• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python latex.latex函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sage.misc.latex.latex函数的典型用法代码示例。如果您正苦于以下问题:Python latex函数的具体用法?Python latex怎么用?Python latex使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了latex函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _latex_

    def _latex_(self):
        r"""
        Return a latex representation of ``self``.

        EXAMPLES::

            sage: B = crystals.infinity.PBW(['F', 4])
            sage: u = B.highest_weight_vector()
            sage: b = u.f_string([1,2,3,4,2,3,2,3,4,1,2])
            sage: latex(b)
            f_{\alpha_{4}}^{2}
             f_{\alpha_{3}}
             f_{\alpha_{1} + \alpha_{2} + 2\alpha_{3}}
             f_{\alpha_{1} + \alpha_{2}}
             f_{\alpha_{2}}^{2}
        """
        pbw_datum = self._pbw_datum.convert_to_new_long_word(self.parent()._default_word)
        lusztig_datum = list(pbw_datum.lusztig_datum)
        al = self.parent()._pbw_datum_parent._root_list_from(self.parent()._default_word)
        from sage.misc.latex import latex
        ret_str = ' '.join("f_{%s}%s"%(latex(al[i]), "^{%s}"%latex(exp) if exp > 1 else "")
                           for i, exp in enumerate(lusztig_datum) if exp)
        if ret_str == '':
            return '1'
        return ret_str
开发者ID:sagemath,项目名称:sage,代码行数:25,代码来源:pbw_crystal.py


示例2: _latex_

    def _latex_(self):
        r"""
        Return a latex representation of ``self``.

        EXAMPLES::

            sage: ct = CartanType(['A',4]).marked_nodes([1, 3])
            sage: latex(ct)
            A_{4} \text{ with nodes $\left(1, 3\right)$ marked}

        A more compact, but potentially confusing, representation can
        be obtained using the ``latex_marked`` global option::

            sage: CartanType.options['latex_marked'] = False
            sage: latex(ct)
            A_{4}
            sage: CartanType.options['latex_marked'] = True

        Kac's notations are implemented::

            sage: CartanType.options['notation'] = 'Kac'
            sage: latex(CartanType(['D',4,3]).marked_nodes([0]))
            D_4^{(3)} \text{ with node $0$ marked}
            sage: CartanType.options._reset()
        """
        from sage.misc.latex import latex
        ret = self._type._latex_()
        if self.options('latex_marked'):
            if len(self._marked_nodes) == 1:
                ret += " \\text{{ with node ${}$ marked}} ".format(latex(self._marked_nodes[0]))
            else:
                ret += " \\text{{ with nodes ${}$ marked}} ".format(latex(self._marked_nodes))
        return ret
开发者ID:mcognetta,项目名称:sage,代码行数:33,代码来源:type_marked.py


示例3: _latex_

    def _latex_(self):
        r"""
        Return LaTeX representation of ``self``.

        EXAMPLES::

            sage: from sage.numerical.knapsack import Superincreasing
            sage: latex(Superincreasing())
            \left[\right]
            sage: seq = Superincreasing([1, 2, 5, 21, 69, 189, 376, 919])
            sage: latex(seq)
            <BLANKLINE>
            \left[1,
            2,
            5,
            21,
            69,
            189,
            376,
            919\right]
        """
        if self._seq is None:
            return latex([])
        else:
            return latex(self._seq)
开发者ID:ProgVal,项目名称:sage,代码行数:25,代码来源:knapsack.py


示例4: list_functions

def list_functions(ex, list_f):
    r"""
    Function to find the occurences of symbolic functions in the expression. 

    INPUT:

    - ``ex`` -- symbolic expression to be analyzed

    OUTPUT:

    - ``list_f`` -- tuple containing the details of a symbolic function found, in a following order:

    1. operator
    2. function name 
    3. arguments 
    4. LaTeX version of function name 
    5. LaTeX version of arguments  

    TESTS::

        sage: var('x y z')
        (x, y, z)
        sage: f = function('f', x, y, latex_name=r"{\cal F}")
        sage: g = function('g_x', x, y)
        sage: d = sin(x)*g.diff(x)*x*f - x^2*f.diff(x,y)/g 
        sage: from sage.geometry.manifolds.utilities import list_functions
        sage: list_f = [] 
        sage: list_functions(d, list_f)
        sage: list_f
        [(f, 'f', '(x, y)', {\cal F}, \left(x, y\right)), (g_x, 'g_x', '(x, y)', 'g_{x}', \left(x, y\right))]
   
   """
 
    op = ex.operator()
    operands = ex.operands()

    from sage.misc.latex import latex, latex_variable_name  

    if op: 

        if str(type(op)) == "<class 'sage.symbolic.function_factory.NewSymbolicFunction'>": 
            repr_function = repr(op) 
            latex_function = latex(op)

            # case when no latex_name given 
            if repr_function == latex_function:
                latex_function = latex_variable_name(str(op))

            repr_args = repr(ex.arguments())
            # remove comma in case of singleton 
            if len(ex.arguments())==1: 
                repr_args = repr_args.replace(",","")

            latex_args = latex(ex.arguments())
           
            list_f.append((op, repr_function, repr_args, latex_function, latex_args))
            
        for operand in operands:    
            list_functions(operand, list_f)
开发者ID:gaby7646,项目名称:sage,代码行数:59,代码来源:utilities.py


示例5: _print_latex_

    def _print_latex_(self, u, m):
        """
        EXAMPLES::

            sage: latex(elliptic_eu(1,x))
            E(1;x)
        """
        return r"E(%s;%s)" % (latex(u), latex(m))
开发者ID:robertwb,项目名称:sage,代码行数:8,代码来源:special.py


示例6: _print_latex_

    def _print_latex_(self, n, m, theta, phi):
        r"""
        TESTS::

            sage: y = var('y')
            sage: latex(spherical_harmonic(3, 2, x, y, hold=True))
            Y_{3}^{2}\left(x, y\right)
        """
        return r"Y_{{{}}}^{{{}}}\left({}, {}\right)".format(latex(n), latex(m), latex(theta), latex(phi))
开发者ID:jeromeca,项目名称:sage,代码行数:9,代码来源:special.py


示例7: _OG

def _OG(n, R, special, e=0, var='a', invariant_form=None):
    r"""
    This function is commonly used by the functions GO and SO to avoid uneccessarily
    duplicated code. For documentation and examples see the individual functions.

    TESTS:

    Check that :trac:`26028` is fixed::

        sage: GO(3,25).order()  # indirect doctest
        31200
    """
    prefix = 'General'
    ltx_prefix ='G'
    if special:
        prefix = 'Special'
        ltx_prefix ='S'

    degree, ring = normalize_args_vectorspace(n, R, var=var)
    e = normalize_args_e(degree, ring, e)

    if e == 0:
        if invariant_form is not None:
            if is_FiniteField(ring):
                raise NotImplementedError("invariant_form for finite groups is fixed by GAP")

            invariant_form = normalize_args_invariant_form(ring, degree, invariant_form)
            if not invariant_form.is_symmetric():
                raise ValueError("invariant_form must be symmetric")

            try:
                if invariant_form.is_positive_definite():
                   inserted_text = "with respect to positive definite symmetric form"
                else:
                   inserted_text = "with respect to non positive definite symmetric form"
            except ValueError:
                inserted_text = "with respect to symmetric form"

            name = '{0} Orthogonal Group of degree {1} over {2} {3}\n{4}'.format(
                            prefix, degree, ring, inserted_text,invariant_form)
            ltx  = r'\text{{{0}O}}_{{{1}}}({2})\text{{ {3} }}{4}'.format(
                            ltx_prefix, degree, latex(ring), inserted_text,
                            latex(invariant_form))
        else:
            name = '{0} Orthogonal Group of degree {1} over {2}'.format(prefix, degree, ring)
            ltx  = r'\text{{{0}O}}_{{{1}}}({2})'.format(ltx_prefix, degree, latex(ring))
    else:
        name = '{0} Orthogonal Group of degree {1} and form parameter {2} over {3}'.format(prefix, degree, e, ring)
        ltx  = r'\text{{{0}O}}_{{{1}}}({2}, {3})'.format(ltx_prefix, degree,
                                                         latex(ring),
                                                         '+' if e == 1 else '-')

    if is_FiniteField(ring):
        cmd  = '{0}O({1}, {2}, {3})'.format(ltx_prefix, e, degree, ring.order())
        return OrthogonalMatrixGroup_gap(degree, ring, False, name, ltx, cmd)
    else:
        return OrthogonalMatrixGroup_generic(degree, ring, False, name, ltx, invariant_form=invariant_form)
开发者ID:sagemath,项目名称:sage,代码行数:57,代码来源:orthogonal.py


示例8: _latex_

 def _latex_(self) :
     r"""
     TESTS::
         sage: from psage.modform.fourier_expansion_framework.gradedexpansions.gradedexpansion_grading import *
         sage: latex( TrivialGrading( 3, "t" ) )
         \text{Trivial grading on $3$ generators with index $\verb|t|$}
     """
     return r"\text{Trivial grading on $%s$ generators with index $%s$}" \
             % (latex(self.__ngens), latex(self.__index))
开发者ID:RalphieBoy,项目名称:psage,代码行数:9,代码来源:gradedexpansion_grading.py


示例9: _latex_

    def _latex_(self):
        r"""
        Return latex representation of self.

        EXAMPLES::

            sage: latex(Set(ZZ).union(Set(GF(5))))
            \Bold{Z} \cup \left\{0, 1, 2, 3, 4\right\}
        """
        return '%s \\cup %s'%(latex(self.__X), latex(self.__Y))
开发者ID:chos9,项目名称:sage,代码行数:10,代码来源:set.py


示例10: _print_latex_

    def _print_latex_(self, n, z):
        """
        Custom _print_latex_ method.

        EXAMPLES::

            sage: latex(bessel_K(1, x))
            \operatorname{K_{1}}(x)
        """
        return r"\operatorname{K_{%s}}(%s)" % (latex(n), latex(z))
开发者ID:Findstat,项目名称:sage,代码行数:10,代码来源:bessel.py


示例11: _latex_

 def _latex_(self):
     """
     EXAMPLES::
     
         sage: R.<x> = PolynomialRing(ZZ,'x')
         sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
         sage: R.quotient_ring(I)._latex_()
         '\\Bold{Z}[x]/\\left(x^{2} + 3x + 4, x^{2} + 1\\right)\\Bold{Z}[x]'
     """
     return "%s/%s"%(latex.latex(self.cover_ring()), latex.latex(self.defining_ideal()))
开发者ID:dagss,项目名称:sage,代码行数:10,代码来源:quotient_ring.py


示例12: half_term

 def half_term(mon, polynomial):
     total = sum(mon)
     if total == 0:
         return '1'
     ret = ' '.join('{}{}'.format(latex(R.gen(i)), exp(power)) if polynomial
                    else '\\partial {}{}'.format(latex(R.gen(i)), exp(power))
                    for i,power in enumerate(mon) if power > 0)
     if not polynomial:
         return '\\frac{{\\partial{}}}{{{}}}'.format(exp(total), ret)
     return ret
开发者ID:saraedum,项目名称:sage-renamed,代码行数:10,代码来源:weyl_algebra.py


示例13: _latex_

    def _latex_(self):
        r"""
        Return a latex representation of this set.

        EXAMPLES::

            sage: latex(Set(ZZ).union(Set(GF(5))))
            \Bold{Z} \cup \left\{0, 1, 2, 3, 4\right\}
        """
        return latex(self._X) + self._latex_op + latex(self._Y)
开发者ID:DrXyzzy,项目名称:sage,代码行数:10,代码来源:set.py


示例14: _latex_

    def _latex_(self):
        r"""
        Return a latex representation of ``self``.

        EXAMPLES::

            sage: latex(3*ZZ) # indirect doctest
            \left(3\right)\Bold{Z}
        """
        return '\\left(%s\\right)%s'%(", ".join([latex.latex(g) for g in \
                                                 self.gens()]),
                                      latex.latex(self.ring()))
开发者ID:saraedum,项目名称:sage-renamed,代码行数:12,代码来源:ideal.py


示例15: _latex_

    def _latex_(self):
        r"""
        Return a latex representation of ``self``.

        EXAMPLES::

            sage: S = SymmetricGroupAlgebra(QQ, 3)
            sage: W = S.cell_module([2,1])
            sage: latex(W)
            W_{...}\left(...\right)
        """
        from sage.misc.latex import latex
        return "W_{{{}}}\\left({}\\right)".format(latex(self._algebra), latex(self._la))
开发者ID:saraedum,项目名称:sage-renamed,代码行数:13,代码来源:cell_module.py


示例16: _print_latex_

    def _print_latex_(self, a, b, z):
        r"""
        TESTS::

            sage: latex(hypergeometric([1, 1], [2], -1))
            \,_2F_1\left(\begin{matrix} 1,1 \\ 2 \end{matrix} ; -1 \right)

        """
        aa = ",".join(latex(c) for c in a)
        bb = ",".join(latex(c) for c in b)
        z = latex(z)
        return (r"\,_{}F_{}\left(\begin{{matrix}} {} \\ {} \end{{matrix}} ; "
                r"{} \right)").format(len(a), len(b), aa, bb, z)
开发者ID:drupel,项目名称:sage,代码行数:13,代码来源:hypergeometric.py


示例17: _latex_

        def _latex_(self):
            r"""
            Return a latex representation of ``self``.

            EXAMPLES::

                sage: m = matrix([[0,1],[1,1]])
                sage: J.<a,b,c> = JordanAlgebra(m)
                sage: latex(a + 2*b - c)
                1 + \left(2,\,-1\right)
            """
            from sage.misc.latex import latex
            return "{} + {}".format(latex(self._s), latex(self._v))
开发者ID:saraedum,项目名称:sage-renamed,代码行数:13,代码来源:jordan_algebra.py


示例18: _print_latex_

    def _print_latex_(self, m, n, **kwds):
        r"""
        Return latex expression

        EXAMPLES::

            sage: from sage.misc.latex import latex
            sage: m,n=var('m,n')
            sage: latex(kronecker_delta(m,n))
            \delta_{m,n}
        """
        from sage.misc.latex import latex
        return r"\delta_{%s,%s}" % (latex(m), latex(n))
开发者ID:sagemath,项目名称:sage,代码行数:13,代码来源:generalized.py


示例19: _latex_

    def _latex_(self):
        """
        Return a latex representation of ``self``.

        EXAMPLES::

            sage: print(Bimodules(QQ, ZZ)._latex_())
            {\mathbf{Bimodules}}_{\Bold{Q}, \Bold{Z}}
        """
        from sage.misc.latex import latex
        return "{{{0}}}_{{{1}, {2}}}".format(Category._latex_(self),
                                             latex(self._left_base_ring),
                                             latex(self._right_base_ring))
开发者ID:saraedum,项目名称:sage-renamed,代码行数:13,代码来源:bimodules.py


示例20: _latex_

    def _latex_(self):
        r"""
        Return a latex representation of ``self``.

        EXAMPLES::

            sage: SGA = SymmetricGroupAlgebra(QQ, 3)
            sage: T = SGA.trivial_representation()
            sage: H = SGA.hochschild_complex(T)
            sage: latex(H)
            C_{\bullet}\left(..., ...\right)
        """
        from sage.misc.latex import latex
        return "C_{{\\bullet}}\\left({}, {}\\right)".format(latex(self._A), latex(self._M))
开发者ID:Babyll,项目名称:sage,代码行数:14,代码来源:hochschild_complex.py



注:本文中的sage.misc.latex.latex函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python lazy_import.lazy_import函数代码示例发布时间:2022-05-27
下一篇:
Python function_mangling.ArgumentFixer类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap