * F1 + r2 * F2) / q
if (a, b, c) == (R12, 1, 2):
return (2 - 2 * sqrt(1 - z)) / z
if (a, b, c) == (1, 1, 2):
return -log(1 - z) / z
if (a, b, c) == (1, R32, R12):
return (1 + z) / (1 - z) ** 2
if (a, b, c) == (1, R32, 2):
return 2 * (1 / sqrt(1 - z) - 1) / z
if (a, b, c) == (R32, 2, R12):
return (1 + 3 * z) / (1 - z) ** 3
if (a, b, c) == (R32, 2, 1):
return (2 + z) / (2 * (sqrt(1 - z) * (1 - z) ** 2))
if (a, b, c) == (2, 2, 1):
return (1 + z) / (1 - z) ** 3
raise NotImplementedError
开发者ID:drupel,项目名称:sage,代码行数:45,代码来源:hypergeometric.py
示例20: n_random_points
def n_random_points(self,n):
v = []
while(len(v) < n):
x = self.base_ring().random_element()
test = (x**2 - 1)/(self._d*(x**2) - 1)
if is_square(test):
y = sqrt(test)
v.append(self([x,y,1]))
v.sort()
return v
开发者ID:adarshsaraf123,项目名称:Dissertation,代码行数:10,代码来源:edwards_curve.py
注:本文中的sage.functions.other.sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论