• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python scipy.isnan函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.isnan函数的典型用法代码示例。如果您正苦于以下问题:Python isnan函数的具体用法?Python isnan怎么用?Python isnan使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了isnan函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: _prepareICContents

    def _prepareICContents(self):
        allfilestr = ""
        topstr = "function ics_ = " + self.name +"_ics()\n"
        commentstr = "% Initial conditions for model " + self.name + "\n% Generated by PyDSTool for ADMC++ target\n\n"

        bodystr = "ics_ = [ ...\n"
        if self.initialconditions:
            icnames = self.initialconditions.keys()
            icnames.sort()
            
            for i in range(len(icnames)-1):
                if isnan(self.initialconditions[icnames[i]]):
                    val = str(0.0)
                else:
                    val = str(self.initialconditions[icnames[i]])
                
                bodystr += val + ", ... % " + icnames[i] + "\n"

            if isnan(self.initialconditions[icnames[len(icnames)-1]]):
                val = str(0.0)
            else:
                val = self.initialconditions[icnames[len(icnames)-1]]
                
            bodystr += val + " % " + icnames[len(icnames)-1] + " ...\n"

        bodystr += "];\n"
        
        allfilestr = topstr + commentstr + bodystr
        
        return allfilestr
开发者ID:BenjaminBerhault,项目名称:Python_Classes4MAD,代码行数:30,代码来源:ADMC_ODEsystem.py


示例2: ProcessData

def ProcessData(data):
	data = data[::-1]
	n = 100
	growthOfThisData = 0
	fitPrice = FitPrice(data)
	if fitPrice == 0:
		return
	print("FitResult : " + str(fitPrice))	
	for i in range(0, len(data) - n):
		if not (sp.isnan(data[i][1]) or sp.isnan(data[i][4]) or sp.isnan(data[i][5])):
			if data[i][5] > 0:
				maxPrice = MaxPriceInNextNDays(data, i, n, fitPrice)
				minPrice = MinPriceInNextNDays(data, i, n, fitPrice)
				currentPrice = data[i][4] / fitPrice
				key = (currentPrice // 0.05) * 0.05
				if maxPriceResult.has_key(key):
					maxPriceResult[key] += maxPrice
					numOfDataMax[key] += 1
				else:
					maxPriceResult[key] = maxPrice
					numOfDataMax[key] = 1
				if minPriceResult.has_key(key):
					minPriceResult[key] += minPrice
					numOfDataMin[key] += 1
				else:
					minPriceResult[key] = minPrice
					numOfDataMin[key] = 1
开发者ID:StupidCodeGenerator,项目名称:PythonScripts,代码行数:27,代码来源:CurrentPrice_FitPrice.py


示例3: setup

 def setup(self, conductance, quantity, super_pore_conductance):
     r"""
     This setup provides the initial data for the solver from the provided
     properties.
     It also creates the matrices A and b.
     """
     # Assigning super_pore conductance for Neumann_group BC
     if super_pore_conductance is None:
         self.super_pore_conductance = []
     else:
         self.super_pore_conductance = super_pore_conductance
     # Providing conductance values for the algorithm from the Physics name
     if sp.size(self._phase) == 1:
         self._conductance = 'throat.' + conductance.split('.')[-1]
         self._quantity = 'pore.' + quantity.split('.')[-1]
         # Check health of conductance vector
         if self._phase.check_data_health(props=self._conductance).health:
             self['throat.conductance'] = self._phase[self._conductance]
         else:
             raise Exception('The provided throat conductance has problems')
     else:
         raise Exception('The linear solver accepts just one phase.')
     # Checking for the linear terms to be added to the coeff diagonal/RHS
     diag_added_data = sp.zeros(self.Np)
     RHS_added_data = sp.zeros(self.Np)
     for label in self.labels():
         if 'pore.source_' in label:
             source_name = 'pore.' + \
                           (label.split('.')[-1]).replace('source_', '')
             matching_physics = [phys for phys in self._phase._physics
                                 if source_name in phys.models.keys()]
             for phys in matching_physics:
                 x = phys.models[source_name]['x']
                 if x != '' and type(x) == str:
                     if x.split('.')[-1] != quantity.split('.')[-1]:
                         raise Exception('The quantity(pore.' +
                                         x.split('.')[-1] +
                                         '), provided by source term(' +
                                         source_name + '), is different ' +
                                         'from the main quantity(pore.' +
                                         quantity.split('.')[-1] + ') in ' +
                                         self.name + ' algorithm.')
             source_name = label.replace('pore.source_', '')
             if 'pore.source_linear_s1_' + source_name in self.props():
                 prop1 = 'pore.source_linear_s1_' + source_name
                 pores = ~sp.isnan(self[prop1])
                 diag_added_data[pores] = diag_added_data[pores] + \
                     self[prop1][pores]
                 prop2 = 'pore.source_linear_s2_' + source_name
                 pores = ~sp.isnan(self[prop2])
                 RHS_added_data[pores] = RHS_added_data[pores] + \
                     self[prop2][pores]
     # Creating A and b based on the conductance values and new linear terms
     logger.info('Creating Coefficient matrix for the algorithm')
     d = diag_added_data
     self.A = self._build_coefficient_matrix(modified_diag_pores=self.Ps,
                                             diag_added_data=d)
     logger.info('Creating RHS matrix for the algorithm')
     self.b = self._build_RHS_matrix(modified_RHS_pores=self.Ps,
                                     RHS_added_data=-RHS_added_data)
开发者ID:TomTranter,项目名称:OpenPNM,代码行数:60,代码来源:__GenericLinearTransport__.py


示例4: simulate

    def simulate(self, X):
        """
        @arguments
          X -- 2d array of [sample_i][var_i] : float
        @return
          y -- 1d array of [sample_i] : float
        """
        op = self.nonlin_op
        ok = True
        y_lin = self.simple_base.simulate(X)

        if op == OP_ABS:     ya = numpy.abs(y_lin)
        elif op == OP_MAX0:  ya = numpy.clip(y_lin, 0.0, INF)
        elif op == OP_MIN0:  ya = numpy.clip(y_lin, -INF, 0.0)
        elif op == OP_LOG10:
            #safeguard against: log() on values <= 0.0
            mn, mx = min(y_lin), max(y_lin)
            if mn <= 0.0 or scipy.isnan(mn) or mx == INF or scipy.isnan(mx):
                ok = False
            else:
                ya = numpy.log10(y_lin)
        elif op == OP_GTH:   ya = numpy.clip(self.thr - y_lin, 0.0, INF)
        elif op == OP_LTH:   ya = numpy.clip(y_lin - self.thr, 0.0, INF)
        else:                raise 'Unknown op %d' % op

        if ok: #could always do ** exp, but faster ways if exp is 0,1
            y = ya
        else:
            y = INF * numpy.ones(X.shape[0], dtype=float)    
        return y
开发者ID:pukkapies,项目名称:ffx,代码行数:30,代码来源:core.py


示例5: zeroMeanUnitVarianz

def zeroMeanUnitVarianz(data=None,x=True):
    if x:
        return (data-data.mean(axis=0))/data.std(axis=0)
    else:
        mean = data[~sp.isnan(data)].mean(axis=0)
        std = data[~sp.isnan(data)].std(axis=0)
        return (data - mean)/std
开发者ID:dominikgrimm,项目名称:easyGWASCore,代码行数:7,代码来源:transformations.py


示例6: _do_one_outer_iteration

 def _do_one_outer_iteration(self, **kwargs):
     r"""
     One iteration of an outer iteration loop for an algorithm
     (e.g. time or parametric study)
     """
     # Checking for the necessary values in Picard algorithm
     nan_tol = sp.isnan(self['pore.source_tol'])
     nan_max = sp.isnan(self['pore.source_maxiter'])
     self._tol_for_all = sp.amin(self['pore.source_tol'][~nan_tol])
     self._maxiter_for_all = sp.amax(self['pore.source_maxiter'][~nan_max])
     if self._guess is None:
         self._guess = sp.zeros(self._coeff_dimension)
     t = 1
     step = 0
     # The main Picard loop
     while t > self._tol_for_all and step <= self._maxiter_for_all:
         X, t, A, b = self._do_inner_iteration_stage(guess=self._guess,
                                                     **kwargs)
         logger.info('tol for Picard source_algorithm in step ' +
                     str(step) + ' : ' + str(t))
         self._guess = X
         step += 1
     # Check for divergence
     self._steps = step
     if t >= self._tol_for_all and step > self._maxiter_for_all:
         raise Exception('Iterative algorithm for the source term reached '
                         'to the maxiter: ' + str(self._maxiter_for_all) +
                         ' without achieving tol: ' +
                         str(self._tol_for_all))
     logger.info('Picard algorithm for source term converged!')
     self.A = A
     self.b = b
     self._tol_reached = t
     return X
开发者ID:TomTranter,项目名称:OpenPNM,代码行数:34,代码来源:__GenericLinearTransport__.py


示例7: main

def main():
    data = sp.genfromtxt('./data/web_traffic.tsv', delimiter='\t')
    x = data[:, 0]
    y = data[:, 1]
    x = x[~sp.isnan(y)]
    y = y[~sp.isnan(y)]
    fp1 = sp.polyfit(x, y, 1)
    print('Model parameters for fp1 %s' % fp1)
    f1 = sp.poly1d(fp1)
    print('This is the error rate for fp1 %f' % error(f1, x, y))

    fp2 = sp.polyfit(x, y, 2)
    print('Model parameters for fp2 %s' % fp2)
    f2 = sp.poly1d(fp2)
    print('This is the error rate for fp2 %f' % error(f2, x, y))

    plt.scatter(x, y,color= 'pink')
    plt.title('My first impression')
    plt.xlabel('Time')
    plt.ylabel('#Hits')
    plt.xticks([w * 7 * 24 for w in range(10)], ['week %i' % w for w in range(10)])
    fx = sp.linspace(0, x[-1], 1000)
    plt.plot(fx, f1(fx), linewidth=3,color='cyan')


    plt.plot(fx, f2(fx), linewidth=3, linestyle='--',color= 'red')
    plt.legend(['d = %i' %f1.order, 'd = %i' %f2.order], loc='upper left')
    plt.autoscale(tight=True)
    plt.grid()
    plt.show()
开发者ID:pombredanne,项目名称:PythonProjects,代码行数:30,代码来源:tutorial.py


示例8: getFluxes

def getFluxes(val_mat, direction_mat, dist_mat, duxdy_mat, out_flux, inc):

	import scipy;
	import math;

	speed_factor   = 1;
	angle_factor   = 1;
	inc_factor     = 1;
	dist_factor    = 1;
	strain_factor  = 1;

	duxdy_mat = duxdy_mat / (sum(duxdy_mat[~scipy.isnan(duxdy_mat)]));

	cell_angles  = scipy.flipud(scipy.array([[-1 * math.pi / 4, -1 * math.pi / 2, -3 * math.pi / 4], [0, scipy.nan, math.pi], [math.pi / 4, math.pi / 2, 3 * math.pi / 4]]));
#	cell_angles  = scipy.flipud(scipy.array([[3 * math.pi / 4, 1 * math.pi / 2, 1 * math.pi / 4], [math.pi, scipy.nan, 0], [-3 * math.pi / 4, -1 * math.pi / 2, -1 * math.pi / 4]]));

	cell_incs    = scipy.array([[(inc**2 + inc**2)**0.5, inc, (inc**2 + inc**2)**0.5], [inc, scipy.nan, inc], [(inc**2 + inc**2)**0.5, inc, (inc**2 + inc**2)**0.5]]);
	cell_incs    = (1 / cell_incs**inc_factor);
	cell_incs    = cell_incs / sum(cell_incs[~scipy.isnan(cell_incs)]);

	vels_in      = scipy.cos(cell_angles - direction_mat);
	vels_in[1,1] = scipy.nan;
	vels_in[vels_in < 0.00001] = scipy.nan;
	vels_in      = vels_in**angle_factor * val_mat**speed_factor * dist_mat**dist_factor * (1 / duxdy_mat**strain_factor) * cell_incs;
	in_fluxes    = (vels_in / sum(vels_in[~scipy.isnan(vels_in)]) * out_flux);

        return in_fluxes;
开发者ID:whyjz,项目名称:CARST,代码行数:27,代码来源:bedTopo5.py


示例9: init_and_cleanup_data

def init_and_cleanup_data(path, delimiter):
    data = sp.genfromtxt(path, delimiter=delimiter)
    hours = data[:, 0] # contains the hours
    webhits = data[:, 1] # contains the number of web hits at a particular hour
    hours = hours[~sp.isnan(webhits)]
    webhits = webhits[~sp.isnan(webhits)]
    return (hours, webhits)
开发者ID:ciah0704,项目名称:building-ml-systems-with-python,代码行数:7,代码来源:chapter1.py


示例10: LDA_batch_normalization

def LDA_batch_normalization(dataset, sample_table, batch_col, output_folder, ncomps): # this is actually the batch normalization method
   
    tmp_output_folder = os.path.join(output_folder, 'tmp')

    if not os.path.isdir(tmp_output_folder):
        os.makedirs(tmp_output_folder)
    
    barcodes, filtered_conditions, filtered_matrix, conditions, matrix = dataset
    
    # Remove any remaining NaNs and Infs from the filtered matrix - they would screw
    # up the LDA. 
    filtered_matrix[scipy.isnan(filtered_matrix)] = 0
    filtered_matrix[scipy.isinf(filtered_matrix)] = 0

    # For full matrix, also eliminate NaNs and Infs, BUT preserve the indices and values
    # so they can be added back into the matrix later (not implemented yet, and may never
    # be - there should no longer be NaNs and Infs in the dataset)
    # The NaNs and Infs will mess up the final step of the MATLAB LDA script, which uses
    # matrix multiplication to remove the specified number of components!
    matrix_nan_inds = scipy.isnan(matrix)
    matrix_nan_vals = matrix[matrix_nan_inds]
    matrix_inf_inds = scipy.isinf(matrix)
    matrix_inf_vals = matrix[matrix_inf_inds]

    matrix[matrix_nan_inds] = 0
    matrix[matrix_inf_inds] = 0

    # Save both the small matrix (for determining the components to remove) and the 
    # full matrix for the matlab script
    filtered_matrix_tmp_filename = os.path.join(tmp_output_folder, 'nonreplicating_matrix.txt')
    full_matrix_tmp_filename = os.path.join(tmp_output_folder, 'full_matrix.txt')
    
    np.savetxt(filtered_matrix_tmp_filename, filtered_matrix)
    np.savetxt(full_matrix_tmp_filename, matrix)

    # Map the batch to integers for matlab, and write out to a file so matlab can read
    # Note that yes, the batch_classes should match up with the filtered matrix, not
    # the full matrix
    batch_classes = get_batch_classes(dataset = [barcodes, filtered_conditions, filtered_matrix], sample_table = sample_table, batch_col = batch_col)
    class_tmp_filename = os.path.join(tmp_output_folder, 'classes.txt')
    writeList(batch_classes, class_tmp_filename)
   
    output_tmp_filename = os.path.join(tmp_output_folder, 'full_matrix_lda_normalized.txt')
    runLDAMatlabFunc(filtered_matrix_filename = filtered_matrix_tmp_filename, \
            matrix_filename = full_matrix_tmp_filename, \
            class_filename = class_tmp_filename, \
            ncomps = ncomps, \
            output_filename = output_tmp_filename)
    # The X norm that is returned is the full matrix. In the future, we could add in
    # returning the components to remove so they can be visualized or applied to other
    # one-off datasets
    Xnorm =  scipy.genfromtxt(output_tmp_filename)

    ## Dump the dataset out!
    #output_filename = os.path.join(mtag_effect_folder, 'scaleddeviation_full_mtag_lda_{}.dump.gz'.format(ncomps))
    #of = gzip.open(output_filename, 'wb')
    #cPickle.dump([barcodes, conditions, Xnorm], of)
    #of.close()

    return [barcodes, conditions, Xnorm]
开发者ID:monprin,项目名称:BEAN-counter,代码行数:60,代码来源:svd_correction.py


示例11: create_models

    def create_models(self):
        import scipy,cPickle
        from stellarpop import tools
        from stellarpop.ndinterp import ndInterp

        index = {}
        shape = []
        axes = {}
        axes_index = 0
        for key in self.axes_names:
            index[key] = {}
            shape.append(self.axes[key]['points'].size)
            axes[axes_index] = self.axes[key]['eval']
            axes_index += 1
            for i in range(self.axes[key]['points'].size):
                index[key][self.axes[key]['points'][i]] = i

        models = {}
        model = scipy.empty(shape)*scipy.nan
        for f in self.filter_names:
            models[f] = {}
            for z in self.redshifts:
                models[f][z] = model.copy()

        for file in self.files:
            f = open(file,'rb')
            data = cPickle.load(f)
            wave = cPickle.load(f)
            f.close()
            for key in data.keys():
                obj = data[key]
                jj = key
                spec = obj['sed']
                ind = []
                for key in self.axes_names:
                    try:
                        ind.append([index[key][obj[key]]])
                    except:
                        print key,index[key]
                        print obj
                        df
                for f in self.filter_names:
                    for i in range(len(self.redshifts)):
                        z = self.redshifts[i]
                        # correction is the units correction factor
                        correction = self.corrections[i]
                        sed = [wave,spec*correction]
                        mag = tools.ABFilterMagnitude(self.filters[f],sed,z)
                        if scipy.isnan(mag)==True:
                            df
                        models[f][z][ind] = mag

        for f in self.filter_names:
            for z in self.redshifts:
                model = models[f][z].copy()
                if scipy.isnan(model).any():
                    models[f][z] = None
                else:
                    models[f][z] = ndInterp(axes,model)
        return models
开发者ID:bnord,项目名称:LensPop,代码行数:60,代码来源:spsmodel.py


示例12: load_data

def load_data():
    datas = sp.genfromtxt("web_traffic.tsv", delimiter='\t')
    print datas[:10]
    x = datas[:,0]
    y = datas[:,1]
    x = x[ ~sp.isnan(y)]
    y = y[ ~sp.isnan(y)]
    return x,y
开发者ID:xiholix,项目名称:buildingmachinelearning,代码行数:8,代码来源:first.py


示例13: __call__

 def __call__(self,x1, x2, d1=[sp.NaN], d2=[sp.NaN],gets=False):
     D1 = 0 if sp.isnan(d1[0]) else int(sum([8**x for x in d1]))
     D2 = 0 if sp.isnan(d2[0]) else int(sum([8**x for x in d2]))
     self.smodel=sp.empty(1)
     r=libGP.k(x1.ctypes.data_as(ctpd),x2.ctypes.data_as(ctpd), cint(D1),cint(D2),cint(self.dim),self.ihyp.ctypes.data_as(ctpd),cint(self.Kindex),self.smodel.ctypes.data_as(ctpd))
     if gets:
         return [r,self.smodel[0]]
     return r
开发者ID:markm541374,项目名称:GPc,代码行数:8,代码来源:GPdc.py


示例14: preProcess

    def preProcess(self,
                                    periodF0 = 0.06,
                                    deltaF_div_F0 = True,
                                    
                                    max_threshold = None,
                                    min_threshold = None,
                                    nan_to_zeros = True,
                                    
                                    detrend = False,
                                    
                                    #~ band_filter = None,
                                    
                                    gaussian_filter = None,
                                    
                                    f1 = None,
                                    f2 = None,
                                    
                                    **kargs):
        
        images = self.images
        if deltaF_div_F0:
            ind = self.t()<=self.t_start+periodF0
            m0 = mean(images[ind,:,:] , axis = 0)
            images = (images-m0)/m0*1000.
            
        if max_threshold is not None:
            #~ images[images>max_threshold] = max_threshold
            images[images>max_threshold] = nan
            

        if min_threshold is not None:
            #~ images[images<min_threshold] = min_threshold
            images[images<min_threshold] = nan
                
            
        if nan_to_zeros:
            images[isnan(images) ] = 0.

        if detrend and not nan_to_zeros:
            m = any(isnan(images) , axis = 0)
            images[isnan(images) ] = 0.
            images = signal.detrend( images , axis = 0)
            images[:,m] = nan
        elif detrend and nan_to_zeros:
            images = signal.detrend( images , axis = 0)
            
        if gaussian_filter is not None:
            images = ndimage.gaussian_filter( images , (0 , gaussian_filter , gaussian_filter))
            

        if f1 is not None or f2 is not None:
            from ..computing.filter import fft_passband_filter
            if f1 is None: f1=0.
            if f2 is None: f1=inf
            nq = self.sampling_rate/2.
            images = fft_passband_filter(images, f_low = f1/nq , f_high = f2/nq , axis = 0)
        
        return images
开发者ID:AntoineValera,项目名称:SynaptiQs,代码行数:58,代码来源:imageserie.py


示例15: test_returns_nan_if_one_spike_train_is_empty

 def test_returns_nan_if_one_spike_train_is_empty(self):
     empty = create_empty_spike_train()
     non_empty = neo.SpikeTrain(sp.array([1.0]) * pq.s, t_stop=2.0 * pq.s)
     k = sigproc.GaussianKernel()
     with warnings.catch_warnings():
         warnings.simplefilter('ignore')
         actual = stm.schreiber_similarity((empty, non_empty), k)
     self.assertTrue(sp.isnan(actual[0, 0]))
     self.assertTrue(sp.isnan(actual[0, 1]))
     self.assertTrue(sp.isnan(actual[1, 0]))
开发者ID:NeuroArchive,项目名称:spykeutils,代码行数:10,代码来源:test_spike_train_metrics.py


示例16: get_data

def get_data():
    data = sp.genfromtxt("input/web_traffic.tsv", delimiter="\t")

    x = data[:, 0]
    y = data[:, 1]

    x = x[~sp.isnan(y)]
    y = y[~sp.isnan(y)]

    return (x, y,)
开发者ID:toothywalrus,项目名称:nlp,代码行数:10,代码来源:main.py


示例17: get_relative_prices

def get_relative_prices(walking_time, smoothed_prices):
    x = walking_time.flatten()
    y = smoothed_prices.flatten()
    mask = sp.isnan(x) | sp.isnan(y)
    
    spline = sp.interpolate.UnivariateSpline(x[~mask], y[~mask], s=len(x))
    v = spline(x)
    
    rel = (y - v).reshape(walking_time.shape)
    
    return rel
开发者ID:andyljones,项目名称:house-price-map,代码行数:11,代码来源:main.py


示例18: LDA_batch_normalization

def LDA_batch_normalization(dataset, sample_table, batch_col, output_folder, n_comps): # this is actually the batch normalization method
   
    tmp_output_folder = os.path.join(output_folder, 'tmp')

    if not os.path.isdir(tmp_output_folder):
        os.makedirs(tmp_output_folder)
    
    barcodes, filtered_conditions, filtered_matrix, conditions, matrix = dataset
    
    # Remove any remaining NaNs and Infs from the filtered matrix - they would screw
    # up the LDA. 
    filtered_matrix[scipy.isnan(filtered_matrix)] = 0
    filtered_matrix[scipy.isinf(filtered_matrix)] = 0

    # For full matrix, also eliminate NaNs and Infs, BUT preserve the indices and values
    # so they can be added back into the matrix later (not implemented yet, and may never
    # be - there should no longer be NaNs and Infs in the dataset)
    # The NaNs and Infs will mess up the final step of the MATLAB LDA script, which uses
    # matrix multiplication to remove the specified number of components!
    matrix_nan_inds = scipy.isnan(matrix)
    matrix_nan_vals = matrix[matrix_nan_inds]
    matrix_inf_inds = scipy.isinf(matrix)
    matrix_inf_vals = matrix[matrix_inf_inds]

    matrix[matrix_nan_inds] = 0
    matrix[matrix_inf_inds] = 0

    # Save both the small matrix (for determining the components to remove) and the 
    # full matrix for the matlab script
    filtered_matrix_tmp_filename = os.path.join(tmp_output_folder, 'nonreplicating_matrix.txt')
    full_matrix_tmp_filename = os.path.join(tmp_output_folder, 'full_matrix.txt')
    
    np.savetxt(filtered_matrix_tmp_filename, filtered_matrix)
    np.savetxt(full_matrix_tmp_filename, matrix)

    # Map batch classes to integers
    batch_classes = get_batch_classes(dataset = [barcodes, filtered_conditions, filtered_matrix], sample_table = sample_table, batch_col = batch_col)
	
    # Checks number of classes and limits ncomps
    a = [x > 0 for x in np.sum(np.absolute(filtered_matrix), axis=0)]
    classes = np.asarray([batch_classes[i] for i in range(len(batch_classes)) if a[i]])
    n_samples = filtered_matrix.shape[0]
    n_classes = len(np.unique(classes))
    if n_samples == n_classes:
        print "ERROR: The number of samples is equal to the number of classes. Exiting"
    if n_classes <= n_comps:
        print "Fewer classes, " + str(n_classes) + ", than components. Setting components to " + str(n_classes-1)
        n_comps = n_classes-1

    # Runs LDA
    #Xnorm = scikit_lda(filtered_matrix, matrix, batch_classes, n_comps)
    Xnorm = outer_python_lda(filtered_matrix, matrix, batch_classes, n_comps)

    return [barcodes, conditions, Xnorm, n_comps]
开发者ID:csbio,项目名称:BEAN-counter,代码行数:54,代码来源:batch_correction.py


示例19: get_cleaned_data

def get_cleaned_data():
    data = sp.genfromtxt(os.path.join(DATA_DIR, 'web_traffic.tsv'), delimiter='\t')
    x = data[:, 0]
    y = data[:, 1]
    print "Number of invalid entries: {}".format(sp.sum(sp.isnan(y)))
    print "Removing invalid entries."

    x = x[~sp.isnan(y)]
    y = y[~sp.isnan(y)]
    print "Number of invalid entries: {}".format(sp.sum(sp.isnan(y)))
    return x, y
开发者ID:achiku,项目名称:syakyou,代码行数:11,代码来源:webstats.py


示例20: load_samples

def load_samples(fname):
	""" Load training sample dataset """

	data = sp.genfromtxt(fname, delimiter='\t')
	x = data[:, 0]
	y = data[:, 1]

	print('Totally %i entries while %i invalid entries.' % (sp.shape(data)[0], sp.sum(sp.isnan(y))))
	x = x[~sp.isnan(y)]
	y = y[~sp.isnan(y)]
	return (x, y)
开发者ID:kamidox,项目名称:machine-learning,代码行数:11,代码来源:analyze.py



注:本文中的scipy.isnan函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python scipy.isscalar函数代码示例发布时间:2022-05-27
下一篇:
Python scipy.isinf函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap