• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python api.add_constant函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scikits.statsmodels.api.add_constant函数的典型用法代码示例。如果您正苦于以下问题:Python add_constant函数的具体用法?Python add_constant怎么用?Python add_constant使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了add_constant函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: age_design

def age_design(indices):
  tmp = np.hstack((sm.categorical(hrdat['sex'][indices])[:,2:],
                  sm.categorical(hrdat['educ'][indices])[:,2:],
                  sm.categorical(hrdat['PTFT'][indices])[:,2:],
                  hrdat['age'].reshape(n,1)[indices,:],
                  (hrdat['age']**2).reshape(n,1)[indices,:]))
  return sm.add_constant(tmp, prepend = True)
开发者ID:along1x,项目名称:r_vs_py,代码行数:7,代码来源:py_stats_analysis.py


示例2: checkOLS

    def checkOLS(self, exog, endog, x, y):

        try:
            import scikits.statsmodels.api as sm
        except ImportError:
            import scikits.statsmodels as sm

        reference = sm.OLS(endog, sm.add_constant(exog)).fit()

        result = ols(y=y, x=x)

        assert_almost_equal(reference.params, result._beta_raw)
        assert_almost_equal(reference.df_model, result._df_model_raw)
        assert_almost_equal(reference.df_resid, result._df_resid_raw)
        assert_almost_equal(reference.fvalue, result._f_stat_raw[0])
        assert_almost_equal(reference.pvalues, result._p_value_raw)
        assert_almost_equal(reference.rsquared, result._r2_raw)
        assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw)
        assert_almost_equal(reference.resid, result._resid_raw)
        assert_almost_equal(reference.bse, result._std_err_raw)
        assert_almost_equal(reference.t(), result._t_stat_raw)
        assert_almost_equal(reference.cov_params(), result._var_beta_raw)
        assert_almost_equal(reference.fittedvalues, result._y_fitted_raw)

        _check_non_raw_results(result)
开发者ID:choketsu,项目名称:pandas,代码行数:25,代码来源:test_ols.py


示例3: test_HC_use

def test_HC_use():
    np.random.seed(0)
    nsample = 100
    x = np.linspace(0,10, 100)
    X = sm.add_constant(np.column_stack((x, x**2)), prepend=False)
    beta = np.array([1, 0.1, 10])
    y = np.dot(X, beta) + np.random.normal(size=nsample)

    results = sm.OLS(y, X).fit()

    #test cov_params
    idx = np.array([1,2])
    #need to call HC0_se to have cov_HC0 available
    results.HC0_se
    cov12 = results.cov_params(column=[1,2], cov_p=results.cov_HC0)
    assert_almost_equal(cov12, results.cov_HC0[idx[:,None], idx], decimal=15)

    #test t_test
    tvals = results.params/results.HC0_se
    ttest = results.t_test(np.eye(3), cov_p=results.cov_HC0)
    assert_almost_equal(ttest.tvalue, tvals, decimal=14)
    assert_almost_equal(ttest.sd, results.HC0_se, decimal=14)

    #test f_test
    ftest = results.f_test(np.eye(3)[:-1], cov_p=results.cov_HC0)
    slopes = results.params[:-1]
    idx = np.array([0,1])
    cov_slopes = results.cov_HC0[idx[:,None], idx]
    fval = np.dot(slopes, np.linalg.inv(cov_slopes).dot(slopes))/len(idx)
    assert_almost_equal(ftest.fvalue, fval, decimal=12)
开发者ID:takluyver,项目名称:statsmodels,代码行数:30,代码来源:test_cov.py


示例4: setupClass

 def setupClass(cls):
     data = sm.datasets.spector.load()
     data.exog = sm.add_constant(data.exog)
     res2 = Spector()
     res2.probit()
     cls.res2 = res2
     cls.res1 = Probit(data.endog, data.exog).fit(method="ncg", disp=0, avextol=1e-8)
开发者ID:katherineranney,项目名称:statsmodels,代码行数:7,代码来源:test_discrete.py


示例5: __init__

    def __init__(self):

        # generate artificial data
        np.random.seed(98765678)
        nobs = 200
        rvs = np.random.randn(nobs,6)
        data_exog = rvs
        data_exog = sm.add_constant(data_exog)
        xbeta = 1 + 0.1*rvs.sum(1)
        data_endog = np.random.poisson(np.exp(xbeta))

        #estimate discretemod.Poisson as benchmark
        self.res_discrete = Poisson(data_endog, data_exog).fit(disp=0)

        mod_glm = sm.GLM(data_endog, data_exog, family=sm.families.Poisson())
        self.res_glm = mod_glm.fit()

        #estimate generic MLE
        #self.mod = PoissonGMLE(data_endog, data_exog)
        #res = self.mod.fit()
        offset = self.res_discrete.params[0] * data_exog[:,0]  #1d ???
        #self.res = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset).fit(start_params = np.ones(6)/2., method='nm')
        modo = PoissonOffsetGMLE(data_endog, data_exog[:,1:], offset=offset)
        self.res = modo.fit(start_params = 0.9*self.res_discrete.params[1:],
                            method='nm', disp=0)
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:25,代码来源:test_poisson.py


示例6: setupClass

 def setupClass(cls):
     data = sm.datasets.spector.load()
     data.exog = sm.add_constant(data.exog)
     cls.res1 = Logit(data.endog, data.exog).fit(method="newton", disp=0)
     res2 = Spector()
     res2.logit()
     cls.res2 = res2
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:7,代码来源:test_discrete.py


示例7: __init__

 def __init__(self):
     data = sm.datasets.spector.load()
     data.exog = sm.add_constant(data.exog)
     #mod = sm.Probit(data.endog, data.exog)
     self.mod = sm.Logit(data.endog, data.exog)
     #res = mod.fit(method="newton")
     self.params = [np.array([1,0.25,1.4,-7])]
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:7,代码来源:test_numdiff.py


示例8: test_qqplot

 def test_qqplot(self):
   #just test that it runs
   data = sm.datasets.longley.load()
   data.exog = sm.add_constant(data.exog)
   mod_fit = sm.OLS(data.endog, data.exog).fit()
   res = mod_fit.resid
   fig = sm.qqplot(res)
   plt.close(fig)
开发者ID:smc77,项目名称:statsmodels,代码行数:8,代码来源:test_regressionplots.py


示例9: run_WLS

def run_WLS():
    import scikits.statsmodels.api as sm
    res = sm.WLS(y, sm.add_constant(x, prepend=True),
                 weights=1. / sigma ** 2).fit()
    print ('statsmodels.api.WLS')
    print('popt: {0}'.format(res.params))
    print('perr: {0}'.format(res.bse))
    return res
开发者ID:pyfit,项目名称:pyfit,代码行数:8,代码来源:chi2_example.py


示例10: quadratic_term

def quadratic_term(list_of_mean, list_of_var):
    """Fit a quadratic term and return its p-value"""
    # Remove records with 0 variance
    log_var = [np.log(x) for x in list_of_var if x > 0]
    log_mean = [np.log(list_of_mean[i]) for i in range(len(list_of_mean)) if list_of_var[i] > 0]
    log_mean_quad = [x ** 2 for x in log_mean]
    indep_var = np.column_stack((log_mean, log_mean_quad))
    indep_var = sm.add_constant(indep_var, prepend = True)
    quad_res = sm.OLS(log_var, indep_var).fit()
    return quad_res.pvalues[2]
开发者ID:ethanwhite,项目名称:TL,代码行数:10,代码来源:TL_functions.py


示例11: age_design

def age_design(indices):
    tmp = np.hstack(
        (
            sm.categorical(hrdat["sex"][indices])[:, 2:],
            sm.categorical(hrdat["educ"][indices])[:, 2:],
            sm.categorical(hrdat["PTFT"][indices])[:, 2:],
            hrdat["age"].reshape(n, 1)[indices, :],
            (hrdat["age"] ** 2).reshape(n, 1)[indices, :],
        )
    )
    return sm.add_constant(tmp, prepend=True)
开发者ID:flashus,项目名称:r_vs_py,代码行数:11,代码来源:py_stats_analysis.py


示例12: explain_rseq_by_rfreq_and_copy

def explain_rseq_by_rfreq_and_copy():
    r_rseqs = [motif_ic(getattr(Escherichia_coli,tf)) for tf in Escherichia_coli.tfs
               if tf in copy_numbers]
    r_rfreqs = [log2(4.6*10**6/len(getattr(Escherichia_coli,tf)))
          for tf in Escherichia_coli.tfs
                if tf in copy_numbers]
    copies = [copy_numbers[tf] for tf in Escherichia_coli.tfs if tf in copy_numbers]
    log_copies = map(log2,copies)
    X = sm.add_constant(np.column_stack((r_rfreqs,log_copies)),prepend=True)
    res = sm.OLS(r_rseqs,X).fit()
    print res.summary()
开发者ID:poneill,项目名称:motifs,代码行数:11,代码来源:rfreq_vs_rseq.py


示例13: test_perfect_prediction

def test_perfect_prediction():
    cur_dir = os.path.dirname(os.path.abspath(__file__))
    iris_dir = os.path.join(cur_dir, "..", "..", "genmod", "tests", "results")
    iris_dir = os.path.abspath(iris_dir)
    iris = np.genfromtxt(os.path.join(iris_dir, "iris.csv"), delimiter=",", skip_header=1)
    y = iris[:, -1]
    X = iris[:, :-1]
    X = X[y != 2]
    y = y[y != 2]
    X = sm.add_constant(X, prepend=True)
    mod = Logit(y, X)
    assert_raises(PerfectSeparationError, mod.fit)
开发者ID:katherineranney,项目名称:statsmodels,代码行数:12,代码来源:test_discrete.py


示例14: cm_test

def cm_test(X):
    """
    Conditional moment test.  X is a flat numpy array.
    """
    betahat, alphahat, shat = ar1_functions.fit(X)
    n = len(X)
    xL = X[:(n-1)]  #  All but the last one
    xF = X[1:]      #  All but the first one
    Z = (xF - betahat - alphahat * xL)**2 
    XX = sm.add_constant(xL)
    out = sm.OLS(Z, XX).fit()
    return np.abs(out.tvalues[0]) > 1.96
开发者ID:jstac,项目名称:lae_test,代码行数:12,代码来源:cond_moment.py


示例15: setup

    def setup(self):
        nsample = 100
        sig = 0.5
        x1 = np.linspace(0, 20, nsample)
        x2 = 5 + 3* np.random.randn(nsample)
        X = np.c_[x1, x2, np.sin(0.5*x1), (x2-5)**2, np.ones(nsample)]
        beta = [0.5, 0.5, 1, -0.04, 5.]
        y_true = np.dot(X, beta)
        y = y_true + sig * np.random.normal(size=nsample)
        exog0 = sm.add_constant(np.c_[x1, x2], prepend=False)
        res = sm.OLS(y, exog0).fit()

        self.res = res
开发者ID:chrisjordansquire,项目名称:statsmodels,代码行数:13,代码来源:test_regressionplots.py


示例16: linear_fit_robust

def linear_fit_robust(x, y, return_coef=False):
    """
    Fit a straight-line by robust regression (M-estimate).

    If `return_coef=True` returns the slope (m) and intercept (c).
    """
    import scikits.statsmodels.api as sm
    ind, = np.where((~np.isnan(x)) & (~np.isnan(y)))
    x, y = x[ind], y[ind]
    X = sm.add_constant(x, prepend=False)
    y_model = sm.RLM(y, X, M=sm.robust.norms.HuberT())
    y_fit = y_model.fit()
    if return_coef:
        if len(y_fit.params) < 2: return (y_fit.params[0], 0.)
        else: return y_fit.params[:]
    else:
        return (x, y_fit.fittedvalues)
开发者ID:fspaolo,项目名称:code,代码行数:17,代码来源:util.py


示例17: _check_wls

    def _check_wls(self, x, y, weights):
        result = ols(y=y, x=x, weights=1/weights)

        combined = x.copy()
        combined['__y__'] = y
        combined['__weights__'] = weights
        combined = combined.dropna()

        endog = combined.pop('__y__').values
        aweights = combined.pop('__weights__').values
        exog = sm.add_constant(combined.values, prepend=False)

        sm_result = sm.WLS(endog, exog, weights=1/aweights).fit()

        assert_almost_equal(sm_result.params, result._beta_raw)
        assert_almost_equal(sm_result.resid, result._resid_raw)

        self.checkMovingOLS('rolling', x, y, weights=weights)
        self.checkMovingOLS('expanding', x, y, weights=weights)
开发者ID:benracine,项目名称:pandas,代码行数:19,代码来源:test_ols.py


示例18: regression_analysis

def regression_analysis(play_arr,dataFunction1,dataFunction2):

	totalBefore = []
	totalAfter = []
	for weekNum in range(10,15):
		Before,After = regression_weekly(play_arr,weekNum,dataFunction1, dataFunction2)

		totalBefore = np.concatenate([totalBefore, Before])
		totalAfter = np.concatenate([totalAfter, After])

	slope, intercept, r_value, p_value, err = stats.linregress(totalBefore, totalAfter)
	results = sm.OLS(totalAfter, sm.add_constant(totalBefore)).fit()

	print results.summary()

	plt.plot(totalBefore, totalAfter, '.')
	X_plot = np.linspace(0, 1, 100)
	plt.plot(X_plot, X_plot * results.params[0] + results.params[1])
	plt.show()
开发者ID:rsummers618,项目名称:SportRanker,代码行数:19,代码来源:Analyze.py


示例19: calc_factors

    def calc_factors(self, x=None, keepdim=0, addconst=True):
        '''get factor decomposition of exogenous variables

        This uses principal component analysis to obtain the factors. The number
        of factors kept is the maximum that will be considered in the regression.
        '''
        if x is None:
            x = self.exog
        else:
            x = np.asarray(x)
        xred, fact, evals, evecs  = pca(x, keepdim=keepdim, normalize=1)
        self.exog_reduced = xred
        #self.factors = fact
        if addconst:
            self.factors = sm.add_constant(fact, prepend=True)
            self.hasconst = 1  #needs to be int
        else:
            self.factors = fact
            self.hasconst = 0  #needs to be int

        self.evals = evals
        self.evecs = evecs
开发者ID:takluyver,项目名称:statsmodels,代码行数:22,代码来源:factormodels.py


示例20: checkOLS

    def checkOLS(self, exog, endog, x, y):
        reference = sm.OLS(endog, sm.add_constant(exog, prepend=False)).fit()
        result = ols(y=y, x=x)

        # check that sparse version is the same
        sparse_result = ols(y=y.to_sparse(), x=x.to_sparse())
        _compare_ols_results(result, sparse_result)

        assert_almost_equal(reference.params, result._beta_raw)
        assert_almost_equal(reference.df_model, result._df_model_raw)
        assert_almost_equal(reference.df_resid, result._df_resid_raw)
        assert_almost_equal(reference.fvalue, result._f_stat_raw[0])
        assert_almost_equal(reference.pvalues, result._p_value_raw)
        assert_almost_equal(reference.rsquared, result._r2_raw)
        assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw)
        assert_almost_equal(reference.resid, result._resid_raw)
        assert_almost_equal(reference.bse, result._std_err_raw)
        assert_almost_equal(reference.tvalues, result._t_stat_raw)
        assert_almost_equal(reference.cov_params(), result._var_beta_raw)
        assert_almost_equal(reference.fittedvalues, result._y_fitted_raw)

        _check_non_raw_results(result)
开发者ID:benracine,项目名称:pandas,代码行数:22,代码来源:test_ols.py



注:本文中的scikits.statsmodels.api.add_constant函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tools.add_constant函数代码示例发布时间:2022-05-27
下一篇:
Python cholmod.cholesky函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap