本文整理汇总了Python中sandbox.util.SparseUtils.SparseUtils类的典型用法代码示例。如果您正苦于以下问题:Python SparseUtils类的具体用法?Python SparseUtils怎么用?Python SparseUtils使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SparseUtils类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: testSampleUsers
def testSampleUsers(self):
m = 10
n = 15
r = 5
u = 0.3
w = 1-u
X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m,n), r, w, csarray=True, verbose=True, indsPerRow=200)
k = 50
X2, userInds = Sampling.sampleUsers(X, k)
nptst.assert_array_equal(X.toarray(), X2.toarray())
numRuns = 50
for i in range(numRuns):
m = numpy.random.randint(10, 100)
n = numpy.random.randint(10, 100)
k = numpy.random.randint(10, 100)
X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m,n), r, w, csarray=True, verbose=True, indsPerRow=200)
X2, userInds = Sampling.sampleUsers(X, k)
self.assertEquals(X2.shape[0], min(k, m))
self.assertTrue((X.dot(X.T)!=numpy.zeros((m, m)).all()))
self.assertTrue((X2.toarray() == X.toarray()[userInds, :]).all())
self.assertEquals(X.toarray()[userInds, :].nonzero()[0].shape[0], X2.nnz)
开发者ID:charanpald,项目名称:sandbox,代码行数:27,代码来源:SamplingTest.py
示例2: testSparseMatrix
def testSparseMatrix(self):
m = 10
n = 15
A = numpy.random.rand(m, n)
rowInds, colInds = A.nonzero()
vals = A[rowInds, colInds]
X = SparseUtils.sparseMatrix(vals, rowInds, colInds, A.shape, "scipy", storagetype="col")
self.assertTrue(X.dtype==A.dtype)
self.assertTrue(X.shape==A.shape)
self.assertTrue(type(X)== scipy.sparse.csc_matrix)
nptst.assert_array_equal(X.toarray(), A)
X = SparseUtils.sparseMatrix(vals, rowInds, colInds, A.shape, "scipy", storagetype="row")
self.assertTrue(X.dtype==A.dtype)
self.assertTrue(X.shape==A.shape)
self.assertTrue(type(X)== scipy.sparse.csr_matrix)
nptst.assert_array_equal(X.toarray(), A)
X = SparseUtils.sparseMatrix(vals, rowInds, colInds, A.shape, "csarray", storagetype="col")
self.assertTrue(X.dtype==A.dtype)
self.assertTrue(X.shape==A.shape)
self.assertTrue(type(X)== sppy.csarray)
self.assertTrue(X.storagetype=="col")
nptst.assert_array_equal(X.toarray(), A)
X = SparseUtils.sparseMatrix(vals, rowInds, colInds, A.shape, "csarray", storagetype="row")
self.assertTrue(X.dtype==A.dtype)
self.assertTrue(X.shape==A.shape)
self.assertTrue(type(X)== sppy.csarray)
self.assertTrue(X.storagetype=="row")
nptst.assert_array_equal(X.toarray(), A)
开发者ID:charanpald,项目名称:sandbox,代码行数:35,代码来源:SparseUtilsTest.py
示例3: testSvdSoft
def testSvdSoft(self):
A = scipy.sparse.rand(10, 10, 0.2)
A = A.tocsc()
lmbda = 0.2
U, s, V = SparseUtils.svdSoft(A, lmbda)
ATilde = U.dot(numpy.diag(s)).dot(V.T)
#Now compute the same matrix using numpy
A = A.todense()
U2, s2, V2 = numpy.linalg.svd(A)
inds = numpy.flipud(numpy.argsort(s2))
inds = inds[s2[inds] > lmbda]
U2, s2, V2 = Util.indSvd(U2, s2, V2, inds)
s2 = s2 - lmbda
s2 = numpy.clip(s, 0, numpy.max(s2))
ATilde2 = U2.dot(numpy.diag(s2)).dot(V2.T)
nptst.assert_array_almost_equal(s, s)
nptst.assert_array_almost_equal(ATilde, ATilde2)
#Now run svdSoft with a numpy array
U3, s3, V3 = SparseUtils.svdSoft(A, lmbda)
ATilde3 = U.dot(numpy.diag(s)).dot(V.T)
nptst.assert_array_almost_equal(s, s3)
nptst.assert_array_almost_equal(ATilde3, ATilde2)
开发者ID:charanpald,项目名称:sandbox,代码行数:30,代码来源:SparseUtilsTest.py
示例4: testMatrixApprox
def testMatrixApprox(self):
tol = 10**-6
A = numpy.random.rand(10, 10)
A = A.dot(A.T)
n = 5
inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
AHat = Nystrom.matrixApprox(A, inds)
n = 10
AHat2 = Nystrom.matrixApprox(A, n)
self.assertTrue(numpy.linalg.norm(A - AHat2) < numpy.linalg.norm(A - AHat))
self.assertTrue(numpy.linalg.norm(A - AHat2) < tol)
#Test on a sparse matrix
As = scipy.sparse.csr_matrix(A)
n = 5
inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
AHat = Nystrom.matrixApprox(As, inds)
n = 10
AHat2 = Nystrom.matrixApprox(As, n)
self.assertTrue(SparseUtils.norm(As - AHat2) < SparseUtils.norm(As - AHat))
self.assertTrue(SparseUtils.norm(As - AHat2) < tol)
#Compare dense and sparse solutions
for n in range(1, 9):
inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
AHats = Nystrom.matrixApprox(As, inds)
AHat = Nystrom.matrixApprox(A, inds)
self.assertTrue(numpy.linalg.norm(AHat - numpy.array(AHats.todense())) < tol)
开发者ID:charanpald,项目名称:sandbox,代码行数:32,代码来源:NystromTest.py
示例5: testLocalAucApprox
def testLocalAucApprox(self):
m = 100
n = 200
k = 2
X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m, n), k, csarray=True, verbose=True)
w = 1.0
localAuc = MCEvaluator.localAUC(X, U, V, w)
samples = numpy.arange(150, 200, 10)
for i, sampleSize in enumerate(samples):
numAucSamples = sampleSize
localAuc2 = MCEvaluator.localAUCApprox(SparseUtils.getOmegaListPtr(X), U, V, w, numAucSamples)
self.assertAlmostEqual(localAuc2, localAuc, 1)
# Try smaller w
w = 0.5
localAuc = MCEvaluator.localAUC(X, U, V, w)
samples = numpy.arange(50, 200, 10)
for i, sampleSize in enumerate(samples):
numAucSamples = sampleSize
localAuc2 = MCEvaluator.localAUCApprox(SparseUtils.getOmegaListPtr(X), U, V, w, numAucSamples)
self.assertAlmostEqual(localAuc2, localAuc, 1)
开发者ID:kentwang,项目名称:sandbox,代码行数:27,代码来源:MCEvaluatorTest.py
示例6: testCentreRows
def testCentreRows(self):
shape = (50, 10)
r = 5
k = 100
X, U, s, V = SparseUtils.generateSparseLowRank(shape, r, k, verbose=True)
rowInds, colInds = X.nonzero()
for i in range(rowInds.shape[0]):
self.assertEquals(X[rowInds[i], colInds[i]], numpy.array(X[X.nonzero()]).ravel()[i])
mu2 = numpy.array(X.sum(1)).ravel()
numNnz = numpy.zeros(X.shape[0])
for i in range(X.shape[0]):
for j in range(X.shape[1]):
if X[i,j]!=0:
numNnz[i] += 1
mu2 /= numNnz
mu2[numNnz==0] = 0
X, mu = SparseUtils.centerRows(X)
nptst.assert_array_almost_equal(numpy.array(X.mean(1)).ravel(), numpy.zeros(X.shape[0]))
nptst.assert_array_almost_equal(mu, mu2)
开发者ID:charanpald,项目名称:sandbox,代码行数:25,代码来源:SparseUtilsTest.py
示例7: testSplitNnz
def testSplitNnz(self):
numRuns = 100
import sppy
for i in range(numRuns):
m = numpy.random.randint(5, 50)
n = numpy.random.randint(5, 50)
X = scipy.sparse.rand(m, n, 0.5)
X = X.tocsc()
split = numpy.random.rand()
X1, X2 = SparseUtils.splitNnz(X, split)
nptst.assert_array_almost_equal((X1+X2).todense(), X.todense())
for i in range(numRuns):
m = numpy.random.randint(5, 50)
n = numpy.random.randint(5, 50)
X = scipy.sparse.rand(m, n, 0.5)
X = X.tocsc()
X = sppy.csarray(X)
split = numpy.random.rand()
X1, X2 = SparseUtils.splitNnz(X, split)
nptst.assert_array_almost_equal((X1+X2).toarray(), X.toarray())
开发者ID:charanpald,项目名称:sandbox,代码行数:27,代码来源:SparseUtilsTest.py
示例8: testGetOmegaListPtr
def testGetOmegaListPtr(self):
import sppy
m = 10
n = 5
X = scipy.sparse.rand(m, n, 0.1)
X = X.tocsr()
indPtr, colInds = SparseUtils.getOmegaListPtr(X)
for i in range(m):
omegai = colInds[indPtr[i]:indPtr[i+1]]
nptst.assert_array_almost_equal(omegai, X.toarray()[i, :].nonzero()[0])
Xsppy = sppy.csarray(X)
indPtr, colInds = SparseUtils.getOmegaListPtr(Xsppy)
for i in range(m):
omegai = colInds[indPtr[i]:indPtr[i+1]]
nptst.assert_array_almost_equal(omegai, X.toarray()[i, :].nonzero()[0])
#Test a zero array (scipy doesn't work in this case)
X = sppy.csarray((m,n))
indPtr, colInds = SparseUtils.getOmegaListPtr(X)
for i in range(m):
omegai = colInds[indPtr[i]:indPtr[i+1]]
开发者ID:charanpald,项目名称:sandbox,代码行数:27,代码来源:SparseUtilsTest.py
示例9: testReconstructLowRank
def testReconstructLowRank(self):
shape = (5000, 1000)
r = 5
U, s, V = SparseUtils.generateLowRank(shape, r)
inds = numpy.array([0])
X = SparseUtils.reconstructLowRank(U, s, V, inds)
self.assertAlmostEquals(X[0, 0], (U[0, :]*s).dot(V[0, :]))
开发者ID:charanpald,项目名称:sandbox,代码行数:10,代码来源:SparseUtilsTest.py
示例10: testScale
def testScale(self):
"""
Look at the scales of the unnormalised gradients.
"""
m = 100
n = 400
k = 3
X = SparseUtils.generateSparseBinaryMatrix((m, n), k, csarray=True)
w = 0.1
eps = 0.001
learner = MaxAUCTanh(k, w)
learner.normalise = False
learner.lmbdaU = 1.0
learner.lmbdaV = 1.0
learner.rho = 1.0
learner.numAucSamples = 100
indPtr, colInds = SparseUtils.getOmegaListPtr(X)
r = numpy.random.rand(m)
U = numpy.random.rand(X.shape[0], k)
V = numpy.random.rand(X.shape[1], k)
gi = numpy.random.rand(m)
gi /= gi.sum()
gp = numpy.random.rand(n)
gp /= gp.sum()
gq = numpy.random.rand(n)
gq /= gq.sum()
permutedRowInds = numpy.array(numpy.random.permutation(m), numpy.uint32)
permutedColInds = numpy.array(numpy.random.permutation(n), numpy.uint32)
maxLocalAuc = MaxLocalAUC(k, w)
normGp, normGq = maxLocalAuc.computeNormGpq(indPtr, colInds, gp, gq, m)
normDui = 0
for i in range(m):
du = learner.derivativeUi(indPtr, colInds, U, V, r, gi, gp, gq, i)
normDui += numpy.linalg.norm(du)
normDui /= float(m)
print(normDui)
normDvi = 0
for i in range(n):
dv = learner.derivativeVi(indPtr, colInds, U, V, r, gi, gp, gq, i)
normDvi += numpy.linalg.norm(dv)
normDvi /= float(n)
print(normDvi)
开发者ID:charanpald,项目名称:sandbox,代码行数:54,代码来源:MaxAUCTanhTest.py
示例11: learnModel2
def learnModel2(self, X):
"""
Learn the matrix completion using a sparse matrix X. This is the simple
version of the soft impute algorithm in which we store the entire
matrices, newZ and oldZ.
"""
#if not scipy.sparse.isspmatrix_lil(X):
# raise ValueError("Input matrix must be lil_matrix")
oldZ = scipy.sparse.lil_matrix(X.shape)
omega = X.nonzero()
tol = 10**-6
ZList = []
for rho in self.rhos:
gamma = self.eps + 1
i = 0
while gamma > self.eps:
Y = oldZ.copy()
Y[omega] = 0
Y = X + Y
Y = Y.tocsc()
U, s, V = ExpSU.SparseUtils.svdSoft(Y, rho)
#Get an "invalid value encountered in sqrt" warning sometimes
newZ = scipy.sparse.lil_matrix((U*s).dot(V.T))
oldZ = oldZ.tocsr()
normOldZ = SparseUtils.norm(oldZ)**2
normNewZmOldZ = SparseUtils.norm(newZ - oldZ)**2
#We can get newZ == oldZ in which case we break
if normNewZmOldZ < tol:
gamma = 0
elif abs(normOldZ) < tol:
gamma = self.eps + 1
else:
gamma = normNewZmOldZ/normOldZ
oldZ = newZ.copy()
logging.debug("Iteration " + str(i) + " gamma="+str(gamma))
i += 1
logging.debug("Number of iterations for lambda="+str(rho) + ": " + str(i))
ZList.append(newZ)
if self.rhos.shape[0] != 1:
return ZList
else:
return ZList[0]
开发者ID:charanpald,项目名称:sandbox,代码行数:51,代码来源:SoftImpute.py
示例12: modelSelect
def modelSelect(self, X):
"""
Perform model selection on X and return the best parameters.
"""
m, n = X.shape
cvInds = Sampling.randCrossValidation(self.folds, X.nnz)
localAucs = numpy.zeros((self.ks.shape[0], self.lmbdas.shape[0], len(cvInds)))
logging.debug("Performing model selection")
paramList = []
for icv, (trainInds, testInds) in enumerate(cvInds):
Util.printIteration(icv, 1, self.folds, "Fold: ")
trainX = SparseUtils.submatrix(X, trainInds)
testX = SparseUtils.submatrix(X, testInds)
testOmegaList = SparseUtils.getOmegaList(testX)
for i, k in enumerate(self.ks):
maxLocalAuc = self.copy()
maxLocalAuc.k = k
paramList.append((trainX, testX, testOmegaList, maxLocalAuc))
pool = multiprocessing.Pool(processes=self.numProcesses, maxtasksperchild=100)
resultsIterator = pool.imap(localAucsLmbdas, paramList, self.chunkSize)
#import itertools
#resultsIterator = itertools.imap(localAucsLmbdas, paramList)
for icv, (trainInds, testInds) in enumerate(cvInds):
for i, k in enumerate(self.ks):
tempAucs = resultsIterator.next()
localAucs[i, :, icv] = tempAucs
pool.terminate()
meanLocalAucs = numpy.mean(localAucs, 2)
stdLocalAucs = numpy.std(localAucs, 2)
logging.debug(meanLocalAucs)
k = self.ks[numpy.unravel_index(numpy.argmax(meanLocalAucs), meanLocalAucs.shape)[0]]
lmbda = self.lmbdas[numpy.unravel_index(numpy.argmax(meanLocalAucs), meanLocalAucs.shape)[1]]
logging.debug("Model parameters: k=" + str(k) + " lmbda=" + str(lmbda))
self.k = k
self.lmbda = lmbda
return meanLocalAucs, stdLocalAucs
开发者ID:charanpald,项目名称:sandbox,代码行数:50,代码来源:WarpMf.py
示例13: syntheticDataset1
def syntheticDataset1(m=500, n=200, k=8, u=0.1, sd=0, noise=5):
"""
Create a simple synthetic dataset
"""
w = 1-u
X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m,n), k, w, sd=sd, csarray=True, verbose=True, indsPerRow=200)
X = X + sppy.rand((m, n), noise/float(n), storagetype="row")
X[X.nonzero()] = 1
X.prune()
X = SparseUtils.pruneMatrixRows(X, minNnzRows=10)
logging.debug("Non zero elements: " + str(X.nnz) + " shape: " + str(X.shape))
U = U*s
return X, U, V
开发者ID:charanpald,项目名称:wallhack,代码行数:14,代码来源:DatasetUtils.py
示例14: modelSelect
def modelSelect(self, X):
"""
Perform model selection on X and return the best parameters.
"""
m, n = X.shape
cvInds = Sampling.randCrossValidation(self.folds, X.nnz)
precisions = numpy.zeros((self.ks.shape[0], len(cvInds)))
logging.debug("Performing model selection")
paramList = []
for icv, (trainInds, testInds) in enumerate(cvInds):
Util.printIteration(icv, 1, self.folds, "Fold: ")
trainX = SparseUtils.submatrix(X, trainInds)
testX = SparseUtils.submatrix(X, testInds)
testOmegaList = SparseUtils.getOmegaList(testX)
for i, k in enumerate(self.ks):
learner = self.copy()
learner.k = k
paramList.append((trainX, testX, testOmegaList, learner))
#pool = multiprocessing.Pool(processes=self.numProcesses, maxtasksperchild=100)
#resultsIterator = pool.imap(computePrecision, paramList, self.chunkSize)
import itertools
resultsIterator = itertools.imap(computePrecision, paramList)
for icv, (trainInds, testInds) in enumerate(cvInds):
for i, k in enumerate(self.ks):
tempPrecision = resultsIterator.next()
precisions[i, icv] = tempPrecision
#pool.terminate()
meanPrecisions = numpy.mean(precisions, 1)
stdPrecisions = numpy.std(precisions, 1)
logging.debug(meanPrecisions)
k = self.ks[numpy.argmax(meanPrecisions)]
logging.debug("Model parameters: k=" + str(k))
self.k = k
return meanPrecisions, stdPrecisions
开发者ID:charanpald,项目名称:sandbox,代码行数:49,代码来源:KNNRecommender.py
示例15: testLocalAUC
def testLocalAUC(self):
m = 10
n = 20
k = 2
X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m, n), k, 0.5, verbose=True, csarray=True)
Z = U.dot(V.T)
localAuc = numpy.zeros(m)
for i in range(m):
localAuc[i] = sklearn.metrics.roc_auc_score(numpy.ravel(X[i, :].toarray()), Z[i, :])
localAuc = localAuc.mean()
u = 0.0
localAuc2 = MCEvaluator.localAUC(X, U, V, u)
self.assertEquals(localAuc, localAuc2)
# Now try a large r
w = 1.0
localAuc2 = MCEvaluator.localAUC(X, U, V, w)
self.assertEquals(localAuc2, 0)
开发者ID:kentwang,项目名称:sandbox,代码行数:25,代码来源:MCEvaluatorTest.py
示例16: testSvdArpack
def testSvdArpack(self):
shape = (500, 100)
r = 5
k = 1000
X, U, s, V = SparseUtils.generateSparseLowRank(shape, r, k, verbose=True)
k2 = 10
U, s, V = SparseUtils.svdArpack(X, k2)
U2, s2, V2 = numpy.linalg.svd(X.todense())
V2 = V2.T
nptst.assert_array_almost_equal(s, s2[0:k2])
nptst.assert_array_almost_equal(numpy.abs(U), numpy.abs(U2[:, 0:k2]), 3)
nptst.assert_array_almost_equal(numpy.abs(V), numpy.abs(V2[:, 0:k2]), 3)
开发者ID:charanpald,项目名称:sandbox,代码行数:16,代码来源:SparseUtilsTest.py
示例17: flixster
def flixster(minNnzRows=10, minNnzCols=2, quantile=90):
matrixFileName = PathDefaults.getDataDir() + "flixster/Ratings.timed.txt"
matrixFile = open(matrixFileName)
matrixFile.readline()
userIndexer = IdIndexer("i")
movieIndexer = IdIndexer("i")
ratings = array.array("f")
logging.debug("Loading ratings from " + matrixFileName)
for i, line in enumerate(matrixFile):
if i % 1000000 == 0:
logging.debug("Iteration: " + str(i))
vals = line.split()
userIndexer.append(vals[0])
movieIndexer.append(vals[1])
ratings.append(float(vals[2]))
rowInds = userIndexer.getArray()
colInds = movieIndexer.getArray()
ratings = numpy.array(ratings)
X = sppy.csarray((len(userIndexer.getIdDict()), len(movieIndexer.getIdDict())), storagetype="row", dtype=numpy.int)
X.put(numpy.array(ratings>3, numpy.int), numpy.array(rowInds, numpy.int32), numpy.array(colInds, numpy.int32), init=True)
X.prune()
X = SparseUtils.pruneMatrixRowAndCols(X, minNnzRows, minNnzCols)
logging.debug("Read file: " + matrixFileName)
logging.debug("Non zero elements: " + str(X.nnz) + " shape: " + str(X.shape))
#X = Sampling.sampleUsers(X, 1000)
return X
开发者ID:charanpald,项目名称:wallhack,代码行数:35,代码来源:DatasetUtils.py
示例18: epinions
def epinions(minNnzRows=10, minNnzCols=3, quantile=90):
matrixFileName = PathDefaults.getDataDir() + "epinions/rating.mat"
A = scipy.io.loadmat(matrixFileName)["rating"]
userIndexer = IdIndexer("i")
itemIndexer = IdIndexer("i")
for i in range(A.shape[0]):
userIndexer.append(A[i, 0])
itemIndexer.append(A[i, 1])
rowInds = userIndexer.getArray()
colInds = itemIndexer.getArray()
ratings = A[:, 3]
X = sppy.csarray((len(userIndexer.getIdDict()), len(itemIndexer.getIdDict())), storagetype="row", dtype=numpy.int)
X.put(numpy.array(ratings>3, numpy.int), numpy.array(rowInds, numpy.int32), numpy.array(colInds, numpy.int32), init=True)
X.prune()
X = SparseUtils.pruneMatrixRowAndCols(X, minNnzRows, minNnzCols)
logging.debug("Read file: " + matrixFileName)
logging.debug("Non zero elements: " + str(X.nnz) + " shape: " + str(X.shape))
return X
开发者ID:charanpald,项目名称:wallhack,代码行数:26,代码来源:DatasetUtils.py
示例19: testAverageRocCurve
def testAverageRocCurve(self):
m = 50
n = 20
k = 8
u = 20.0 / m
w = 1 - u
X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix(
(m, n), k, w, csarray=True, verbose=True, indsPerRow=200
)
fpr, tpr = MCEvaluator.averageRocCurve(X, U, V)
import matplotlib
matplotlib.use("GTK3Agg")
import matplotlib.pyplot as plt
# plt.plot(fpr, tpr)
# plt.show()
# Now try case where we have a training set
folds = 1
testSize = 5
trainTestXs = Sampling.shuffleSplitRows(X, folds, testSize)
trainX, testX = trainTestXs[0]
fpr, tpr = MCEvaluator.averageRocCurve(testX, U, V, trainX=trainX)
开发者ID:kentwang,项目名称:sandbox,代码行数:27,代码来源:MCEvaluatorTest.py
示例20: testOverfit
def testOverfit(self):
"""
See if we can get a zero objective on the hinge loss
"""
m = 10
n = 20
k = 5
u = 0.5
w = 1-u
X = SparseUtils.generateSparseBinaryMatrix((m, n), k, w, csarray=True)
eps = 0.001
k = 10
maxLocalAuc = MaxLocalAUC(k, u, eps=eps, stochastic=True)
maxLocalAuc.rate = "constant"
maxLocalAuc.maxIterations = 500
maxLocalAuc.numProcesses = 1
maxLocalAuc.loss = "hinge"
maxLocalAuc.validationUsers = 0
maxLocalAuc.lmbda = 0
print("Overfit example")
U, V, trainMeasures, testMeasures, iterations, time = maxLocalAuc.learnModel(X, verbose=True)
self.assertAlmostEquals(trainMeasures[-1, 0], 0, 3)
开发者ID:charanpald,项目名称:sandbox,代码行数:26,代码来源:MaxLocalAUCTest.py
注:本文中的sandbox.util.SparseUtils.SparseUtils类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论