本文整理汇总了Python中sage.libs.ntl.ntl_ZZ_pX.ntl_ZZ_pX函数的典型用法代码示例。如果您正苦于以下问题:Python ntl_ZZ_pX函数的具体用法?Python ntl_ZZ_pX怎么用?Python ntl_ZZ_pX使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ntl_ZZ_pX函数的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed, names, implementation='NTL'):
"""
A capped relative representation of an eisenstein extension of Qp.
INPUT:
- prepoly -- The original polynomial defining the
extension. This could be a polynomial with integer
coefficients, for example, while poly has coefficients
in Qp.
- poly -- The polynomial with coefficients in
self.base_ring() defining this extension.
- prec -- The precision cap of this ring.
- halt -- unused
- print_mode -- A dictionary of print options.
- shift_seed -- unused
- names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)
EXAMPLES::
sage: R = Qp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3
sage: W.<w> = R.ext(f); W #indirect doctest
Eisenstein Extension of 3-adic Field with capped relative precision 10000 in w defined by (1 + O(3^10000))*x^3 + (O(3^10001))*x^2 + (3^2 + O(3^10001))*x + (-3 + O(3^10001))
sage: W.precision_cap()
30000
sage: R.<p> = Qp(next_prime(10^30), 3, print_pos=False); S.<x> = ZZ[]; f = x^3 + p^2*x - p
sage: W.<w> = R.ext(f); W.prime()
1000000000000000000000000000057
sage: W.precision_cap()
9
"""
# Currently doesn't support polynomials with non-integral coefficients
unram_prec = (prec + poly.degree() - 1) // poly.degree()
ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**unram_prec)
shift_poly = ntl_ZZ_pX([a.lift() for a in shift_seed.list()], shift_seed.base_ring().prime()**unram_prec)
if unram_prec <= 30:
self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), unram_prec, unram_prec, prec, True, ntl_poly, "small", "e", shift_poly)
else:
self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, unram_prec, prec, True, ntl_poly, "big", "e", shift_poly)
self._shift_seed = shift_seed
self._pre_poly = prepoly
self._implementation = implementation
EisensteinExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCRElement)
开发者ID:mcognetta,项目名称:sage,代码行数:50,代码来源:padic_extension_leaves.py
示例2: __init__
def __init__(self, exact_modulus, poly, prec, print_mode, shift_seed, names, implementation='NTL'):
"""
A capped relative representation of an eisenstein extension of Qp.
INPUT:
- ``exact_modulus`` -- the original polynomial defining the extension.
This could be a polynomial with rational coefficients, for example,
while ``poly`` has coefficients in a `p`-adic field.
- ``poly`` -- the polynomial with coefficients in :meth:`base_ring`
defining this extension
- ``prec`` -- the precision cap of this ring
- ``print_mode`` -- a dictionary of print options
- ``shift_seed`` -- unused
- ``names`` -- a 4-tuple, ``(variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)``
EXAMPLES::
sage: R = Qp(3, 10000, print_pos=False); S.<x> = ZZ[]; f = x^3 + 9*x - 3
sage: W.<w> = R.ext(f); W #indirect doctest
Eisenstein Extension in w defined by x^3 + 9*x - 3 with capped relative precision 30000 over 3-adic Field
sage: W.precision_cap()
30000
sage: R.<p> = Qp(next_prime(10^30), 3, print_pos=False); S.<x> = ZZ[]; f = x^3 + p^2*x - p
sage: W.<w> = R.ext(f); W.prime()
1000000000000000000000000000057
sage: W.precision_cap()
9
"""
# Currently doesn't support polynomials with non-integral coefficients
unram_prec = (prec + poly.degree() - 1) // poly.degree()
ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**unram_prec)
shift_poly = ntl_ZZ_pX([a.lift() for a in shift_seed.list()], shift_seed.base_ring().prime()**unram_prec)
if unram_prec <= 30:
self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), unram_prec, unram_prec, prec, True, ntl_poly, "small", "e", shift_poly)
else:
self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, unram_prec, prec, True, ntl_poly, "big", "e", shift_poly)
self._shift_seed = shift_seed
self._exact_modulus = exact_modulus
self._implementation = implementation
EisensteinExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCRElement)
开发者ID:saraedum,项目名称:sage-renamed,代码行数:47,代码来源:padic_extension_leaves.py
示例3: __init__
def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed, names):
"""
A representation of Qq.
INPUTS::
- prepoly -- The original polynomial defining the
extension. This could be a polynomial with integer
coefficients, for example, while poly has coefficients
in Qp.
- poly -- The polynomial with coefficients in
self.base_ring() defining this extension.
- prec -- The precision cap of this ring.
- halt -- unused
- print_mode -- A dictionary of print options.
- shift_seed -- unused
- names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)
EXAMPLES::
sage: R.<a> = Qq(27,10000); R #indirect doctest
Unramified Extension of 3-adic Field with capped relative precision 10000 in a defined by (1 + O(3^10000))*x^3 + (O(3^10000))*x^2 + (2 + O(3^10000))*x + (1 + O(3^10000))
sage: R.<a> = Qq(next_prime(10^30)^3, 3); R.prime()
1000000000000000000000000000057
"""
# Currently doesn't support polynomials with non-integral coefficients
ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec)
if prec <= 30:
self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), prec, prec, prec, True, ntl_poly, "small", "u")
else:
self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, prec, prec, True, ntl_poly, "big", "u")
self._shift_seed = None
self._pre_poly = prepoly
UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCRElement)
开发者ID:CETHop,项目名称:sage,代码行数:41,代码来源:padic_extension_leaves.py
注:本文中的sage.libs.ntl.ntl_ZZ_pX.ntl_ZZ_pX函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论