• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python complex_field.is_ComplexField函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中sage.rings.complex_field.is_ComplexField函数的典型用法代码示例。如果您正苦于以下问题:Python is_ComplexField函数的具体用法?Python is_ComplexField怎么用?Python is_ComplexField使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了is_ComplexField函数的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: can_convert_to_singular

def can_convert_to_singular(R):
    """
    Returns True if this ring's base field or ring can be
    represented in Singular, and the polynomial ring has at
    least one generator.  If this is True then this polynomial
    ring can be represented in Singular.

    The following base rings are supported: finite fields, rationals, number
    fields, and real and complex fields.

    EXAMPLES::

        sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
        True

        sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
        False

    """
    if R.ngens() == 0:
        return False;

    base_ring = R.base_ring()
    return ( sage.rings.finite_rings.constructor.is_FiniteField(base_ring)
             or is_RationalField(base_ring)
             or (base_ring.is_prime_field() and base_ring.characteristic() <= 2147483647)
             or is_RealField(base_ring)
             or is_ComplexField(base_ring)
             or is_RealDoubleField(base_ring)
             or is_ComplexDoubleField(base_ring)
             or number_field.all.is_NumberField(base_ring)
             or ( sage.rings.fraction_field.is_FractionField(base_ring) and ( base_ring.base_ring().is_prime_field() or base_ring.base_ring() is ZZ ) )
             or base_ring is ZZ
             or is_IntegerModRing(base_ring) )
开发者ID:CETHop,项目名称:sage,代码行数:35,代码来源:polynomial_singular_interface.py


示例2: can_convert_to_singular

def can_convert_to_singular(R):
    """
    Returns True if this ring's base field or ring can be
    represented in Singular, and the polynomial ring has at
    least one generator.  If this is True then this polynomial
    ring can be represented in Singular.

    The following base rings are supported: finite fields, rationals, number
    fields, and real and complex fields.

    EXAMPLES::

        sage: from sage.rings.polynomial.polynomial_singular_interface import can_convert_to_singular
        sage: can_convert_to_singular(PolynomialRing(QQ, names=['x']))
        True

        sage: can_convert_to_singular(PolynomialRing(QQ, names=[]))
        False

    TESTS:

    Avoid non absolute number fields (see :trac:`23535`)::

        sage: K.<a,b> = NumberField([x^2-2,x^2-5])
        sage: can_convert_to_singular(K['s,t'])
        False
    """
    if R.ngens() == 0:
        return False;

    base_ring = R.base_ring()
    if (base_ring is ZZ
        or sage.rings.finite_rings.finite_field_constructor.is_FiniteField(base_ring)
        or is_RationalField(base_ring)
        or is_IntegerModRing(base_ring)
        or is_RealField(base_ring)
        or is_ComplexField(base_ring)
        or is_RealDoubleField(base_ring)
        or is_ComplexDoubleField(base_ring)):
        return True
    elif base_ring.is_prime_field():
        return base_ring.characteristic() <= 2147483647
    elif number_field.number_field_base.is_NumberField(base_ring):
        return base_ring.is_absolute()
    elif sage.rings.fraction_field.is_FractionField(base_ring):
        B = base_ring.base_ring()
        return B.is_prime_field() or B is ZZ or is_FiniteField(B)
    elif is_RationalFunctionField(base_ring):
        return base_ring.constant_field().is_prime_field()
    else:
        return False
开发者ID:saraedum,项目名称:sage-renamed,代码行数:51,代码来源:polynomial_singular_interface.py


示例3: elliptic_j

def elliptic_j(z):
    r"""
   Returns the elliptic modular `j`-function evaluated at `z`.

   INPUT:

   - ``z`` (complex) -- a complex number with positive imaginary part.

   OUTPUT:

   (complex) The value of `j(z)`.

   ALGORITHM:

   Calls the ``pari`` function ``ellj()``.

   AUTHOR:

   John Cremona

   EXAMPLES::

       sage: elliptic_j(CC(i))
       1728.00000000000
       sage: elliptic_j(sqrt(-2.0))
       8000.00000000000
       sage: z = ComplexField(100)(1,sqrt(11))/2
       sage: elliptic_j(z)
       -32768.000...
       sage: elliptic_j(z).real().round()
       -32768

    ::

       sage: tau = (1 + sqrt(-163))/2
       sage: (-elliptic_j(tau.n(100)).real().round())^(1/3)
       640320

   """
    CC = z.parent()
    from sage.rings.complex_field import is_ComplexField

    if not is_ComplexField(CC):
        CC = ComplexField()
        try:
            z = CC(z)
        except ValueError:
            raise ValueError("elliptic_j only defined for complex arguments.")
    from sage.libs.all import pari

    return CC(pari(z).ellj())
开发者ID:jeromeca,项目名称:sage,代码行数:51,代码来源:special.py


示例4: _evalf_

    def _evalf_(self, n, x, **kwds):
        """
        Evaluate :class:`chebyshev_U` numerically with mpmath.

        EXAMPLES::

            sage: chebyshev_U(5,-4+3.*I)
            98280.0000000000 - 11310.0000000000*I
            sage: chebyshev_U(10,3).n(75)
            4.661117900000000000000e7
            sage: chebyshev_U._evalf_(1.5, Mod(8,9))
            Traceback (most recent call last):
            ...
            TypeError: cannot evaluate chebyshev_U with parent Ring of integers modulo 9
        """
        try:
            real_parent = kwds["parent"]
        except KeyError:
            real_parent = parent(x)

            if not is_RealField(real_parent) and not is_ComplexField(real_parent):
                # parent is not a real or complex field: figure out a good parent
                if x in RR:
                    x = RR(x)
                    real_parent = RR
                elif x in CC:
                    x = CC(x)
                    real_parent = CC

        if not is_RealField(real_parent) and not is_ComplexField(real_parent):
            raise TypeError("cannot evaluate chebyshev_U with parent {}".format(real_parent))

        from sage.libs.mpmath.all import call as mpcall
        from sage.libs.mpmath.all import chebyu as mpchebyu

        return mpcall(mpchebyu, n, x, parent=real_parent)
开发者ID:jeromeca,项目名称:sage,代码行数:36,代码来源:orthogonal_polys.py


示例5: __call__

    def __call__(self, g):
        """
        Evaluate ``self`` on a group element ``g``.

        OUTPUT:

        An element in
        :meth:`~sage.groups.abelian_gps.dual_abelian_group.DualAbelianGroup_class.base_ring`.

        EXAMPLES::

            sage: F = AbelianGroup(5, [2,3,5,7,8], names="abcde")
            sage: a,b,c,d,e = F.gens()
            sage: Fd = F.dual_group(names="ABCDE")
            sage: A,B,C,D,E = Fd.gens()
            sage: A*B^2*D^7
            A*B^2
            sage: A(a)
            -1
            sage: B(b)
            zeta840^140 - 1
            sage: CC(B(b))    # abs tol 1e-8
            -0.499999999999995 + 0.866025403784447*I
            sage: A(a*b)
            -1
        """
        F = self.parent().base_ring()
        expsX = self.exponents()
        expsg = g.exponents()
        order = self.parent().gens_orders()
        N = LCM(order)
        if is_ComplexField(F):
            from sage.symbolic.constants import pi
            I = F.gen()
            PI = F(pi)
            ans = prod([(2*PI*I*expsX[i]*expsg[i]/order[i]).exp() for i in range(len(expsX))])
            return ans
        ans = F(1)  ## assumes F is the cyclotomic field
        zeta = F.gen()
        for i in range(len(expsX)):
            order_noti = N/order[i]
            ans = ans*zeta**(expsX[i]*expsg[i]*order_noti)
        return ans
开发者ID:Babyll,项目名称:sage,代码行数:43,代码来源:dual_abelian_group_element.py


示例6: __call__

    def __call__(self,g):
        """
        Computes the value of a character self on a group element
        g (g must be an element of self.group())

        EXAMPLES:
            sage: F = AbelianGroup(5, [2,3,5,7,8], names="abcde")
            sage: a,b,c,d,e = F.gens()
            sage: Fd = DualAbelianGroup(F, names="ABCDE")
            sage: A,B,C,D,E = Fd.gens()
            sage: A*B^2*D^7
            A*B^2
            sage: A(a)    ## random last few digits
            -1.0000000000000000 + 0.00000000000000013834419720915037*I
            sage: B(b)    ## random last few digits
            -0.49999999999999983 + 0.86602540378443871*I
            sage: A(a*b)    ## random last few digits
            -1.0000000000000000 + 0.00000000000000013834419720915037*I
        """
        F = self.parent().base_ring()
        expsX = list(self.list())
        expsg = list(g.list())
        invs = self.parent().invariants()
        N = LCM(invs)
        if is_ComplexField(F):
            from sage.symbolic.constants import pi
            I = F.gen()
            PI = F(pi)
            ans = prod([exp(2*PI*I*expsX[i]*expsg[i]/invs[i]) for i in range(len(expsX))])
            return ans
        ans = F(1)  ## assumes F is the cyclotomic field
        zeta = F.gen()
        #print F,zeta
        for i in range(len(expsX)):
            inv_noti = N/invs[i]
            ans = ans*zeta**(expsX[i]*expsg[i]*inv_noti)
        return ans
开发者ID:bgxcpku,项目名称:sagelib,代码行数:37,代码来源:dual_abelian_group_element.py


示例7: isogenies_prime_degree


#.........这里部分代码省略.........
            Elliptic Curve defined by y^2 = x^3 + 1.00000000000000*x + 18.0000000000000 over Complex Field with 53 bits of precision
            sage: E.isogenies_prime_degree(11)
            Traceback (most recent call last):
            ...
            NotImplementedError: This code could be implemented for general complex fields, but has not been yet.

        Examples over finite fields::

            sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
            sage: E.isogenies_prime_degree()
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 347438*x + 594729 over Finite Field of size 1000003, Isogeny of degree 17 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 674846*x + 7392 over Finite Field of size 1000003, Isogeny of degree 23 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 390065*x + 605596 over Finite Field of size 1000003]
            sage: E.isogenies_prime_degree(2)
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003]
            sage: E.isogenies_prime_degree(3)
            []
            sage: E.isogenies_prime_degree(5)
            []
            sage: E.isogenies_prime_degree(7)
            []
            sage: E.isogenies_prime_degree(13)
            [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003,
            Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]

            sage: E.isogenies_prime_degree([2, 3, 5, 7, 13])
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
            sage: E.isogenies_prime_degree([2, 4])
            Traceback (most recent call last):
            ...
            ValueError: 4 is not prime.
            sage: E.isogenies_prime_degree(4)
            Traceback (most recent call last):
            ...
            ValueError: 4 is not prime.
            sage: E.isogenies_prime_degree(11)
            []
            sage: E = EllipticCurve(GF(17),[2,0])
            sage: E.isogenies_prime_degree(3)
            []
            sage: E.isogenies_prime_degree(2)
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 9*x over Finite Field of size 17, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 9 over Finite Field of size 17, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x over Finite Field of size 17 to Elliptic Curve defined by y^2 = x^3 + 5*x + 8 over Finite Field of size 17]

            sage: E = EllipticCurve(GF(13^4, 'a'),[2,8])
            sage: E.isogenies_prime_degree(2)
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in a of size 13^4 to Elliptic Curve defined by y^2 = x^3 + 7*x + 4 over Finite Field in a of size 13^4, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in a of size 13^4 to Elliptic Curve defined by y^2 = x^3 + (8*a^3+2*a^2+7*a+5)*x + (12*a^3+3*a^2+4*a+4) over Finite Field in a of size 13^4, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in a of size 13^4 to Elliptic Curve defined by y^2 = x^3 + (5*a^3+11*a^2+6*a+11)*x + (a^3+10*a^2+9*a) over Finite Field in a of size 13^4]

            sage: E.isogenies_prime_degree(3)
            [Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in a of size 13^4 to Elliptic Curve defined by y^2 = x^3 + 9*x + 11 over Finite Field in a of size 13^4]

        Example to show that separable isogenies of degree equal to the characteristic are now implemented::

            sage: E.isogenies_prime_degree(13)
            [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 2*x + 8 over Finite Field in a of size 13^4 to Elliptic Curve defined by y^2 = x^3 + 6*x + 5 over Finite Field in a of size 13^4]

        Examples over number fields (other than QQ)::

            sage: QQroot2.<e> = NumberField(x^2-2)
            sage: E = EllipticCurve(QQroot2, j=8000)
            sage: E.isogenies_prime_degree()
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-602112000)*x + 5035261952000 over Number Field in e with defining polynomial x^2 - 2,
            Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (903168000*e-1053696000)*x + (14161674240000*e-23288086528000) over Number Field in e with defining polynomial x^2 - 2,
            Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + (-150528000)*x + (-629407744000) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 = x^3 + (-903168000*e-1053696000)*x + (-14161674240000*e-23288086528000) over Number Field in e with defining polynomial x^2 - 2]

            sage: E = EllipticCurve(QQroot2, [1,0,1,4, -6]); E
            Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2
            sage: E.isogenies_prime_degree(2)
            [Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e with defining polynomial x^2 - 2]
            sage: E.isogenies_prime_degree(3)
            [Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-128/3)*x + 5662/27 over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in e with defining polynomial x^2 - 2]
        """
        F = self.base_ring()
        if is_RealField(F):
            raise NotImplementedError("This code could be implemented for general real fields, but has not been yet.")
        if is_ComplexField(F):
            raise NotImplementedError("This code could be implemented for general complex fields, but has not been yet.")
        if F == rings.QQbar:
            raise NotImplementedError("This code could be implemented for QQbar, but has not been yet.")

        from isogeny_small_degree import isogenies_prime_degree
        if l is None:
            from sage.rings.all import prime_range
            l = prime_range(max_l+1)

        if not isinstance(l, list):
            try:
                l = rings.ZZ(l)
            except TypeError:
                raise ValueError("%s is not prime."%l)
            if l.is_prime():
                return isogenies_prime_degree(self, l)
            else:
                raise ValueError("%s is not prime."%l)

        L = list(set(l))
        try:
            L = [rings.ZZ(l) for l in L]
        except TypeError:
            raise ValueError("%s is not a list of primes."%l)

        L.sort()
        return sum([isogenies_prime_degree(self,l) for l in L],[])
开发者ID:bukzor,项目名称:sage,代码行数:101,代码来源:ell_field.py


示例8: has_rational_point


#.........这里部分代码省略.........
            sage: K.coerce_embedding()
            Generic morphism:
              From: Number Field in i with defining polynomial x^2 + 1
              To:   Complex Lazy Field
              Defn: i -> 1*I
            sage: Conic(K, [1,1,1]).rational_point(algorithm='magma') # optional - magma
            (-i : 1 : 0)

            sage: x = QQ['x'].gen()
            sage: L.<i> = NumberField(x^2+1, embedding=None)
            sage: Conic(L, [1,1,1]).rational_point(algorithm='magma') # optional - magma
            (-i : 1 : 0)
            sage: L == K
            False
        """
        if read_cache:
            if self._rational_point is not None:
                if point:
                    return True, self._rational_point
                else:
                    return True

        B = self.base_ring()

        if algorithm == 'magma':
            from sage.interfaces.magma import magma
            M = magma(self)
            b = M.HasRationalPoint().sage()
            if not point:
                return b
            if not b:
                return False, None
            M_pt = M.HasRationalPoint(nvals=2)[1]

            # Various attempts will be made to convert `pt` to
            # a Sage object. The end result will always be checked
            # by self.point().

            pt = [M_pt[1], M_pt[2], M_pt[3]]

            # The first attempt is to use sequences. This is efficient and
            # succeeds in cases where the Magma interface fails to convert
            # number field elements, because embeddings between number fields
            # may be lost on conversion to and from Magma.
            # This should deal with all absolute number fields.
            try:
                return True, self.point([B(c.Eltseq().sage()) for c in pt])
            except TypeError:
                pass

            # The second attempt tries to split Magma elements into
            # numerators and denominators first. This is neccessary
            # for the field of rational functions, because (at the moment of
            # writing) fraction field elements are not converted automatically
            # from Magma to Sage.
            try:
                return True, self.point( \
                  [B(c.Numerator().sage()/c.Denominator().sage()) for c in pt])
            except (TypeError, NameError):
                pass

            # Finally, let the Magma interface handle conversion.
            try:
                return True, self.point([B(c.sage()) for c in pt])
            except (TypeError, NameError):
                pass

            raise NotImplementedError("No correct conversion implemented for converting the Magma point %s on %s to a correct Sage point on self (=%s)" % (M_pt, M, self))

        if algorithm != 'default':
            raise ValueError("Unknown algorithm: %s" % algorithm)

        if is_ComplexField(B):
            if point:
                [_,_,_,d,e,f] = self._coefficients
                if d == 0:
                    return True, self.point([0,1,0])
                return True, self.point([0, ((e**2-4*d*f).sqrt()-e)/(2*d), 1],
                                        check = False)
            return True
        if is_RealField(B):
            D, T = self.diagonal_matrix()
            [a, b, c] = [D[0,0], D[1,1], D[2,2]]
            if a == 0:
                ret = True, self.point(T*vector([1,0,0]), check = False)
            elif a*c <= 0:
                ret = True, self.point(T*vector([(-c/a).sqrt(),0,1]),
                                       check = False)
            elif b == 0:
                ret = True, self.point(T*vector([0,1,0]), check = False)
            elif b*c <= 0:
                ret = True, self.point(T*vector([0,(-c/b).sqrt(),0,1]),
                                       check = False)
            else:
                ret = False, None
            if point:
                return ret
            return ret[0]
        raise NotImplementedError("has_rational_point not implemented for " \
                                   "conics over base field %s" % B)
开发者ID:Etn40ff,项目名称:sage,代码行数:101,代码来源:con_field.py


示例9: _singular_init_

    def _singular_init_(self, singular=singular_default):
        """
        Return a newly created Singular ring matching this ring.

        EXAMPLES::

            sage: PolynomialRing(QQ,'u_ba')._singular_init_()
            //   characteristic : 0
            //   number of vars : 1
            //        block   1 : ordering lp
            //                  : names    u_ba
            //        block   2 : ordering C
        """
        if not can_convert_to_singular(self):
            raise TypeError, "no conversion of this ring to a Singular ring defined"

        if self.ngens()==1:
            _vars = '(%s)'%self.gen()
            if "*" in _vars: # 1.000...000*x
                _vars = _vars.split("*")[1]
            order = 'lp'
        else:
            _vars = str(self.gens())
            order = self.term_order().singular_str()

        base_ring = self.base_ring()

        if is_RealField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            precision = base_ring.precision()
            digits = sage.rings.arith.integer_ceil((2*precision - 2)/7.0)
            self.__singular = singular.ring("(real,%d,0)"%digits, _vars, order=order, check=False)

        elif is_ComplexField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            precision = base_ring.precision()
            digits = sage.rings.arith.integer_ceil((2*precision - 2)/7.0)
            self.__singular = singular.ring("(complex,%d,0,I)"%digits, _vars,  order=order, check=False)

        elif is_RealDoubleField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            self.__singular = singular.ring("(real,15,0)", _vars, order=order, check=False)

        elif is_ComplexDoubleField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            self.__singular = singular.ring("(complex,15,0,I)", _vars,  order=order, check=False)

        elif base_ring.is_prime_field():
            self.__singular = singular.ring(self.characteristic(), _vars, order=order, check=False)

        elif sage.rings.finite_rings.constructor.is_FiniteField(base_ring):
            # not the prime field!
            gen = str(base_ring.gen())
            r = singular.ring( "(%s,%s)"%(self.characteristic(),gen), _vars, order=order, check=False)
            self.__minpoly = (str(base_ring.modulus()).replace("x",gen)).replace(" ","")
            if  singular.eval('minpoly') != "(" + self.__minpoly + ")":
                singular.eval("minpoly=%s"%(self.__minpoly) )
                self.__minpoly = singular.eval('minpoly')[1:-1]

            self.__singular = r

        elif number_field.all.is_NumberField(base_ring) and base_ring.is_absolute():
            # not the rationals!
            gen = str(base_ring.gen())
            poly=base_ring.polynomial()
            poly_gen=str(poly.parent().gen())
            poly_str=str(poly).replace(poly_gen,gen)
            r = singular.ring( "(%s,%s)"%(self.characteristic(),gen), _vars, order=order, check=False)
            self.__minpoly = (poly_str).replace(" ","")
            if  singular.eval('minpoly') != "(" + self.__minpoly + ")":
                singular.eval("minpoly=%s"%(self.__minpoly) )
                self.__minpoly = singular.eval('minpoly')[1:-1]

            self.__singular = r

        elif sage.rings.fraction_field.is_FractionField(base_ring) and (base_ring.base_ring() is ZZ or base_ring.base_ring().is_prime_field()):
            if base_ring.ngens()==1:
              gens = str(base_ring.gen())
            else:
              gens = str(base_ring.gens())
            self.__singular = singular.ring( "(%s,%s)"%(base_ring.characteristic(),gens), _vars, order=order, check=False)

        elif is_IntegerModRing(base_ring):
            ch = base_ring.characteristic()
            if ch.is_power_of(2):
                exp = ch.nbits() -1
                self.__singular = singular.ring("(integer,2,%d)"%(exp,), _vars, order=order, check=False)
            else:
                self.__singular = singular.ring("(integer,%d)"%(ch,), _vars, order=order, check=False)

        elif base_ring is ZZ:
            self.__singular = singular.ring("(integer)", _vars, order=order, check=False)
        else:
            raise TypeError, "no conversion to a Singular ring defined"

        return self.__singular
开发者ID:CETHop,项目名称:sage,代码行数:100,代码来源:polynomial_singular_interface.py


示例10: schmidt_t5_eigenvalue_numerical

         trans_value = trans_value + self[k] * (e_tau1p**a * e_zp**b * e_tau2p**c)
     
     return trans_value / self_value
 
 def schmidt_t5_eigenvalue_numerical(self, (tau1, z, tau2)) :
     from sage.libs.mpmath import mp
     from sage.libs.mpmath.mp import exp, pi
     from sage.libs.mpmath.mp import j as i
     
     if not Integer(self.__level()).is_prime() :
         raise ValueError, "T_5 is only unique if the level is a prime"
     
     precision = ParamodularFormD2Filter_trace(self.precision())
     
     s = Sequence([tau1, z, tau2])
     if not is_ComplexField(s) :
         mp_precision = 30
     else :
         mp_precision = ceil(3.33 * s.universe().precision())
     mp.dps = mp_precision
     
     p1list = P1List(self.level())
     
     ## Prepare the operation for d_1(N)
     ## We have to invert the lifts since we will later use apply_GL_to_form
     d1_matrices = [p1list.lift_to_sl2z(i) for i in xrange(len(p1list))]
     d1_matrices = map(lambda (a,b,c,d): (d,-b,-c,a), d1_matrices)
     
     ## Prepare the evaluation points corresponding to d_02(N)
     d2_points = list()
     for i in xrange(len(p1list())) :
开发者ID:RalphieBoy,项目名称:psage,代码行数:31,代码来源:paramodularformd2_element.py


示例11: _singular_init_

    def _singular_init_(self, singular=singular):
        """
        Return a newly created Singular ring matching this ring.

        EXAMPLES::

            sage: PolynomialRing(QQ,'u_ba')._singular_init_()
            polynomial ring, over a field, global ordering
            //   coefficients: QQ
            //   number of vars : 1
            //        block   1 : ordering lp
            //                  : names    u_ba
            //        block   2 : ordering C
        """
        if not can_convert_to_singular(self):
            raise TypeError("no conversion of this ring to a Singular ring defined")

        if self.ngens()==1:
            _vars = '(%s)'%self.gen()
            if "*" in _vars: # 1.000...000*x
                _vars = _vars.split("*")[1]
            order = 'lp'
        else:
            _vars = str(self.gens())
            order = self.term_order().singular_str()

        base_ring = self.base_ring()

        if is_RealField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            precision = base_ring.precision()
            digits = sage.arith.all.integer_ceil((2*precision - 2)/7.0)
            self.__singular = singular.ring("(real,%d,0)"%digits, _vars, order=order, check=False)

        elif is_ComplexField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            precision = base_ring.precision()
            digits = sage.arith.all.integer_ceil((2*precision - 2)/7.0)
            self.__singular = singular.ring("(complex,%d,0,I)"%digits, _vars,  order=order, check=False)

        elif is_RealDoubleField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            self.__singular = singular.ring("(real,15,0)", _vars, order=order, check=False)

        elif is_ComplexDoubleField(base_ring):
            # singular converts to bits from base_10 in mpr_complex.cc by:
            #  size_t bits = 1 + (size_t) ((float)digits * 3.5);
            self.__singular = singular.ring("(complex,15,0,I)", _vars,  order=order, check=False)

        elif base_ring.is_prime_field():
            self.__singular = singular.ring(self.characteristic(), _vars, order=order, check=False)

        elif sage.rings.finite_rings.finite_field_constructor.is_FiniteField(base_ring):
            # not the prime field!
            gen = str(base_ring.gen())
            r = singular.ring( "(%s,%s)"%(self.characteristic(),gen), _vars, order=order, check=False)

            self.__minpoly = (str(base_ring.modulus()).replace("x",gen)).replace(" ","")
            if  singular.eval('minpoly') != "(" + self.__minpoly + ")":
                singular.eval("minpoly=%s"%(self.__minpoly) )
                self.__minpoly = singular.eval('minpoly')[1:-1]

            self.__singular = r

        elif number_field.number_field_base.is_NumberField(base_ring) and base_ring.is_absolute():
            # not the rationals!
            gen = str(base_ring.gen())
            poly=base_ring.polynomial()
            poly_gen=str(poly.parent().gen())
            poly_str=str(poly).replace(poly_gen,gen)
            r = singular.ring( "(%s,%s)"%(self.characteristic(),gen), _vars, order=order, check=False)
            self.__minpoly = (poly_str).replace(" ","")
            if  singular.eval('minpoly') != "(" + self.__minpoly + ")":
                singular.eval("minpoly=%s"%(self.__minpoly) )
                self.__minpoly = singular.eval('minpoly')[1:-1]

            self.__singular = r

        elif sage.rings.fraction_field.is_FractionField(base_ring) and (base_ring.base_ring() is ZZ or base_ring.base_ring().is_prime_field() or is_FiniteField(base_ring.base_ring())):
            if base_ring.ngens()==1:
              gens = str(base_ring.gen())
            else:
              gens = str(base_ring.gens())

            if not (not base_ring.base_ring().is_prime_field() and is_FiniteField(base_ring.base_ring())) :
                self.__singular = singular.ring( "(%s,%s)"%(base_ring.characteristic(),gens), _vars, order=order, check=False)
            else:
                ext_gen = str(base_ring.base_ring().gen())
                _vars = '(' + ext_gen + ', ' + _vars[1:];

                R = self.__singular = singular.ring( "(%s,%s)"%(base_ring.characteristic(),gens), _vars, order=order, check=False)

                self.base_ring().__minpoly = (str(base_ring.base_ring().modulus()).replace("x",ext_gen)).replace(" ","")
                singular.eval('setring '+R._name);

                from sage.misc.stopgap import stopgap
                stopgap("Denominators of fraction field elements are sometimes dropped without warning.", 17696)
#.........这里部分代码省略.........
开发者ID:saraedum,项目名称:sage-renamed,代码行数:101,代码来源:polynomial_singular_interface.py



注:本文中的sage.rings.complex_field.is_ComplexField函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python constructor.is_FiniteField函数代码示例发布时间:2022-05-27
下一篇:
Python commutative_ring.is_CommutativeRing函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap