• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python permgroup_named.SymmetricGroup类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sage.groups.perm_gps.permgroup_named.SymmetricGroup的典型用法代码示例。如果您正苦于以下问题:Python SymmetricGroup类的具体用法?Python SymmetricGroup怎么用?Python SymmetricGroup使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了SymmetricGroup类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: reflection_group

    def reflection_group(self, type="matrix"):
        """
        Return the reflection group corresponding to ``self``.

        EXAMPLES::

            sage: C = CartanMatrix(['A',3])
            sage: C.reflection_group()
            Weyl Group of type ['A', 3] (as a matrix group acting on the root space)
        """
        from sage.groups.perm_gps.permgroup_named import SymmetricGroup
        RS = self.root_space()
        G = RS.weyl_group()
        if type == "matrix":
            return G
        elif type == "permutation":
            assert G.is_finite()
            Phi = RS.roots()
            gens = {}
            S = SymmetricGroup(len(Phi))
            for i in self.index_set():
                pi = S([ Phi.index( beta.simple_reflection(i) ) + 1 for beta in Phi ])
                gens[i] = pi
            return S.subgroup( gens[i] for i in gens )
        else:
            raise ValueError("The reflection group is only available as a matrix group or as a permutation group.")
开发者ID:biasse,项目名称:sage,代码行数:26,代码来源:cartan_matrix.py


示例2: SymmetricPresentation

def SymmetricPresentation(n):
    r"""
    Build the Symmetric group of order `n!` as a finitely presented group.

    INPUT:

    - ``n`` -- The size of the underlying set of arbitrary symbols being acted
      on by the Symmetric group of order `n!`.

    OUTPUT:

    Symmetric group as a finite presentation, implementation uses GAP to find an
    isomorphism from a permutation representation to a finitely presented group
    representation. Due to this fact, the exact output presentation may not be
    the same for every method call on a constant ``n``.

    EXAMPLES::

        sage: S4 = groups.presentation.Symmetric(4)
        sage: S4.as_permutation_group().is_isomorphic(SymmetricGroup(4))
        True

    TESTS::

        sage: S = [groups.presentation.Symmetric(i) for i in range(1,4)]; S[0].order()
        1
        sage: S[1].order(), S[2].as_permutation_group().is_isomorphic(DihedralGroup(3))
        (2, True)
        sage: S5 = groups.presentation.Symmetric(5)
        sage: perm_S5 = S5.as_permutation_group(); perm_S5.is_isomorphic(SymmetricGroup(5))
        True
        sage: groups.presentation.Symmetric(8).order()
        40320
    """
    from sage.groups.perm_gps.permgroup_named import SymmetricGroup
    from sage.groups.free_group import _lexi_gen

    n = Integer(n)
    perm_rep = SymmetricGroup(n)
    GAP_fp_rep = libgap.Image(libgap.IsomorphismFpGroupByGenerators(perm_rep, perm_rep.gens()))
    image_gens = GAP_fp_rep.FreeGeneratorsOfFpGroup()
    name_itr = _lexi_gen()  # Python generator object for variable names
    F = FreeGroup([next(name_itr) for x in perm_rep.gens()])
    ret_rls = tuple(
        [F(rel_word.TietzeWordAbstractWord(image_gens).sage()) for rel_word in GAP_fp_rep.RelatorsOfFpGroup()]
    )
    return FinitelyPresentedGroup(F, ret_rls)
开发者ID:sampadsaha5,项目名称:sage,代码行数:47,代码来源:finitely_presented_named.py


示例3: _get_random_ribbon_graph

    def _get_random_ribbon_graph(self):
        r"""
        Return a random ribbon graph with right parameters.
        """
        n = random.randint(self.min_num_seps,self.max_num_seps)
        S = SymmetricGroup(2*n)

        e = S([(2*i+1,2*i+2) for i in xrange(n)])
        f = S.random_element()
        P = PermutationGroup([e,f])

        while not P.is_transitive():
            f = S.random_element()
            P = PermutationGroup([e,f])

        return RibbonGraph(
                 edges=[e(i+1)-1 for i in xrange(2*n)],
                 faces=[f(i+1)-1 for i in xrange(2*n)])
开发者ID:fchapoton,项目名称:flatsurf-package,代码行数:18,代码来源:tests.py


示例4: to_character

    def to_character(self):
        r"""
        Return the character of the representation.

        EXAMPLES:

        The trivial character::

            sage: rho = SymmetricGroupRepresentation([3])
            sage: chi = rho.to_character(); chi
            Character of Symmetric group of order 3! as a permutation group
            sage: chi.values()
            [1, 1, 1]
            sage: all(chi(g) == 1 for g in SymmetricGroup(3))
            True

        The sign character::

            sage: rho = SymmetricGroupRepresentation([1,1,1])
            sage: chi = rho.to_character(); chi
            Character of Symmetric group of order 3! as a permutation group
            sage: chi.values()
            [1, -1, 1]
            sage: all(chi(g) == g.sign() for g in SymmetricGroup(3))
            True

        The defining representation::

            sage: triv = SymmetricGroupRepresentation([4])
            sage: hook = SymmetricGroupRepresentation([3,1])
            sage: def_rep = lambda p : triv(p).block_sum(hook(p)).trace()
            sage: map(def_rep, Permutations(4))
            [4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]
            sage: [p.to_matrix().trace() for p in Permutations(4)]
            [4, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0]

        """
        from sage.groups.perm_gps.permgroup_named import SymmetricGroup

        Sym = SymmetricGroup(sum(self._partition))
        values = [self(g).trace() for g in Sym.conjugacy_classes_representatives()]
        return Sym.character(values)
开发者ID:sampadsaha5,项目名称:sage,代码行数:42,代码来源:symmetric_group_representations.py


示例5: _get_random_cylinder_diagram

    def _get_random_cylinder_diagram(self):
        r"""
        Return a random cylinder diagram with right parameters
        """
        test = False
        while test:
            n = random.randint(self.min_num_seps,self.max_num_seps)
            S = SymmetricGroup(2*n)

            bot = S.random_element()
            b = [[i-1 for i in c] for c in bot.cycle_tuples(singletons=True)]

            p = Partitions(2*n,length=len(b)).random_element()
            top = S([i+1 for i in canonical_perm(p)])
            t = [[i-1 for i in c] for c in top.cycle_tuples(singletons=True)]
            prandom.shuffle(t)

            c = CylinderDiagram(zip(b,t))
            test = c.is_connected()

        return c
开发者ID:fchapoton,项目名称:flatsurf-package,代码行数:21,代码来源:tests.py


示例6: CyclicCodeFromGeneratingPolynomial

def CyclicCodeFromGeneratingPolynomial(n,g,ignore=True):
    r"""
    If g is a polynomial over GF(q) which divides `x^n-1` then
    this constructs the code "generated by g" (ie, the code associated
    with the principle ideal `gR` in the ring
    `R = GF(q)[x]/(x^n-1)` in the usual way).

    The option "ignore" says to ignore the condition that (a) the
    characteristic of the base field does not divide the length (the
    usual assumption in the theory of cyclic codes), and (b) `g`
    must divide `x^n-1`. If ignore=True, instead of returning
    an error, a code generated by `gcd(x^n-1,g)` is created.

    EXAMPLES::

        sage: P.<x> = PolynomialRing(GF(3),"x")
        sage: g = x-1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(4,g); C
        Linear code of length 4, dimension 3 over Finite Field of size 3
        sage: P.<x> = PolynomialRing(GF(4,"a"),"x")
        sage: g = x^3+1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(9,g); C
        Linear code of length 9, dimension 6 over Finite Field in a of size 2^2
        sage: P.<x> = PolynomialRing(GF(2),"x")
        sage: g = x^3+x+1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(7,g); C
        Linear code of length 7, dimension 4 over Finite Field of size 2
        sage: C.generator_matrix()
        [1 1 0 1 0 0 0]
        [0 1 1 0 1 0 0]
        [0 0 1 1 0 1 0]
        [0 0 0 1 1 0 1]
        sage: g = x+1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(4,g); C
        Linear code of length 4, dimension 3 over Finite Field of size 2
        sage: C.generator_matrix()
        [1 1 0 0]
        [0 1 1 0]
        [0 0 1 1]

    On the other hand, CyclicCodeFromPolynomial(4,x) will produce a
    ValueError including a traceback error message: "`x` must
    divide `x^4 - 1`". You will also get a ValueError if you
    type

    ::

        sage: P.<x> = PolynomialRing(GF(4,"a"),"x")
        sage: g = x^2+1

    followed by CyclicCodeFromGeneratingPolynomial(6,g). You will also
    get a ValueError if you type

    ::

        sage: P.<x> = PolynomialRing(GF(3),"x")
        sage: g = x^2-1
        sage: C = codes.CyclicCodeFromGeneratingPolynomial(5,g); C
        Linear code of length 5, dimension 4 over Finite Field of size 3

    followed by C = CyclicCodeFromGeneratingPolynomial(5,g,False), with
    a traceback message including "`x^2 + 2` must divide
    `x^5 - 1`".
    """
    P = g.parent()
    x = P.gen()
    F = g.base_ring()
    p = F.characteristic()
    if not(ignore) and p.divides(n):
        raise ValueError('The characteristic %s must not divide %s'%(p,n))
    if not(ignore) and not(g.divides(x**n-1)):
        raise ValueError('%s must divide x^%s - 1'%(g,n))
    gn = GCD([g,x**n-1])
    d = gn.degree()
    coeffs = Sequence(gn.list())
    r1 = Sequence(coeffs+[0]*(n - d - 1))
    Sn = SymmetricGroup(n)
    s = Sn.gens()[0] # assumes 1st gen of S_n is (1,2,...,n)
    rows = [permutation_action(s**(-i),r1) for i in range(n-d)]
    MS = MatrixSpace(F,n-d,n)
    return LinearCode(MS(rows))
开发者ID:aaditya-thakkar,项目名称:sage,代码行数:81,代码来源:code_constructions.py


示例7: reorder

    def reorder(self, order):
        """
        Return a new isogeny class with the curves reordered.

        INPUT:

        - ``order`` -- None, a string or an iterable over all curves
          in this class.  See
          :meth:`sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.isogeny_class`
          for more details.

        OUTPUT:

        - Another :class:`IsogenyClass_EC` with the curves reordered
          (and matrices and maps changed as appropriate)

        EXAMPLES::

            sage: isocls = EllipticCurve('15a1').isogeny_class(use_tuple=False)
            sage: print "\n".join([repr(C) for C in isocls.curves])
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
            sage: isocls2 = isocls.reorder('lmfdb')
            sage: print "\n".join([repr(C) for C in isocls2.curves])
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 2160*x - 39540 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 135*x - 660 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 110*x - 880 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 80*x + 242 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 10*x - 10 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 - 5*x + 2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 over Rational Field
            Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 35*x - 28 over Rational Field
        """
        if order is None or isinstance(order, basestring) and order == self._algorithm:
            return self
        if isinstance(order, basestring):
            if order == "lmfdb":
                reordered_curves = sorted(self.curves, key = lambda E: E.a_invariants())
            else:
                reordered_curves = list(self.E.isogeny_class(algorithm=order, use_tuple=False))
        elif isinstance(order, (list, tuple, IsogenyClass_EC)):
            reordered_curves = list(order)
            if len(reordered_curves) != len(self.curves):
                raise ValueError("Incorrect length")
        else:
            raise TypeError("order parameter should be a string, list of curves or isogeny class")
        need_perm = self._mat is not None
        cpy = self.copy()
        curves = []
        perm = []
        for E in reordered_curves:
            try:
                j = self.curves.index(E)
            except ValueError:
                try:
                    j = self.curves.index(E.minimal_model())
                except ValueError:
                    raise ValueError("order does not yield a permutation of curves")
            curves.append(self.curves[j])
            if need_perm: perm.append(j+1)
        cpy.curves = tuple(curves)
        if need_perm:
            from sage.groups.perm_gps.permgroup_named import SymmetricGroup
            perm = SymmetricGroup(len(self.curves))(perm)
            cpy._mat = perm.matrix() * self._mat * (~perm).matrix()
            if self._maps is not None:
                n = len(self._maps)
                cpy._maps = [self._maps[perm(i+1)-1] for i in range(n)]
                for i in range(n):
                    cpy._maps[i] = [cpy._maps[i][perm(j+1)-1] for j in range(n)]
        else:
            cpy._mat = None
            cpy._maps = None
        return cpy
开发者ID:CETHop,项目名称:sage,代码行数:80,代码来源:isogeny_class.py



注:本文中的sage.groups.perm_gps.permgroup_named.SymmetricGroup类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python gap.eval函数代码示例发布时间:2022-05-27
下一篇:
Python group_element.MatrixGroupElement_gap类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap