• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python scipy.dot函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.dot函数的典型用法代码示例。如果您正苦于以下问题:Python dot函数的具体用法?Python dot怎么用?Python dot使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dot函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: dot_fromfeatures

def dot_fromfeatures(features1,
                     features2 = None):

    if features2 is None:
        features2 = features1

    npoints1 = features1.shape[0]
    npoints2 = features2.shape[0]

    features1.shape = npoints1, -1
    features2.shape = npoints2, -1

    ndims = features1.shape[1]
    assert(features2.shape[1] == ndims)

    if ndims < DOT_MAX_NDIMS:
        out = sp.dot(features1, features2.T)
    else:
        out = sp.dot(features1[:,:DOT_MAX_NDIMS], 
                     features2[:,:DOT_MAX_NDIMS].T)
        ndims_done = DOT_MAX_NDIMS            
        while ndims_done < ndims:
            out += sp.dot(features1[:,ndims_done:ndims_done+DOT_MAX_NDIMS], 
                          features2[:,ndims_done:ndims_done+DOT_MAX_NDIMS].T)
            ndims_done += DOT_MAX_NDIMS
            
    return out
开发者ID:jaberg,项目名称:sclas,代码行数:27,代码来源:kernel_generate_fromcsv.py


示例2: calcInvFisher

def calcInvFisher(sigma, invSigma=None, factorSigma=None):
    """ Efficiently compute the exact inverse of the FIM of a Gaussian.
    Returns a list of the diagonal blocks. """
    if invSigma == None:
        invSigma = inv(sigma)
    if factorSigma == None:
        factorSigma = cholesky(sigma)
    dim = sigma.shape[0]

    invF = [mat(1 / (invSigma[-1, -1] + factorSigma[-1, -1] ** -2))]
    invD = 1 / invSigma[-1, -1]
    for k in reversed(list(range(dim - 1))):
        v = invSigma[k + 1:, k]
        w = invSigma[k, k]
        wr = w + factorSigma[k, k] ** -2
        u = dot(invD, v)
        s = dot(v, u)
        q = 1 / (w - s)
        qr = 1 / (wr - s)
        t = -(1 + q * s) / w
        tr = -(1 + qr * s) / wr
        invF.append(blockCombine([[qr, tr * u], [mat(tr * u).T, invD + qr * outer(u, u)]]))
        invD = blockCombine([[q , t * u], [mat(t * u).T, invD + q * outer(u, u)]])

    invF.append(sigma)
    invF.reverse()
    return invF
开发者ID:Angeliqe,项目名称:pybrain,代码行数:27,代码来源:fisher.py


示例3: fgmres

 def fgmres(self,rhs,tol=1e-6,restrt=None,maxiter=None,callback=None):
     if maxiter == None:
         maxiter = len(rhs)
     if restrt == None:
         restrt = 2*maxiter
     # implemented as in [Saad, 1993]
     # start
     x = zeros(len(rhs))
     H = zeros((restrt+1, restrt))
     V = zeros((len(rhs),restrt))
     Z = zeros((len(rhs),restrt))
     # Arnoldi process (with modified Gramm-Schmidt)
     res = 1.
     j = 0
     r = rhs - self.point.matvec(x)
     beta = norm(r)
     V[:,0]=r/beta
     while j < maxiter and res > tol:
         Z[:,j] = self.point.psolve(V[:,j])
         w = self.point.matvec(Z[:,j])
         for i in range(j+1):
             H[i,j]=dot(w,V[:,i])
             w = w - H[i,j]*V[:,i]
         H[j+1,j] = norm(w)
         V[:,j+1]=w/H[j+1,j]
         e = zeros(j+2)
         e[0]=1.
         y, res, rank, sing_val = lstsq(H[:j+2,:j+1],beta*e)
         j += 1
         print "# GMRES| iteration :", j, "res: ", res/beta
         self.resid = r_[self.resid,res/beta]
         Zy = dot(Z[:,:j],y)
     x = x + Zy
     info = 1
     return (x,info)
开发者ID:pvnuffel,项目名称:fokkerplanck,代码行数:35,代码来源:GMRESLinearSolver.py


示例4: Areml_K_grad_i

 def Areml_K_grad_i(self,i):
     i = self.covar._actindex2index(i)
     R = sp.dot(self.WcCtildeLcA_o_WrRF(i).T, self.dWLW())
     R+= R.T
     R+= -self.ALcCtildeLcA_o_FRF(i)
     R+= -sp.dot(self.dWLW().T, self.Cbar_o_Sr_dWLW(i))
     return R
开发者ID:mennowitteveen,项目名称:limix,代码行数:7,代码来源:gp2kronSumLR.py


示例5: rlsloo_ll1

def rlsloo_ll1( V, D, Y, lambd):
	"""
	Computes cs and the actual LOO errors for a single value of lambda. (lambd)
	"""
        n = V.shape[0]
        cl = Y.shape[1]
        
        inner  = 1/(D + lambd)
	inner = inner.conj()
        VtY = sp.dot(V.T, Y)
	VtY = VtY.conj()

        # Because of signs of D are flipped (scipy.linalg.eig returns
        # flipped signs for complex part of the eigenvalues)
        in_dot = sp.ones((n,1)) * inner
        ViD = V * in_dot
        cs = sp.dot(ViD, VtY)
        dGi = sp.sum(ViD*V, axis = 1)
        # -- till here works fine
        #check matrix dimensions
        looerrs = cs.ravel()/sp.real(dGi.ravel())
	looerrs = sp.real(looerrs)
        cs = sp.real(cs.transpose())

        return cs.ravel(), looerrs
开发者ID:abhijitbendale,项目名称:rls-lab,代码行数:25,代码来源:non_linear_rls.py


示例6: _backwardImplementation

    def _backwardImplementation(self, outerr, inerr, outbuf, inbuf):
        if self.onesigma:
            # algorithm for one global sigma for all mu's
            expln_params = expln(self.params)
            sumxsquared = dot(self.state, self.state)
            self._derivs += (
                sum((outbuf - inbuf) ** 2 - expln_params ** 2 * sumxsquared) / expln_params * explnPrime(self.params)
            )
            inerr[:] = outbuf - inbuf

            if not self.autoalpha and sumxsquared != 0:
                inerr /= expln_params ** 2 * sumxsquared
                self._derivs /= expln_params ** 2 * sumxsquared
        else:
            # Algorithm for seperate sigma for each mu
            expln_params = expln(self.params).reshape(len(outbuf), len(self.state))
            explnPrime_params = explnPrime(self.params).reshape(len(outbuf), len(self.state))

            idx = 0
            for j in xrange(len(outbuf)):
                sigma_subst2 = dot(self.state ** 2, expln_params[j, :] ** 2)
                for i in xrange(len(self.state)):
                    self._derivs[idx] = (
                        ((outbuf[j] - inbuf[j]) ** 2 - sigma_subst2)
                        / sigma_subst2
                        * self.state[i] ** 2
                        * expln_params[j, i]
                        * explnPrime_params[j, i]
                    )
                    if self.autoalpha and sigma_subst2 != 0:
                        self._derivs[idx] /= sigma_subst2
                    idx += 1
                inerr[j] = outbuf[j] - inbuf[j]
                if not self.autoalpha and sigma_subst2 != 0:
                    inerr[j] /= sigma_subst2
开发者ID:avain,项目名称:pybrain,代码行数:35,代码来源:statedependentlayer.py


示例7: _LML_covar

    def _LML_covar(self, hyperparams):
        """

	log marginal likelihood contributions from covariance hyperparameters

	"""
        try:   
            KV = self.get_covariances(hyperparams)
        except linalg.LinAlgError:
            LG.error("exception caught (%s)" % (str(hyperparams)))
            return 1E6

        #all in one go
        #negative log marginal likelihood, see derivations
        lquad = 0.5* (KV['y_rot']*KV['Si']*KV['y_rot']).sum()
        ldet  = 0.5*-SP.log(KV['Si'][:,:]).sum()
        LML   = 0.5*self.n*self.d * SP.log(2*SP.pi) + lquad + ldet
        if VERBOSE:
            #1. slow and explicit way
            lmls_ = SP.zeros([self.d])
            for i in xrange(self.d):
                _y = self.y[:,i]
                sigma2 = SP.exp(2*hyperparams['lik'])
                _K = KV['K'] + SP.diag(KV['Knoise'][:,i])
                _Ki = SP.linalg.inv(_K)
                lquad_ = 0.5 * SP.dot(_y,SP.dot(_Ki,_y))
                ldet_ = 0.5 * SP.log(SP.linalg.det(_K))
                lmls_[i] = 0.5 * self.n* SP.log(2*SP.pi) + lquad_ + ldet_
            assert SP.absolute(lmls_.sum()-LML)<1E-3, 'outch'
        return LML
开发者ID:AngelBerihuete,项目名称:pygp,代码行数:30,代码来源:gplvm_ard.py


示例8: fastsvd

def fastsvd(M):
    """ Fast Singular Value Decomposition
    
    Inputs:
      M -- 2d numpy array

    Outputs:
      U,S,V -- see scipy.linalg.svd    

    """
    
    h, w = M.shape
    
    # -- thin matrix
    if h >= w:
        # subspace of M'M
        U, S, V = N.linalg.svd(N.dot(M.T, M))
        U = N.dot(M, V.T)
        # normalize
        for i in xrange(w):
            S[i] = fastnorm(U[:,i])
            U[:,i] = U[:,i] / S[i]
            
    # -- fat matrix
    else:
        # subspace of MM'
        U, S, V = N.linalg.svd(N.dot(M, M.T))
        V = N.dot(U.T, M)
        # normalize
        for i in xrange(h):
            S[i] = fastnorm(V[i])
            V[i,:] = V[i] / S[i]
            
    return U, S, V
开发者ID:npinto,项目名称:v1s-0.0.4_scene,代码行数:34,代码来源:v1s_math.py


示例9: lsaTransform

    def lsaTransform(self,dimensions=1):
        """ Calculate SVD of objects matrix: U . SIGMA . VT = MATRIX 
            Reduce the dimension of sigma by specified factor producing sigma'. 
            Then dot product the matrices:  U . SIGMA' . VT = MATRIX'
        """
        rows,cols= self.matrix.shape

        if dimensions <= rows: #Its a valid reduction

            #Sigma comes out as a list rather than a matrix
            u,sigma,vt = linalg.svd(self.matrix)

            #Dimension reduction, build SIGMA'
            for index in xrange(rows-dimensions, rows):
                sigma[index]=0

            #print linalg.diagsvd(sigma,len(self.matrix), len(vt))        

            #Reconstruct MATRIX'
            reconstructedMatrix= dot(dot(u,linalg.diagsvd(sigma,len(self.matrix),len(vt))),vt)

            #Save transform
            self.matrix=reconstructedMatrix

        else:
            print "dimension reduction cannot be greater than %s" % rows
开发者ID:baokhanh2710,项目名称:news-reader,代码行数:26,代码来源:lsa.py


示例10: get_stderr_fit

def get_stderr_fit(f,Xdata,popt,pcov):
	Y=f(Xdata,popt)
	listdY=[]
	for i in xrange(len(popt)):
		p=popt[i]
		dp=abs(p)/1e6+1e-20
		popt[i]+=dp
		Yi=f(Xdata,popt)
		dY=(Yi-Y)/dp
		listdY.append(dY)
		popt[i]-=dp
	listdY=scipy.array(listdY)
	#listdY is an array with N rows and M columns, N=len(popt), M=len(xdata[0])
	#pcov is an array with N rows and N columns
	left=scipy.dot(listdY.T,pcov) 
	#left is an array of M rows and N columns
	right=scipy.dot(left,listdY)
	#right is an array of M rows and M columns
	sigma2y=right.diagonal()
	#sigma2y is standard error of fit and function  of X
	mean_sigma2y=scipy.mean(right.diagonal())
	M=Xdata.shape[1];print M
	N=len(popt);print N
	avg_stddev_data=scipy.sqrt(M*mean_sigma2y/N)
	#this is because if exp error is constant at sig_dat,then mean_sigma2y=N/M*sig_dat**2
	sigmay=scipy.sqrt(sigma2y)
	return sigmay,avg_stddev_data
开发者ID:OmkarMehta,项目名称:Endsem_final,代码行数:27,代码来源:errorestimation_tutorial.py


示例11: _learnStep

    def _learnStep(self):
        """ Main part of the algorithm. """
        I = eye(self.numParameters)
        self._produceSamples()
        utilities = self.shapingFunction(self._currentEvaluations)
        utilities /= sum(utilities)  # make the utilities sum to 1
        if self.uniformBaseline:
            utilities -= 1./self.batchSize
        samples = array(map(self._base2sample, self._population))

        dCenter = dot(samples.T, utilities)
        covGradient = dot(array([outer(s,s) - I for s in samples]).T, utilities)
        covTrace = trace(covGradient)
        covGradient -= covTrace/self.numParameters * I
        dA = 0.5 * (self.scaleLearningRate * covTrace/self.numParameters * I
                    +self.covLearningRate * covGradient)

        self._lastLogDetA = self._logDetA
        self._lastInvA = self._invA

        self._center += self.centerLearningRate * dot(self._A, dCenter)
        self._A = dot(self._A, expm2(dA))
        self._invA = dot(expm2(-dA), self._invA)
        self._logDetA += 0.5 * self.scaleLearningRate * covTrace
        if self.storeAllDistributions:
            self._allDistributions.append((self._center.copy(), self._A.copy()))
开发者ID:DanSGraham,项目名称:School-Projects,代码行数:26,代码来源:xnes.py


示例12: basex_core_transform

def basex_core_transform(rawdata, M_vert, M_horz, Mc_vert,
                         Mc_horz, vert_left, horz_right, dr=1.0):
    """
    This is the internal function
    that does the actual BASEX transform. It requires 
    that the matrices of basis set coefficients be passed. 
    

    Parameters
    ----------
    rawdata : NxM numpy array
        the raw image.
    M_vert_etc. : Numpy arrays
        2D arrays given by the basis set calculation function
    dr : float
        pixel size. This only affects the absolute scaling of the output.


    Returns
    -------
    IM : NxM numpy array
        The abel-transformed image, a slice of the 3D distribution
    """

    # Reconstructing image  - This is where the magic happens
    Ci = scipy.dot(scipy.dot(vert_left, rawdata), horz_right) # previously: vert_left.dot(rawdata).dot(horz_right)

    # use an heuristic scaling factor to match the analytical abel transform
    # For more info see https://github.com/PyAbel/PyAbel/issues/4
    MAGIC_NUMBER = 1.1122244156826457
    Ci *= MAGIC_NUMBER/dr
    IM = scipy.dot(scipy.dot(Mc_vert, Ci), Mc_horz.T)    # Previously: Mc_vert.dot(Ci).dot(Mc_horz.T)
    # P = dot(dot(Mc,Ci),M.T) # This calculates the projection,
    # which should recreate the original image
    return IM
开发者ID:PhantomYuan,项目名称:PyAbel,代码行数:35,代码来源:basex.py


示例13: dw

    def dw(self):
        """Calculates the Durbin-Waston statistic
        """
        de = diff(self.e,1)
        dw = dot(de,de) / dot(self.e,self.e)

        return dw
开发者ID:strategist922,项目名称:qikify,代码行数:7,代码来源:OLS.py


示例14: fit

    def fit(self, X, y, useQR = True, addConstant = True):    
        '''Solve y = Xb.
        
        Parameters
        ----------
        x : array, shape (M, N)
        y : array, shape (M,)
        useQR : boolean
            Whether or not to use QR decomposition to fit regression line.
        addConstant: boolean
            Whether or not to add a constant column to X
        '''        
        if y.shape[0] != X.shape[0]:
            raise ValueError('incompatible dimensions')
        if addConstant:
            self.X       = c_[ones(X.shape[0]), X]

        self.y       = y
        self.X_columns = getattr(X,'columns', None)
        self.y_columns = getattr(y,'columns', None)
        
        if useQR:
            # TODO: Ehh, this is broken. Need to fix.
            Q,R = scipy.linalg.qr(self.X)
            Qty = dot(Q.T, y)
            self.b = scipy.linalg.solve(R,Qty)
        else:
            self.inv_xx = inv(dot(self.X.T,self.X))
            xy = dot(self.X.T,self.y)
            self.b = dot(self.inv_xx,xy)

        self.computeStatistics()
开发者ID:strategist922,项目名称:qikify,代码行数:32,代码来源:OLS.py


示例15: ar_fit

def ar_fit(p_data, p_or_plist=range(100), selector='sbc'):
    """fits a (multivariate) AR (_A_uto_R_egrssive) model to data

    :Parameters:
        p_data : ndarray
            Data with observations on the rows and variables on the columns
        p_or_plist : list
            List of model orders to select from. This list has to be continuous
            with a step size of 1, e.g. [10,11,12,13,14]
        selector : str
            One of 'sbc' for the Schwarz Bayesian Criterion or 'fpe' for the
            log of Akaike's Final Prediction Error. This determines what metric
            is used to evaluate the best model order.
    """

    # checks and inits
    if not isinstance(p_data, N.ndarray):
        raise ValueError('p_data is not an ndarray')
    data = p_data.copy()
    n, m = data.shape
    if selector not in ['sbc', 'fpe']:
        raise ValueError('selector has to be one of: "sbc" or "fpe"!')
    if not isinstance(p_or_plist, list):
        p_or_plist = [p_or_plist]
    p_max = max(p_or_plist)
    ne = n - p_max
    npmax = m * p_max
    if ne <= npmax:
        raise ValueError('time series to short!')
    R = _ar_model_qr(data, p_max)

    # model order selection
    if len(p_or_plist) > 1:
        sbc, fpe, ldp, np = _ar_model_select(R, m, ne, p_or_plist)
        if selector == 'sbc':
            crit = sbc
        elif selector == 'fpe':
            crit = fpe
    else:
        crit = N.zeros(1)
    p_opt = crit.argmin()
    np = m * p_opt

    # get lower right triangle of R
    #
    #     | R11  R12 |
    # R = |          |
    #     |  0   R22 |
    #
    R11 = R[:np, :np]
    R12 = R[:np, npmax:]
    R22 = R[np:, npmax:]

    # build the model
    A = N.dot(NL.inv(R11), R12).T
    C = N.dot(R22.T, R22) / (ne - np)

    # return
    del R, R11, R12, R22
    return A, C, crit
开发者ID:mtambos,项目名称:Neural-Simulation,代码行数:60,代码来源:ar_model.py


示例16: dlsim

    def dlsim( self, u, x0 = None, Tl = 0, Ts = 0.001 ):
        """
        @summary: Simulate the motor for one input
        
        @param u: The control signal
        @param Ts: Sampling time (0.001 by default)
        @param x0: The initial conditions on the state vector (zero by default).
        
        @return: The system response  
        """
        if not x0 is None:
            self.x0 = x0      
            
        
        if self.x0 is None:
            self.x0 = zeros( ( 5, 1 ) )
            
        self.x0[4, 0] = Tl
        ( self.Ad, self.Bd, self.Cd, self.Dd ) = self.dss( self.x0, Ts )    

        self.x0 = dot( self.Ad, self.x0 ) + dot( self.Bd, u )         
        y_out = dot( self.Cd, self.x0 )  # + dot( self.Dd, u )    

        
        return ( y_out, self.x0 )
开发者ID:miroslavbucek,项目名称:ConPy,代码行数:25,代码来源:pmsm.py


示例17: GP_sample_posterior

def GP_sample_posterior(covar,X,logtheta,x,y,ns=1):
    """
    Sample from the posterior distribution of a GP
    
    x : [double]
        training inputs

    y : [double]
        training targets

    other :
        See :py:func:`gp_sample.GP_sample_prior`
    """

    KXx = covar.K(logtheta,x,X)
    KXX = covar.K(logtheta,X)
    Kxx = covar.K(logtheta,x)

    iKxx = SP.linalg.inv(Kxx+eye(Kxx.shape[0])*0.01)

    mu = SP.dot(KXx.T,SP.dot(iKxx,y)).reshape([-1,1])
    cov = KXX - SP.dot(KXx.T,SP.dot(iKxx,KXx))   
    L  = SP.linalg.cholesky(cov).T
    Y  = mu + SP.dot(L,random.randn(X.shape[0],ns))
    return Y
开发者ID:AngelBerihuete,项目名称:pygp,代码行数:25,代码来源:gp_sample.py


示例18: estimate

    def estimate(self):

        # estimating coefficients, and basic stats

        self.inv_xx = inv(dot(self.x.T,self.x))
            
        xy = dot(self.x.T,self.y)
        self.betas = dot(self.inv_xx,xy)                    # estimate coefficients

        self.nobs = self.y.shape[0]                     # number of observations
        self.ncoef = self.x.shape[1]                    # number of coef.
        self.df_e = self.nobs - self.ncoef              # degrees of freedom, error 
        self.df_r = self.ncoef - 1                      # degrees of freedom, regression 

        self.e = self.y - dot(self.x,self.betas)            # residuals
        self.sse = dot(self.e,self.e)/self.df_e         # SSE
        self.se = sqrt(diagonal(self.sse*self.inv_xx))  # coef. standard errors
        self.t = self.betas / self.se                       # coef. t-statistics

        self.p = (1-stats.t.cdf(abs(self.t), self.df_e)) * 2    # coef. p-values


        self.R2 = 1 - self.e.var()/self.y.var()         # model R-squared
        self.R2adj = 1-(1-self.R2)*((self.nobs-1)/(self.nobs-self.ncoef))   # adjusted R-square

        self.F = (self.R2/self.df_r) / ((1-self.R2)/self.df_e)  # model F-statistic
        self.Fpv = 1-stats.f.cdf(self.F, self.df_r, self.df_e)  # F-statistic p-value
开发者ID:aybose,项目名称:riskdash,代码行数:27,代码来源:OLS.py


示例19: _LMLgrad_lik

    def _LMLgrad_lik(self,hyperparams):
        """derivative of the likelihood parameters"""

	logtheta = hyperparams['covar']
        try:   
            KV = self.get_covariances(hyperparams)
        except linalg.LinAlgError:
            LG.error("exception caught (%s)" % (str(hyperparams)))
            return 1E6
	
        #loop through all dimensions
        #logdet term:
        Kd = 2*KV['Knoise']
        dldet = 0.5*(Kd*KV['Si']).sum(axis=0)
        #quadratic term
        y_roti = KV['y_roti']
        dlquad = -0.5 * (y_roti * Kd * y_roti).sum(axis=0)
        if VERBOSE:
            dldet_  = SP.zeros([self.d])
            dlquad_ = SP.zeros([self.d])
            for d in xrange(self.d):
                _K = KV['K'] + SP.diag(KV['Knoise'][:,d])
                _Ki = SP.linalg.inv(_K)
                dldet_[d] = 0.5* SP.dot(_Ki,SP.diag(Kd[:,d])).trace()
                dlquad_[d] = -0.5*SP.dot(self.y[:,d],SP.dot(_Ki,SP.dot(SP.diag(Kd[:,d]),SP.dot(_Ki,self.y[:,d]))))

            assert (SP.absolute(dldet-dldet_)<1E-3).all(), 'outch'
            assert (SP.absolute(dlquad-dlquad_)<1E-3).all(), 'outch'


        LMLgrad = dldet + dlquad
        RV = {'lik': LMLgrad}
    
        return RV
开发者ID:AngelBerihuete,项目名称:pygp,代码行数:34,代码来源:gplvm_ard.py


示例20: multivariateNormalPdf

def multivariateNormalPdf(z, x, sigma):
    """ The pdf of a multivariate normal distribution (not in scipy).
    The sample z and the mean x should be 1-dim-arrays, and sigma a square 2-dim-array. """
    assert len(z.shape) == 1 and len(x.shape) == 1 and len(x) == len(z) and sigma.shape == (len(x), len(z))
    tmp = -0.5 * dot(dot((z - x), inv(sigma)), (z - x))
    res = (1. / power(2.0 * pi, len(z) / 2.)) * (1. / sqrt(det(sigma))) * exp(tmp)
    return res
开发者ID:DanSGraham,项目名称:School-Projects,代码行数:7,代码来源:functions.py



注:本文中的scipy.dot函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python scipy.empty函数代码示例发布时间:2022-05-27
下一篇:
Python scipy.diff函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap