本文整理汇总了Python中sage.misc.misc.prod函数的典型用法代码示例。如果您正苦于以下问题:Python prod函数的具体用法?Python prod怎么用?Python prod使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了prod函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: Pall_mass_density_at_odd_prime
def Pall_mass_density_at_odd_prime(self, p):
"""
Returns the local representation density of a form (for
representing itself) defined over `ZZ`, at some prime `p>2`.
REFERENCES:
Pall's article "The Weight of a Genus of Positive n-ary Quadratic Forms"
appearing in Proc. Symp. Pure Math. VIII (1965), pp95--105.
INPUT:
`p` -- a prime number > 2.
OUTPUT:
a rational number.
EXAMPLES::
sage: Q = QuadraticForm(ZZ, 3, [1,0,0,1,0,1])
sage: Q.Pall_mass_density_at_odd_prime(3)
[(0, Quadratic form in 3 variables over Integer Ring with coefficients:
[ 1 0 0 ]
[ * 1 0 ]
[ * * 1 ])] [(0, 3, 8)] [8/9] 8/9
8/9
"""
## Check that p is a positive prime -- unnecessary since it's done implicitly in the next step. =)
if p<=2:
raise TypeError, "Oops! We need p to be a prime > 2."
## Step 1: Obtain a p-adic (diagonal) local normal form, and
## compute the invariants for each Jordan block.
jordan_list = self.jordan_blocks_by_scale_and_unimodular(p)
modified_jordan_list = [(a, Q.dim(), Q.det()) for (a,Q) in jordan_list] ## List of pairs (scale, det)
#print jordan_list
#print modified_jordan_list
## Step 2: Compute the list of local masses for each Jordan block
jordan_mass_list = []
for (s,n,d) in modified_jordan_list:
generic_factor = prod([1 - p**(-2*j) for j in range(1, floor((n-1)/2)+1)])
#print "generic factor: ", generic_factor
if (n % 2 == 0):
m = n/2
generic_factor *= (1 + legendre_symbol(((-1)**m) * d, p) * p**(-m))
#print "jordan_mass: ", generic_factor
jordan_mass_list = jordan_mass_list + [generic_factor]
## Step 3: Compute the local mass $\al_p$ at p.
MJL = modified_jordan_list
s = len(modified_jordan_list)
M = [sum([MJL[j][1] for j in range(i, s)]) for i in range(s-1)] ## Note: It's s-1 since we don't need the last M.
#print "M = ", M
nu = sum([M[i] * MJL[i][0] * MJL[i][1] for i in range(s-1)]) - ZZ(sum([J[0] * J[1] * (J[1]-1) for J in MJL]))/ZZ(2)
p_mass = prod(jordan_mass_list)
p_mass *= 2**(s-1) * p**nu
print jordan_list, MJL, jordan_mass_list, p_mass
## Return the result
return p_mass
开发者ID:sageb0t,项目名称:testsage,代码行数:60,代码来源:quadratic_form__mass__Siegel_densities.py
示例2: number_of_classes
def number_of_classes(self, invertible=False, q=None):
"""
Return the number of similarity classes of matrices of type ``self``.
IMPUT:
- ``invertible`` -- Boolean; return number of invertible classes if set
to ``True``
- ``q`` -- An integer or an indeterminate
EXAMPLES::
sage: tau = SimilarityClassType([[1, [1]], [1, [1]]])
sage: tau.number_of_classes()
1/2*q^2 - 1/2*q
"""
if q is None:
q = ZZ["q"].gen()
if self.size() == 0:
return q.parent().one()
list_of_degrees = [PT.degree() for PT in self]
maximum_degree = max(list_of_degrees)
numerator = prod(
[
prod([primitives(d + 1, invertible=invertible, q=q) - i for i in range(list_of_degrees.count(d + 1))])
for d in range(maximum_degree)
]
)
tau_list = list(self)
D = dict((i, tau_list.count(i)) for i in tau_list)
denominator = reduce(mul, [factorial(D[primary_type]) for primary_type in D.keys()])
return numerator / denominator
开发者ID:jhpalmieri,项目名称:sage,代码行数:33,代码来源:similarity_class_type.py
示例3: q_binomial
def q_binomial(n,k,p=None):
"""
Returns the ``q``-binomial coefficient.
If ``p`` is unspecified, then it defaults to using the generator ``q`` for
a univariate polynomial ring over the integers.
EXAMPLES::
sage: import sage.combinat.q_analogues as q_analogues
sage: q_analogues.q_binomial(4,2)
q^4 + q^3 + 2*q^2 + q + 1
sage: p = ZZ['p'].0
sage: q_analogues.q_binomial(4,2,p)
p^4 + p^3 + 2*p^2 + p + 1
The ``q``-analogue of ``binomial(n,k)`` is currently only defined for
``n`` a nonnegative integer, it is zero for negative k (trac #11411)::
sage: q_analogues.q_binomial(5, -1)
0
"""
if not (n in ZZ and k in ZZ):
raise ValueError, "Argument (%s, %s) must be integers."%(n, k)
if n < 0:
raise NotImplementedError
if 0 <= k and k <= n:
k=min(k, n-k)
return (prod(q_int(j, p) for j in range(n-k+1, n+1)) /
prod(q_int(j, p) for j in range(1, k+1)))
else:
return 0
开发者ID:bgxcpku,项目名称:sagelib,代码行数:32,代码来源:q_analogues.py
示例4: q_catalan_number
def q_catalan_number(n,p=None):
"""
Returns the `q`-Catalan number of index `n`.
If `p` is unspecified, then it defaults to using the generator `q` for
a univariate polynomial ring over the integers.
There are several `q`-Catalan numbers. This procedure
returns the one which can be written using the `q`-binomial coefficients.
EXAMPLES::
sage: from sage.combinat.q_analogues import q_catalan_number
sage: q_catalan_number(4)
q^12 + q^10 + q^9 + 2*q^8 + q^7 + 2*q^6 + q^5 + 2*q^4 + q^3 + q^2 + 1
sage: p = ZZ['p'].0
sage: q_catalan_number(4,p)
p^12 + p^10 + p^9 + 2*p^8 + p^7 + 2*p^6 + p^5 + 2*p^4 + p^3 + p^2 + 1
The `q`-Catalan number of index `n` is only defined for `n` a
nonnegative integer (:trac:`11411`)::
sage: q_catalan_number(-2)
Traceback (most recent call last):
...
ValueError: Argument (-2) must be a nonnegative integer.
"""
if n in ZZ and n >= 0:
return prod(q_int(j, p) for j in range(n+2, 2*n+1)) / prod(q_int(j, p) for j in range(2,n+1))
else:
raise ValueError("Argument (%s) must be a nonnegative integer." %n)
开发者ID:jhpalmieri,项目名称:sage,代码行数:31,代码来源:q_analogues.py
示例5: DuadicCodeOddPair
def DuadicCodeOddPair(F,S1,S2):
"""
Constructs the "odd pair" of duadic codes associated to the
"splitting" S1, S2 of n.
.. warning::
Maybe the splitting should be associated to a sum of
q-cyclotomic cosets mod n, where q is a *prime*.
EXAMPLES::
sage: from sage.coding.code_constructions import is_a_splitting
sage: n = 11; q = 3
sage: C = cyclotomic_cosets(q,n); C
[[0], [1, 3, 4, 5, 9], [2, 6, 7, 8, 10]]
sage: S1 = C[1]
sage: S2 = C[2]
sage: is_a_splitting(S1,S2,11)
(True, 2)
sage: DuadicCodeOddPair(GF(q),S1,S2)
(Linear code of length 11, dimension 6 over Finite Field of size 3,
Linear code of length 11, dimension 6 over Finite Field of size 3)
This is consistent with Theorem 6.1.3 in [HP]_.
"""
n = max(S1+S2)+1
if not(is_a_splitting(S1,S2,n)):
raise TypeError, "%s, %s must be a splitting of %s."%(S1,S2,n)
q = F.order()
k = Mod(q,n).multiplicative_order()
FF = GF(q**k,"z")
z = FF.gen()
zeta = z**((q**k-1)/n)
P1 = PolynomialRing(FF,"x")
x = P1.gen()
g1 = prod([x-zeta**i for i in S1+[0]])
g2 = prod([x-zeta**i for i in S2+[0]])
j = sum([x**i/n for i in range(n)])
P2 = PolynomialRing(F,"x")
x = P2.gen()
coeffs1 = [lift2smallest_field(c)[0] for c in (g1+j).coeffs()]
coeffs2 = [lift2smallest_field(c)[0] for c in (g2+j).coeffs()]
gg1 = P2(coeffs1)
gg2 = P2(coeffs2)
C1 = CyclicCodeFromGeneratingPolynomial(n,gg1)
C2 = CyclicCodeFromGeneratingPolynomial(n,gg2)
return C1,C2
开发者ID:chos9,项目名称:sage,代码行数:48,代码来源:code_constructions.py
示例6: _gap_init_
def _gap_init_(self):
r"""
Return string that defines corresponding abelian group in GAP.
EXAMPLES::
sage: G = AbelianGroup([2,3,9])
sage: G._gap_init_()
'AbelianGroup([2, 3, 9])'
sage: gap(G)
Group( [ f1, f2, f3 ] )
Only works for finite groups.
::
sage: G = AbelianGroup(3,[0,3,4],names="abc"); G
Multiplicative Abelian Group isomorphic to Z x C3 x C4
sage: G._gap_init_()
Traceback (most recent call last):
...
TypeError: abelian groups in GAP are finite, but self is infinite
"""
# TODO: Use the package polycyclic has AbelianPcpGroup, which can handle
# the infinite case but it is a GAP package not GPL'd.
# Use this when the group is infinite...
if (False and prod(self.invariants())==0): # if False for now...
return 'AbelianPcpGroup(%s)'%self.invariants()
if not self.is_finite():
raise TypeError, "abelian groups in GAP are finite, but self is infinite"
return 'AbelianGroup(%s)'%self.invariants()
开发者ID:bgxcpku,项目名称:sagelib,代码行数:31,代码来源:abelian_group.py
示例7: nu3
def nu3(self):
r"""
Return the number of elliptic points of order 3 for this congruence
subgroup `\Gamma_0(N)`. The number of these is given by a standard formula:
0 if `N` is divisible by 9 or any prime congruent to -1 mod 3, and
otherwise `2^d` where d is the number of primes other than 3 dividing `N`.
EXAMPLE::
sage: Gamma0(2).nu3()
0
sage: Gamma0(3).nu3()
1
sage: Gamma0(9).nu3()
0
sage: Gamma0(7).nu3()
2
sage: Gamma0(21).nu3()
2
sage: Gamma0(1729).nu3()
8
"""
n = self.level()
if (n % 9 == 0):
return ZZ(0)
return prod([ 1 + kronecker_symbol(-3, p) for p, _ in n.factor()])
开发者ID:Etn40ff,项目名称:sage,代码行数:26,代码来源:congroup_gamma0.py
示例8: cardinality
def cardinality(self):
r"""
Return the cardinality of ``self``.
The number of ordered set partitions of a set of length `k` with
composition shape `\mu` is equal to
.. MATH::
\frac{k!}{\prod_{\mu_i \neq 0} \mu_i!}.
EXAMPLES::
sage: OrderedSetPartitions(5,[2,3]).cardinality()
10
sage: OrderedSetPartitions(0, []).cardinality()
1
sage: OrderedSetPartitions(0, [0]).cardinality()
1
sage: OrderedSetPartitions(0, [0,0]).cardinality()
1
sage: OrderedSetPartitions(5, [2,0,3]).cardinality()
10
"""
return factorial(len(self._set))/prod([factorial(i) for i in self.c])
开发者ID:amitjamadagni,项目名称:sage,代码行数:25,代码来源:set_partition_ordered.py
示例9: statistic
def statistic(self, func, q=None):
"""
Return
.. MATH::
prod_{(d, \lambda)\in \tau} n_\lambda(q^d)
where `n_\lambda(q)` is the value returned by ``func`` on the input
`\lambda`.
INPUT:
- ``func`` -- a function that takes a partition to a polynomial in ``q``
- ``q`` -- an integer or an indeterminate
EXAMPLES::
sage: tau = SimilarityClassType([[1, [1]], [1, [2, 1]], [2, [1, 1]]])
sage: from sage.combinat.similarity_class_type import fq
sage: tau.statistic(lambda la: prod([fq(m) for m in la.to_exp()]))
(q^9 - 3*q^8 + 2*q^7 + 2*q^6 - 4*q^5 + 4*q^4 - 2*q^3 - 2*q^2 + 3*q - 1)/q^9
sage: q = ZZ['q'].gen()
sage: tau.statistic(lambda la: q**la.size(), q = q)
q^8
"""
if q is None:
q = FractionField(ZZ["q"]).gen()
return prod([PT.statistic(func, q=q) for PT in self])
开发者ID:jhpalmieri,项目名称:sage,代码行数:30,代码来源:similarity_class_type.py
示例10: centralizer_group_cardinality
def centralizer_group_cardinality(la, q=None):
r"""
Return the cardinality of the centralizer group in `GL_n(\mathbf{F}_q)`
of a nilpotent matrix whose Jordan blocks are given by ``la``.
INPUT:
- ``lambda`` -- a partition
- ``q`` -- an integer or an indeterminate
OUTPUT:
A polynomial function of ``q``.
EXAMPLES::
sage: from sage.combinat.similarity_class_type import centralizer_group_cardinality
sage: q = ZZ['q'].gen()
sage: centralizer_group_cardinality(Partition([2, 1]))
q^5 - 2*q^4 + q^3
"""
if q is None:
q = ZZ["q"].gen()
return q ** centralizer_algebra_dim(la) * prod([fq(m, q=q) for m in la.to_exp()])
开发者ID:jhpalmieri,项目名称:sage,代码行数:25,代码来源:similarity_class_type.py
示例11: _Chow_group_free
def _Chow_group_free(self):
r"""
Return the relations coming from the free part of the Chow group
OUTPUT:
A tuple containing the elements of $Hom(A_{d-1,\text{free}},
F^\times)$, including the identity.
EXAMPLES::
sage: fan = NormalFan(ReflexivePolytope(2, 0))
sage: X = ToricVariety(fan, base_field=GF(7))
sage: X.Chow_group().degree(1)
C3 x Z
sage: enum = X.point_set()._naive_enumerator()
sage: enum._Chow_group_free()
((1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6))
"""
units = self.units()
result = []
rays = self.fan().rays() + self.fan().virtual_rays()
ker = rays.matrix().integer_kernel().matrix()
for phases in CartesianProduct(*([units] * ker.nrows())):
phases = tuple(prod(mu**exponent for mu, exponent in zip(phases, column))
for column in ker.columns())
result.append(phases)
return tuple(sorted(result))
开发者ID:Etn40ff,项目名称:sage,代码行数:28,代码来源:points.py
示例12: exp
def exp(self, exponents):
r"""
Return unit with given exponents with respect to group generators.
INPUT:
- ``u`` -- Any object from which an element of the unit
group's number field `K` may be constructed; an error is
raised if an element of `K` cannot be constructed from u, or
if the element constructed is not a unit.
OUTPUT: a list of integers giving the exponents of ``u`` with
respect to the unit group's basis.
EXAMPLES::
sage: x = polygen(QQ)
sage: K.<z> = CyclotomicField(13)
sage: UK = UnitGroup(K)
sage: [UK.log(u) for u in UK.gens()]
[(1, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 1)]
sage: vec = [65,6,7,8,9,10]
sage: unit = UK.exp(vec)
sage: UK.log(unit)
(13, 6, 7, 8, 9, 10)
sage: UK.exp(UK.log(u)) == u.value()
True
"""
return prod([u**e for u,e in zip(self.gens_values(),exponents)], self.number_field().one_element())
开发者ID:pombredanne,项目名称:sage-1,代码行数:34,代码来源:unit_group.py
示例13: __call__
def __call__( self, g ):
"""
Some python code for wrapping GAP's Images function but only for
permutation groups. Returns an error if g is not in G.
EXAMPLES::
sage: H = AbelianGroup(3, [2,3,4], names="abc")
sage: a,b,c = H.gens()
sage: G = AbelianGroup(2, [2,3], names="xy")
sage: x,y = G.gens()
sage: phi = AbelianGroupMorphism(G,H,[x,y],[a,b])
sage: phi(y*x)
a*b
sage: phi(y^2)
b^2
"""
G = g.parent()
w = g.word_problem(self.domaingens)
n = len(w)
#print w,g.word_problem(self.domaingens)
# g.word_problem is faster in general than word_problem(g)
gens = self.codomaingens
h = prod([gens[(self.domaingens).index(w[i][0])]**(w[i][1]) for i in range(n)])
return h
开发者ID:bgxcpku,项目名称:sagelib,代码行数:25,代码来源:abelian_group_morphism.py
示例14: Ht
def Ht(mu, q=None, t=None, pi=None):
"""
Returns the symmetric Macdonald polynomial using the Haiman,
Haglund, and Loehr formula.
Note that if both `q` and `t` are specified, then they must have the
same parent.
REFERENCE:
- J. Haglund, M. Haiman, N. Loehr.
*A combinatorial formula for non-symmetric Macdonald polynomials*.
:arXiv:`math/0601693v3`.
EXAMPLES::
sage: from sage.combinat.sf.ns_macdonald import Ht
sage: HHt = SymmetricFunctions(QQ['q','t'].fraction_field()).macdonald().Ht()
sage: Ht([0,0,1])
x0 + x1 + x2
sage: HHt([1]).expand(3)
x0 + x1 + x2
sage: Ht([0,0,2])
x0^2 + (q + 1)*x0*x1 + x1^2 + (q + 1)*x0*x2 + (q + 1)*x1*x2 + x2^2
sage: HHt([2]).expand(3)
x0^2 + (q + 1)*x0*x1 + x1^2 + (q + 1)*x0*x2 + (q + 1)*x1*x2 + x2^2
"""
P, q, t, n, R, x = _check_muqt(mu, q, t, pi)
res = 0
for a in n:
weight = a.weight()
res += q**a.maj()*t**a.inv()*prod( x[i]**weight[i] for i in range(len(weight)) )
return res
开发者ID:Etn40ff,项目名称:sage,代码行数:33,代码来源:ns_macdonald.py
示例15: __pow__
def __pow__(self, n):
"""
requires that len(invs) = n
"""
if not isinstance(n, (int, long, Integer)):
raise TypeError, "Argument n (= %s) must be an integer."%n
n = int(n)
M = self.parent()
N = M.ngens()
invs = M.invariants()
if n < 0:
L =[n*self.list()[i]%M.gen(i).order() for i in range(M.ngens())]
return prod([M.gen(i)**L[i] for i in range(M.ngens())])
#m = LCM(invs) ## Not very efficient version
#pw = (n)%m
#x = self**pw
#return x
elif n == 0:
return M(1)
elif n == 1:
return self
elif n == 2:
return self * self
k = n//2
return self**k * self**(n-k)
开发者ID:bgxcpku,项目名称:sagelib,代码行数:25,代码来源:dual_abelian_group_element.py
示例16: _monomial_exponent_to_lower_factorial
def _monomial_exponent_to_lower_factorial(me, x):
r"""
Converts a tuple of exponents to the monomial obtained by replacing
each me[i] with `x_i*(x_i - 1)*\cdots*(x_i - a_i + 1)`
EXAMPLES::
sage: from sage.combinat.misc import _monomial_exponent_to_lower_factorial
sage: R.<x,y,z> = QQ[]
sage: a = R.gens()
sage: _monomial_exponent_to_lower_factorial(([1,0,0]),a)
x
sage: _monomial_exponent_to_lower_factorial(([2,0,0]),a)
x^2 - x
sage: _monomial_exponent_to_lower_factorial(([0,2,0]),a)
y^2 - y
sage: _monomial_exponent_to_lower_factorial(([1,1,0]),a)
x*y
sage: _monomial_exponent_to_lower_factorial(([1,1,2]),a)
x*y*z^2 - x*y*z
sage: _monomial_exponent_to_lower_factorial(([2,2,2]),a)
x^2*y^2*z^2 - x^2*y^2*z - x^2*y*z^2 - x*y^2*z^2 + x^2*y*z + x*y^2*z + x*y*z^2 - x*y*z
"""
terms = []
for i in range(len(me)):
for j in range(me[i]):
terms.append(x[i] - j)
return prod(terms)
开发者ID:pombredanne,项目名称:sage-1,代码行数:28,代码来源:misc.py
示例17: __getitem__
def __getitem__(self, support):
r"""
INPUT:
- ``support`` - a proper subset of the index_set, as a list or set.
Returns the cyclicaly decreasing element associated with ``support``.
EXAMPLES::
:
sage: W = WeylGroup(["A", 5, 1])
sage: W.pieri_factors()[[0,1,2,3,5]].reduced_word()
[3, 2, 1, 0, 5]
sage: W.pieri_factors()[[0,1,3,4,5]].reduced_word()
[1, 0, 5, 4, 3]
sage: W.pieri_factors()[[0,1,2,3,4]].reduced_word()
[4, 3, 2, 1, 0]
"""
index_set = sorted(self.W.index_set())
support = sorted(support)
assert set(support).issubset(set(index_set))
assert support != index_set
if len(support) == 0:
return self.W.one()
s = self.W.simple_reflections()
i = 0
while i < len(support) and support[i] == index_set[i]:
i += 1
# This finds the first hole: either ley[i] is maximal or support[i] < support[i+1]+1
return prod((s[j] for j in list(reversed(support[0:i])) + list(reversed(support[i:]))), self.W.one())
开发者ID:bgxcpku,项目名称:sagelib,代码行数:31,代码来源:pieri_factors.py
示例18: cardinality
def cardinality(self):
"""
Returns the number of integer necklaces with the evaluation e.
EXAMPLES::
sage: Necklaces([]).cardinality()
0
sage: Necklaces([2,2]).cardinality()
2
sage: Necklaces([2,3,2]).cardinality()
30
Check to make sure that the count matches up with the number of
Lyndon words generated.
::
sage: comps = [[],[2,2],[3,2,7],[4,2]]+Compositions(4).list()
sage: ns = [ Necklaces(comp) for comp in comps]
sage: all( [ n.cardinality() == len(n.list()) for n in ns] )
True
"""
evaluation = self.e
le = list(evaluation)
if len(le) == 0:
return 0
n = sum(le)
return sum([euler_phi(j)*factorial(n/j) / prod([factorial(ni/j) for ni in evaluation]) for j in divisors(gcd(le))])/n
开发者ID:pombredanne,项目名称:sage-1,代码行数:31,代码来源:necklace.py
示例19: cardinality
def cardinality(self):
"""
Returns the number of Lyndon words with the evaluation e.
EXAMPLES::
sage: LyndonWords([]).cardinality()
0
sage: LyndonWords([2,2]).cardinality()
1
sage: LyndonWords([2,3,2]).cardinality()
30
Check to make sure that the count matches up with the number of
Lyndon words generated.
::
sage: comps = [[],[2,2],[3,2,7],[4,2]]+Compositions(4).list()
sage: lws = [ LyndonWords(comp) for comp in comps]
sage: all( [ lw.cardinality() == len(lw.list()) for lw in lws] )
True
"""
evaluation = self.e
le = __builtin__.list(evaluation)
if len(evaluation) == 0:
return 0
n = sum(evaluation)
return sum([moebius(j)*factorial(n/j) / prod([factorial(ni/j) for ni in evaluation]) for j in divisors(gcd(le))])/n
开发者ID:amitjamadagni,项目名称:sage,代码行数:31,代码来源:lyndon_word.py
示例20: psi
def psi(N):
"""
The index `[\Gamma : \Gamma_0(N)]`, where `\Gamma = GL(2, R)` for `R` the
corresponding ring of integers, and `\Gamma_0(N)` standard congruence
subgroup.
EXAMPLES::
sage: from sage.modular.modsym.p1list_nf import psi
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(3, a - 1)
sage: psi(N)
4
::
sage: k.<a> = NumberField(x^2 + 23)
sage: N = k.ideal(5)
sage: psi(N)
26
"""
if not N.is_integral():
raise ValueError("psi only defined for integral ideals")
from sage.misc.misc import prod
return prod([(np+1)*np**(e-1) \
for np,e in [(p.absolute_norm(),e) \
for p,e in N.factor()]])
开发者ID:Etn40ff,项目名称:sage,代码行数:28,代码来源:p1list_nf.py
注:本文中的sage.misc.misc.prod函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论