• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python scipy.floor函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.floor函数的典型用法代码示例。如果您正苦于以下问题:Python floor函数的具体用法?Python floor怎么用?Python floor使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了floor函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: prob4

def prob4(filename='saw.wav', new_rate = 11025, outfile='prob4.wav'):
    """Down-samples a given .wav file to a new rate and saves the resulting
    signal as another .wav file.
    
    Parameters
    ----------
    filename : string, optional
        The name of the .wav sound file to be down-sampled.
        Defaults to 'saw.wav'.
    new_rate : integer, optional
        The down-sampled rate. Defaults to 11025.
    outfile : string, optional
        The name of the new file. Defaults to prob4.wav.

    Returns
    -------
    None
    """
    old_rate, in_sig = wavfile.read(filename)
    fin = fftw.fft(sp.float32(in_sig))
    # Use if scipy_fftpack is unavailable
    # fin = sp.fft(sp.float32(in_sig))
    nsiz = sp.floor(in_sig.size * new_rate / old_rate)
    nsizh = sp.floor(nsiz / 2)
    fout = sp.zeros(nsiz) + 0j
    fout[0:nsizh] = fin[0:nsizh]
    fout[nsiz-nsizh+1:] = sp.conj(sp.flipud(fout[1:nsizh]))
    out = sp.real(sp.ifft(fout))
    out = sp.int16(out/sp.absolute(out).max() * 32767)
    plot_signal(filename)
    wavfile.write('prob4.wav',new_rate,out)
    print ""; plot_signal('prob4.wav')
开发者ID:davidreber,项目名称:Labs,代码行数:32,代码来源:fft_solutions.py


示例2: get_4_squares

def get_4_squares(parent1, parent2):
    n_folds = 2
    levels1 = np.unique(parent1)
    levels2 = np.unique(parent2)
    N1 = len(levels1)
    N2 = len(levels2)
    r1 = sp.random.permutation(N1)
    r2 = sp.random.permutation(N2)
    Icv1 = sp.floor(((sp.ones((N1))*n_folds)*r1)/N1)
    Icv2 = sp.floor(((sp.ones((N2))*n_folds)*r2)/N2)

    train_parents1 = levels1[Icv1 != 0]
    train_parents2 = levels2[Icv2 != 0]
    test_parents1 = levels1[Icv1 == 0]
    test_parents2 = levels2[Icv2 == 0]

    train_ind1 = np.array([e in train_parents1 for e in parent1], dtype=bool)
    train_ind2 = np.array([e in train_parents2 for e in parent2], dtype=bool)
    test_ind1 = np.array([e in test_parents1 for e in parent1], dtype=bool)
    test_ind2 = np.array([e in test_parents2 for e in parent2], dtype=bool)

    Itest = test_ind1 & test_ind2
    
    Itrain_distant = train_ind1 & train_ind2
    Itrain_close1 = (train_ind1 & test_ind2)
    Itrain_close2 = (train_ind2 & test_ind1)
    Itrain_close = select_subset(Itrain_close1 | Itrain_close2, Itest.sum())

    return Itest, Itrain_distant, Itrain_close1, Itrain_close2, Itrain_close
开发者ID:kasparmartens,项目名称:y10k-prediction,代码行数:29,代码来源:train_and_test_sets.py


示例3: down_sample

def down_sample(filename, new_rate, outputfile=None):
    """
    Create a down-sampled copy of the provided .wav file.  Unless overridden, the output
        file will be of the form "down_<orginalname>.wav"
        
    Parameters
    ----------
    filename : string
        input .wav file
    new_rate : int
        sample rate of output file
    outputfile : string
        name of output file
    """

    if outputfile is None:
        outputfile = "down_" + filename

    old_rate, in_sig = wavfile.read(filename)
    in_sig = sp.float32(in_sig)
    fin = sp.fft(in_sig)
    nsiz = sp.floor(in_sig.size * new_rate / old_rate)
    nsizh = sp.floor(nsiz / 2)
    fout = sp.zeros(nsiz)
    fout = fout + 0j
    fout[0:nsizh] = fin[0:nsizh]
    fout[nsiz - nsizh + 1 :] = sp.conj(sp.flipud(fout[1:nsizh]))
    out = sp.ifft(fout)
    out = sp.real(out)  # Take the real component of the signal
    out = sp.int16(out / sp.absolute(out).max() * 32767)
    wavfile.write(outputfile, new_rate, out)
开发者ID:tkchris93,项目名称:ACME,代码行数:31,代码来源:fft_outline.py


示例4: f_save_data

 def f_save_data(self, outputfile):
     ''' Save treated data to ASCII '''
     if outputfile!= '':
         self.outputdir = outputfile
         if self.inputdir=='':
             self.inputdir=self.outputdir
         
         thinout = int(self.lineEdit_13.text())
         
         # Sauvegarde de la montee et de la descente du champ
         if self.checkBox_7.isChecked() and self.checkBox_8.isChecked():
             out_data = zeros((floor(len(self.data[0::thinout, 0])), 3+2*+len(self.coldata)))
             out_data[:, 0] = self.data[0::thinout, 0]
             out_data[:, 1] = self.data[0::thinout, 2+len(self.colref)+len(self.coldata)]/self.pu_area
             out_data[:, 2] = self.data[0::thinout, 1]
             for j in range(0, len(self.coldata)):
                 out_data[:, 2*j+3] = self.sig_out[0::thinout, 2*j]/self.intgain*1e3
                 out_data[:, 2*j+4] = self.sig_out[0::thinout, 2*j+1]/self.intgain*1e3
         
         # Sauvegarde de la montee du champ uniquement
         elif self.checkBox_7.isChecked():
             out_data = zeros((floor(len(self.data[0:self.f_max:thinout, 0])), 3+2*+len(self.coldata)))
             out_data[:, 0] = self.data[0:self.f_max:thinout, 0]
             out_data[:, 1] = self.data[0:self.f_max:thinout, 2+len(self.colref)+len(self.coldata)]/self.pu_area
             out_data[:, 2] = self.data[0:self.f_max:thinout, 1]
             for j in range(0, len(self.coldata)):
                 out_data[:, 2*j+3] = self.sig_out[0:self.f_max:thinout, 2*j]/self.intgain*1e3
                 out_data[:, 2*j+4] = self.sig_out[0:self.f_max:thinout, 2*j+1]/self.intgain*1e3
             
         # Sauvegarde de la descente du champ uniquement
         elif self.checkBox_8.isChecked():
             out_data = zeros((floor(len(self.data[self.f_max::thinout, 0])), 3+2*+len(self.coldata)))
             out_data[:, 0] = self.data[self.f_max::thinout, 0]
             out_data[:, 1] = self.data[self.f_max::thinout, 2+len(self.colref)+len(self.coldata)]/self.pu_area
             out_data[:, 2] = self.data[self.f_max::thinout, 1]
             for j in range(0, len(self.coldata)):
                 out_data[:, 2*j+3] = self.sig_out[self.f_max::thinout, 2*j]/self.intgain*1e3
                 out_data[:, 2*j+4] = self.sig_out[self.f_max::thinout, 2*j+1]/self.intgain*1e3
             
         # Sinon on sauvegarde tout
         else:
             out_data = zeros((floor(len(self.data[0::thinout, 0])), 3+2*+len(self.coldata)))
             out_data[:, 0] = self.data[0::thinout, 0]
             out_data[:, 1] = self.data[0::thinout, 2+len(self.colref)+len(self.coldata)]/self.pu_area
             out_data[:, 2] = self.data[0::thinout, 1]
             for j in range(0, len(self.coldata)):
                 out_data[:, 2*j+3] = self.sig_out[0::thinout, 2*j]/self.intgain*1e3
                 out_data[:, 2*j+4] = self.sig_out[0::thinout, 2*j+1]/self.intgain*1e3
             
         f_handle  =  file(str(outputfile), 'w')
         f_handle.write('#time\tB\tdBdt\tin_phase\tout_phase\n')
         savetxt(f_handle, out_data[0:len(out_data[:, 0])-2, :], fmt = '%10g', delimiter = '\t')
         f_handle.close()
         self.label_23.setText('Data saved')
开发者ID:Bruyant,项目名称:Linx,代码行数:54,代码来源:Linx.py


示例5: test_optdiv1

def test_optdiv1(beta=0.9, pHigh=0.75, grid=scipy.arange(21.0), useValueIter=True):
	time1 = time.time()
	localvars = {}
	
	def postVIterCallbackFn(nIter, currentVArray, newVArray, optControls, stoppingResult):		
		global g_iterList
		(stoppingDecision, diff) = stoppingResult
		print("iter %d, diff %f" % (nIter, diff))
		localvars[0] = nIter		

	def postPIterCallbackFn(nIter, newVArray, currentPolicyArrayList, greedyPolicyList, stoppingResult):				
		(stoppingDecision, diff) = stoppingResult
		print("iter %d, diff %f" % (nIter, diff))
		localvars[0] = nIter		
		
	initialVArray = grid;								# initial guess for V: a linear fn
	initialPolicyArray = grid;							# initial guess for d: pay out everything
	utilityFn = lambda x: x;							# linear utility
	zStates = [-1.0, 1.0];	
	zProbs = [1.0-pHigh, pHigh];						# income shock	
	params = OptDivParams1(utilityFn, beta, zStates, zProbs, grid);		# don't use parallel search with this, since it makes a callback to Python			
	if (useValueIter == True):		
		result = bellman.grid_valueIteration([grid], initialVArray, params, postIterCallbackFn=postVIterCallbackFn, parallel=False)
		(nIter, currentVArray, newVArray, optControls) = result
	else:
		result = bellman.grid_policyIteration([grid], [initialPolicyArray], initialVArray, params, postIterCallbackFn=postPIterCallbackFn, parallel=False)
		(nIter, currentVArray, currentPolicyArrayList, greedyPolicyList) = result
		newVArray = currentVArray
		optControls = currentPolicyArrayList
	time2 = time.time()
	nIters = localvars[0]
	print("total time: %f, avg time: %f" % (time2-time1, (time2-time1)/nIters))
	
	print("x_0 == 0: %d" % alwaysPayAll(beta, pHigh))
	n0 = getn0(beta, pHigh)
	optd_fn = linterp.LinInterp1D(grid, optControls[0])
	print("n0: %f, d(floor(n0)): %f" % (n0, optd_fn(scipy.floor(n0))))
	# plot V
	fig = plt.figure()
	ax = fig.add_subplot(111)
	ax.plot(grid, newVArray)
	ax.set_xlabel("M")
	ax.set_ylabel("V")	
	# plot optimal d
	fig = plt.figure()	
	ax = fig.add_subplot(111)
	ax.plot(grid, optControls[0])	
	ax.axvline(scipy.floor(n0), color='gray')
	ax.set_xlabel("M")
	ax.set_ylabel("optimal d")	
	plt.show()
	return result
开发者ID:Twizanex,项目名称:bellman,代码行数:52,代码来源:optDividends.py


示例6: get_cb_ticks

def get_cb_ticks(values):
    min_tick = sp.nanmin(values)
    max_tick = sp.nanmax(values)
    med_tick = min_tick + (max_tick - min_tick) / 2.0
    if max_tick > 1.0:
        min_tick = sp.ceil(min_tick)
        max_tick = sp.floor(max_tick)
        med_tick = sp.around(med_tick)
    else:
        min_tick = sp.ceil(min_tick * 100.0) / 100.0
        max_tick = sp.floor(max_tick * 100.0) / 100.0
        med_tick = sp.around(med_tick, 2)
    return [min_tick, med_tick, max_tick]
开发者ID:jgosmann,项目名称:spyke-metrics-extra,代码行数:13,代码来源:section3.1.py


示例7: draw_from_Q_true

def draw_from_Q_true(N, bbox):
    # Draw xs and ys from a normal distribution
    vis = sp.random.randn(2*N,2)
    
    # Create bimodal distribution
    ncut = int(sp.floor(2*N/3))
    xis = vis[:,0]
    yis = vis[:,1]
    yis[:ncut] -= 2.0
    yis[ncut:] += 2.0
    xis[:ncut] -= 2.0
    xis[ncut:] *= 2.0
    xis[ncut:] += 1.0
    
    # Shuffle xis and yis
    indices = sp.arange(len(vis))
    sp.random.shuffle(indices)
    xis = xis[indices]
    yis = yis[indices]
    
    # Select exactly N data points
    indices = (xis > bbox[0]) & (xis < bbox[1]) & (yis > bbox[2]) & (yis < bbox[3])
    xis = xis[indices]
    xis = xis[:N]
    yis = yis[indices]
    yis = yis[:N]
    
    return xis, yis
开发者ID:shhong,项目名称:13_deft,代码行数:28,代码来源:fig4_calculate.py


示例8: normalizeLength

  def normalizeLength(self, noteOns, factor):
    #shibu = 60. / self.wavetempo * (self.binarized_data[0].size / self.duration)
    shibu = (self.fs/10.) / (self.wavetempo/60.)
    fixToResolution = noteOns/shibu*480.
    fixToResolution[:, 2] = noteOns[:, 2]
    # MIDI_Res(分解能) = 480
    MIDI_Res = 480.
    minnotel = 1./4.*MIDI_Res
    #rate(許容誤差)
    rate = 0.5

    #NoteNoが大きいものから順に並び替え
    fixToResolution = self.rowsort(fixToResolution)
    self.oldFixToResolution = sp.copy(fixToResolution)

    #lilypond符号用リスト
    book = [[] for i in range(fixToResolution.shape[0])]

    for n in range(fixToResolution.shape[0]):
      x_cor = fixToResolution[n, 0] + minnotel*rate - 1

      #x_cor = fixToResolution[n, 0] + minnotel - 1
      x_cor = (sp.floor(x_cor/minnotel))*minnotel
      if(x_cor == 0):
        x_cor = 1
      fixToResolution[n, 0] = x_cor
      fixToResolution[n, 3], book[n] = self.normalizeNoteLength(fixToResolution[n, 3] + factor)
      book[n] = self.convertNoteNo(fixToResolution[n, 2]) + book[n]
      fixToResolution[n, 1] = fixToResolution[n, 3] + fixToResolution[n, 0] - 1
    
    self.book = book
    return fixToResolution
开发者ID:mackee,项目名称:utakata,代码行数:32,代码来源:utakata_time_freq.py


示例9: xNES

def xNES(f, x0, maxEvals=1e6, verbose=False, targetFitness= -1e-10):
    """ Exponential NES (xNES), as described in 
    Glasmachers, Schaul, Sun, Wierstra and Schmidhuber (GECCO'10).
    Maximizes a function f. 
    Returns (best solution found, corresponding fitness).
    """
    dim = len(x0)  
    I = eye(dim)
    learningRate = 0.6 * (3 + log(dim)) / dim / sqrt(dim)
    batchSize = 4 + int(floor(3 * log(dim)))    
    center = x0.copy()
    A = eye(dim)  # sqrt of the covariance matrix
    numEvals = 0
    bestFound = None
    bestFitness = -Inf
    while numEvals + batchSize <= maxEvals and bestFitness < targetFitness:
        # produce and evaluate samples
        samples = [randn(dim) for _ in range(batchSize)]
        fitnesses = [f(dot(A, s) + center) for s in samples]
        if max(fitnesses) > bestFitness:
            bestFitness = max(fitnesses)
            bestFound = samples[argmax(fitnesses)]
        numEvals += batchSize 
        if verbose: print "Step", numEvals / batchSize, ":", max(fitnesses), "best:", bestFitness
        #print A
        # update center and variances
        utilities = computeUtilities(fitnesses)
        center += dot(A, dot(utilities, samples))
        covGradient = sum([u * (outer(s, s) - I) for (s, u) in zip(samples, utilities)])
        A = dot(A, expm2(0.5 * learningRate * covGradient))                      

    return bestFound, bestFitness
开发者ID:xufango,项目名称:contrib_bk,代码行数:32,代码来源:xnes.py


示例10: sart

	def sart(self):
		self.wij_sum = sp.zeros((self.ny, self.ny))

		if self.pslice is None:
			slice_range = range(self.nx)
		else:
			slice_range = [self.pslice]

		for self.pslice in slice_range:
			self.reco = sp.zeros((self.ny, self.ny))
			
			sinogram = self.projections[:,self.pslice,:]
			self.update_figure(pslice=True)
			for it in range(self.iterations):

				self.upd = sp.zeros_like(self.reco)
				for i in range(self.n_proj):
					then = time.time()
					
					multip = multiprocess(self.ray_update_worker, num_processes=12	)
					for chunk in split_seq(range(self.ny), sp.floor(self.ny/multip.num_processes)):
						multip.add_job((self.angles[i], sinogram[i,:], self.reco.copy(), chunk, it==0))
						
					self.do_closeout(multip)
					if i%10==0:
						print 'Iter: {:d}, Proj: {:d}, Duration: {:3.2f} sec'.format(it, i, time.time()-then)

				if it==0:
					self.reco+=self.upd/(self.wij_sum+0.1)
				else:
					self.reco+=self.relax*self.upd/(self.wij_sum+0.1)

				self.update_figure()
开发者ID:djvine,项目名称:pySART,代码行数:33,代码来源:pySART.py


示例11: ngp

def ngp(parameters,positions,values):
    
    values_ngp = sp.zeros((parameters.Ng,parameters.Ng,parameters.Ng))
    counts_ngp = sp.zeros((parameters.Ng,parameters.Ng,parameters.Ng))
    cellsize = parameters.boxsize/parameters.Ng


    for position,pvalue in zip(positions,values):

        position = sp.array(position)
        
        position_cellunits = position/cellsize

        # cell indices
        cell_indices = sp.floor(position_cellunits)
        

        if periodic_boundaries:
            cell_indices = sp.mod(cell_indices,parameters.Ng)

        index_x, index_y, index_z = cell_indices[0],cell_indices[1],cell_indices[2]


        values_ngp[index_x][index_y][index_z] += pvalue
        counts_ngp[index_x][index_y][index_z] += 1                                    

    values_ngp = sp.array(values_ngp)/sp.array(counts_ngp)
    print "Don't mind this warning. Astropy can handle nan-values"                
    

    return values_ngp     
开发者ID:ioodderskov,项目名称:VelocityField,代码行数:31,代码来源:assignment_to_grid.py


示例12: cmd_ylim

def cmd_ylim(mu):
  if scipy.ceil(mu) - mu < mu - scipy.floor(mu):
    cmax = scipy.ceil(mu) + 1
  else:
    cmax = scipy.ceil(mu)
  cmin = cmax - 3
  return cmin, cmax
开发者ID:cristobal-sifon,项目名称:astro,代码行数:7,代码来源:redsequence_v1.py


示例13: plot_down_saw_spec_correct

def plot_down_saw_spec_correct():
    plt.close('all')
    rate, in_sig = wavfile.read('saw.wav')
    old_rate = 44100
    new_rate = 22050
    in_sig = sp.float32(in_sig)
    fin = anfft.fft(in_sig)
    nsiz = sp.floor(in_sig.size*new_rate/old_rate)
    nsizh = sp.floor(nsiz/2)
    fout = sp.zeros(nsiz)
    fout = fout + 0j
    fout[0:nsizh] = fin[0:nsizh]
    fout[nsiz-nsizh+1:] = sp.conj(sp.flipud(fout[1:nsizh]))
    f = sp.absolute(fout)
    plt.plot(f[0:f.shape[0]/2])
    plt.savefig('sawdownspec.pdf')
开发者ID:byuimpactrevisions,项目名称:numerical_computing,代码行数:16,代码来源:fft_plots.py


示例14: rescale

 def rescale(self):
     if isQuantity(self.unit):
         oldUnit = self.unit.inBaseUnits()
     else:
         return
     #Compute decade of field and multiply it to oldUnit
     oldFieldAmplitude = max(abs(numpy.amax(self.data)),abs(numpy.amin(self.data)))
     oldUnit *= oldFieldAmplitude
     #Compute next lower decade
     decade = scipy.log10(oldUnit.value)
     newDecade = 10**(scipy.floor(decade))
     #Find appropriate prefix
     baseUnit=oldUnit.unit.name()
     if baseUnit == 'm':
         prefixes = PREFIXES_METER
     else:
         prefixes = PREFIXES
     prefixCandidates = map(lambda i: (i[0],abs(i[1]-newDecade)),prefixes)
     optPrefix = min([prefix[1] for prefix in prefixCandidates])
     newPrefix = filter(lambda prefix: prefix[1]==optPrefix,prefixCandidates)[0][0]
     newUnitName = newPrefix+baseUnit
     #Convert to new unit
     newUnit = oldUnit.inUnitsOf(newUnitName)
     unitAmplitude = newUnit.value
     if self.data.dtype.name.startswith('int'):
         self.unit = newUnit/oldFieldAmplitude
         return
     self.data *= unitAmplitude/oldFieldAmplitude
     self.unit = newUnit/unitAmplitude
开发者ID:gclos,项目名称:pyphant1,代码行数:29,代码来源:FieldContainer.py


示例15: split_jobs

def split_jobs(Y, Njobs):
    #slit phenotype matrix into jobs
    #think about splitting snps also
    splits = []


    [N, Np] = Y.shape
    #maximal splitting range is one job per phenotype
    Njobs = min(Njobs,Np)

    #figure out phenotypes per job (down rounded)
    npj   = int(SP.floor(SP.double(Np)/Njobs))
    
    i0 = 0
    i1 = npj
    for n in xrange(Njobs):
        if n==(Njobs-1):
            #make sure last jobs spans all the rest.
            i1 = Np
        Y_ = Y[:,i0:i1]
	splits.append([i0, i1, Y_])
        #nex split
        i0 = i1
        i1 = i1 + npj
        
    return splits
开发者ID:PMBio,项目名称:envGPLVM,代码行数:26,代码来源:testing.py


示例16: __init__

    def __init__(self, center, sigma, f, population = None, center_learning_rate = 1.0, sigma_learning_rate = None):
        """ Separable NES, as described in Schaul, Glasmachers and Schmidhuber (GECCO'11).
        Maximizes a function f.
        Returns (best solution found, corresponding fitness) """
        self.dim = len(center)
        self.center = center.copy()
        if sigma == None:
            sigma = 1.0
        if type(sigma) == type(.0):
            self.sigmas = ones(self.dim) * sigma
        else:
            self.sigmas = sigma

        if not population:
            self.population = 4 + int(floor(3 * log(self.dim)))
        else:
            self.population = population
        self.population -= self.population % 2 #make even for symmetry trick

        self.learning_rate = sigma_learning_rate
        if self.learning_rate is None:
            self.learning_rate = 100 * 0.6 * (3 + log(self.dim)) / self.dim / sqrt(self.dim)
        self.center_learning_rate = center_learning_rate
        self.numEvals = 0
        self.bestFound = None
        self.bestFitness = -Inf
        self.f = f
开发者ID:NASCENCE,项目名称:alg,代码行数:27,代码来源:snes.py


示例17: getAxis

 def getAxis(self,X,Y):
     """
     return the proper axis limits for the plots
     """
     out = []
     mM = [(min(X),max(X)),(min(Y),max(Y))]
     for i,j in mM:
         #YJC: checking if values are negative, if yes, return 0 and break
         if j <0 or i <0:
             return 0
         log_i = scipy.log10(i)
         d, I = scipy.modf(log_i)
         if log_i < 0:
             add = 0.5 *(scipy.absolute(d)<0.5)
         else:
             add = 0.5 *(scipy.absolute(d)>0.5)
         m = scipy.floor(log_i) + add
         out.append(10**m)
         log_j = scipy.log10(j)
         d, I = scipy.modf(log_j)
         if log_j < 0:
             add = - 0.5 *(scipy.absolute(d)>0.5)
         else:
             add = - 0.5 *(scipy.absolute(d)<0.5)
         m = scipy.ceil(log_j) + add
         out.append(10**m)
     return tuple(out)
开发者ID:gdurin,项目名称:SloppyScaling,代码行数:27,代码来源:SloppyScaling.py


示例18: SNES

def SNES(f, x0, maxEvals=1e6, verbose=False, targetFitness=-1e-10):
    """ Separable NES, as described in Schaul, Glasmachers and Schmidhuber (GECCO'11).
    Maximizes a function f. 
    Returns (best solution found, corresponding fitness) """
    dim = len(x0)  
    learningRate = 0.2 * (3 + log(dim)) / sqrt(dim)
    batchSize = 4 + int(floor(3 * log(dim)))    
    center = x0.copy()
    sigmas = ones(dim)
    numEvals = 0
    bestFound = None
    bestFitness = -Inf
    while numEvals + batchSize <= maxEvals and bestFitness < targetFitness:
        # produce and evaluate samples
        samples = [randn(dim) for _ in range(batchSize)]
        fitnesses = [f(sigmas * s + center) for s in samples]
        if max(fitnesses) > bestFitness:
            bestFitness = max(fitnesses)
            bestFound = samples[argmax(fitnesses)]
        numEvals += batchSize 
        if verbose: print "Step", numEvals/batchSize, ":", max(fitnesses), "best:", bestFitness
        
        # update center and variances
        utilities = computeUtilities(fitnesses)
        center += sigmas * dot(utilities, samples) 
        covGradient = dot(utilities, [s ** 2 - 1 for s in samples])        
        sigmas = sigmas * exp(0.5 * learningRate * covGradient)            

    return bestFound, bestFitness
开发者ID:xufango,项目名称:contrib_bk,代码行数:29,代码来源:snes.py


示例19: kteo

def kteo(data, k=1):
    """teager energy operator of range k [TEO]

    The discrete teager energy operator (TEO) of window size k is defined as:
    M{S{Psi}[x(n)] = x^2(n) - x(n-k) x(n+k)}

    :type data: ndarray
    :param data: The signal to operate on. ndim=1
    :type k: int
    :param k: Parameter defining the window size for the TEO.
    :return: ndarray - Array of same shape as the input signal, holding the
        kteo response.
    :except: If inconsistant dims or shapes.
    """

    # checks and inits
    if data.ndim != 1:
        raise ValueError(
            'ndim != 1! ndim=%s with shape=%s' % (data.ndim, data.shape))

    # apply nonlinear energy operator with range k
    rval = data ** 2 - sp.concatenate(([0] * sp.ceil(k / 2.0),
                                       data[:-k] * data[k:],
                                       [0] * sp.floor(k / 2.0)))

    # return
    return rval
开发者ID:rproepp,项目名称:BOTMpy,代码行数:27,代码来源:funcs_filterutil.py


示例20: getLogBins

def getLogBins(first_point, last_point, log_step):
    """
    get the bin in log scale and the center bin value
    
    Parameters:
    ----------------
    first_point, last_point : number
    First and last point of the x-axis
    
    log_step : number
    Required log-distance between x-points
    
    Returns:
    -----------
    xbins : array of the x values at the center (in log-scale) of the bin
    bins : array of the x values of the bins 
    """
    log_first_point = scipy.log10(first_point)
    log_last_point = scipy.log10(last_point)
    # Calculate the bins as required by the histogram function, i.e. the bins edges including the rightmost one
    N_log_steps = scipy.floor((log_last_point - log_first_point) / log_step) + 1.0
    llp = N_log_steps * log_step + log_first_point
    bins_in_log_scale = np.linspace(log_first_point, llp, N_log_steps + 1)
    bins = 10 ** bins_in_log_scale
    center_of_bins_log_scale = bins_in_log_scale[:-1] + log_step / 2.0
    xbins = 10 ** center_of_bins_log_scale
    return xbins, bins
开发者ID:gdurin,项目名称:pyAvalanches,代码行数:27,代码来源:getLogDistributions.py



注:本文中的scipy.floor函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python scipy.fromfile函数代码示例发布时间:2022-05-27
下一篇:
Python scipy.flipud函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap