• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python scipy.lena函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.lena函数的典型用法代码示例。如果您正苦于以下问题:Python lena函数的具体用法?Python lena怎么用?Python lena使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了lena函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_connect_regions

def test_connect_regions():
    lena = sp.lena()
    for thr in (50, 150):
        mask = lena > thr
        graph = img_to_graph(lena, mask)
        nose.tools.assert_equal(ndimage.label(mask)[1],
                                cs_graph_components(graph)[0])
开发者ID:poolio,项目名称:scikit-learn,代码行数:7,代码来源:test_image.py


示例2: __init__

    def __init__(self):
        QMainWindow.__init__(self, None,
                             "FFTLab Main Window",
                             Qt.WType_TopLevel | Qt.WDestructiveClose)

        self.file_menu = QPopupMenu(self)
        self.file_menu.insertItem('&Quit', self.file_quit, Qt.CTRL + Qt.Key_Q)
        self.menuBar().insertItem('&File', self.file_menu)

        self.help_menu = QPopupMenu(self)
        self.menuBar().insertSeparator()
        self.menuBar().insertItem('&Help', self.help_menu)

        self.help_menu.insertItem('&About', self.about)

        self.main_widget = QWidget(self, "Main widget")

        data = ((lena()/255.)).astype("complex64")
        kernel = np.ones((6,6)).astype("complex64")
        #data = np.random.uniform(0,1,(8,8)).astype("complex64")
        #kernel = np.random.uniform(0,1,(7,7)).astype("complex64")
        #power_spec = fftshift(log(abs(signal.fftn(data))))

        gpu_conv = fftconvolve2d(data,kernel)
        cpu_conv = fftconvolve(data.real, kernel.real, mode="valid")

        info("GPU shape = (%s, %s)" % gpu_conv.shape)
        info("CPU shape = (%s, %s)" % cpu_conv.shape)
        
        check_results(cpu_conv, gpu_conv)

        data_c = ImageCanvas(data.real, self.main_widget)
        kernel_c = ImageCanvas(kernel.real, self.main_widget)
        gpu_conv_c = ImageCanvas(gpu_conv, self.main_widget)
        cpu_conv_c = ImageCanvas(cpu_conv, self.main_widget)
        #power_spec = ImageCanvas(power_spec,self.main_widget)

        data_label = QLabel("Input Data (lena)", self.main_widget)
        data_label.setAlignment(QLabel.AlignCenter)
        kernel_label = QLabel("Convolution Kernel", self.main_widget)
        kernel_label.setAlignment(QLabel.AlignCenter)
        gpu_conv_label = QLabel("GPU fftconvolve (CUDA)", self.main_widget)
        gpu_conv_label.setAlignment(QLabel.AlignCenter)
        cpu_conv_label = QLabel("CPU fftconvolve (NumPy)", self.main_widget)
        cpu_conv_label.setAlignment(QLabel.AlignCenter)

        g = QGridLayout(self.main_widget)
        g.addWidget(data_label,0,0)
        g.addWidget(kernel_label,0,1)
        g.addWidget(data_c,1,0)
        g.addWidget(kernel_c,1,1)
        g.addWidget(gpu_conv_label,2,0)
        g.addWidget(cpu_conv_label,2,1)
        g.addWidget(gpu_conv_c,3,0)
        g.addWidget(cpu_conv_c,3,1)

        self.main_widget.setFocus()
        self.setCentralWidget(self.main_widget)

        self.statusBar().message("%s - v%s" % (PROGNAME, PROG_VERSION) , 2000)
开发者ID:npinto,项目名称:python-cuda,代码行数:60,代码来源:fftlab.py


示例3: test_connect_regions_with_grid

def test_connect_regions_with_grid():
    lena = sp.lena()
    mask = lena > 50
    graph = grid_to_graph(*lena.shape, **{"mask": mask})
    assert_equal(ndimage.label(mask)[1], cs_graph_components(graph)[0])

    mask = lena > 150
    graph = grid_to_graph(*lena.shape, **{"mask": mask, "dtype": None})
    assert_equal(ndimage.label(mask)[1], cs_graph_components(graph)[0])
开发者ID:vincentschut,项目名称:scikit-learn,代码行数:9,代码来源:test_image.py


示例4: __init__

 def __init__(self):
     iris         = datasets.load_iris()
     self._x_iris = iris.data
     self._y_iris = iris.target
     try:
        self._lena = sp.lena()
     except AttributeError:
        from scipy import misc
        self._lena = misc.lena()
开发者ID:haisland0909,项目名称:python_practice,代码行数:9,代码来源:unsupervisedlearningsample.py


示例5: test_connect_regions_with_grid

def test_connect_regions_with_grid():
    lena = sp.lena()
    mask = lena > 50
    graph = grid_to_graph(*lena.shape, **{'mask' : mask})
    nose.tools.assert_equal(ndimage.label(mask)[1],
                            cs_graph_components(graph)[0])

    mask = lena > 150
    graph = grid_to_graph(*lena.shape, **{'mask' : mask, 'dtype' : None})
    nose.tools.assert_equal(ndimage.label(mask)[1],
                            cs_graph_components(graph)[0])
开发者ID:poolio,项目名称:scikit-learn,代码行数:11,代码来源:test_image.py


示例6: test_tvdenoise

def test_tvdenoise():
    lena = scipy.lena().astype(np.float)
    noisy_lena = lena + 0.2 * lena.std()*np.random.randn(*lena.shape)
    denoised_lena_W5 = tvdenoise(lena, niter=10, W=5.0)
    denoised_lena_W50 = tvdenoise(lena, niter=10, W=50.)
    grad_mag_lena = gradient_magnitude(lena).sum()
    grad_mag_noisy = gradient_magnitude(noisy_lena).sum()
    grad_mag_denoised_W5 = gradient_magnitude(denoised_lena_W5).sum()
    grad_mag_denoised_W50 = gradient_magnitude(denoised_lena_W50).sum()
    assert grad_mag_noisy > max(grad_mag_denoised_W5, grad_mag_denoised_W50)
    assert grad_mag_denoised_W5 > grad_mag_denoised_W50
    assert grad_mag_denoised_W5 > 0.5 * grad_mag_lena 
开发者ID:maelp,项目名称:scikits.image,代码行数:12,代码来源:test_tvdenoise.py


示例7: main

def main():
    x=lena()
    
    a=int(32)
    
    y=wv.misc.per_ext2d(x,a)
    z=wv.misc.symm_ext2d(x,a)
    
    plt.subplot(2,1,1)
    plt.imshow(y,cmap=cm.gray)
    plt.xlabel('Periodic Ext')
    
    plt.subplot(2,1,2)
    plt.imshow(z,cmap=cm.gray)
    plt.xlabel('Symmetric Ext')
    
    plt.show()
开发者ID:iklaush,项目名称:wavepy,代码行数:17,代码来源:exttest2.py


示例8: unsupervisedLearningTest02

def unsupervisedLearningTest02():
	from sklearn import cluster
	import scipy as sp
	import numpy as np
	try:
		lena = sp.lena()
	except AttributeError:
		from scipy import misc
		lena = misc.lena()

	X = lena.reshape((-1, 1))
	k_means = cluster.KMeans(n_clusters = 5, n_init = 1)
	k_means.fit(X)
	values = k_means.cluster_centers_.squeeze()
	labels = k_means.labels_
	lena_compressed = np.choose(labels, values)
	lena_compressed.shape = lena.shape

	print lena_compressed
开发者ID:hyliu0302,项目名称:scikit-learn-notes,代码行数:19,代码来源:myScikitLearnFcns.py


示例9: test_tv_denoise_2d

 def test_tv_denoise_2d(self):
     """
     Apply the TV denoising algorithm on the lena image provided
     by scipy
     """
     import scipy
     # lena image
     lena = scipy.lena().astype(np.float)
     # add noise to lena
     lena += 0.5 * lena.std()*np.random.randn(*lena.shape)
     # denoise
     denoised_lena = F.tv_denoise(lena, weight=60.0)
     # which dtype?
     assert denoised_lena.dtype in [np.float, np.float32, np.float64]
     from scipy import ndimage
     grad = ndimage.morphological_gradient(lena, size=((3,3)))
     grad_denoised = ndimage.morphological_gradient(denoised_lena, size=((3,3)))
     # test if the total variation has decreased
     assert np.sqrt((grad_denoised**2).sum()) < np.sqrt((grad**2).sum()) / 2
     denoised_lena_int = F.tv_denoise(lena.astype(np.int32), \
             weight=60.0, keep_type=True)
     assert denoised_lena_int.dtype is np.dtype('int32')
开发者ID:GaelVaroquaux,项目名称:scikits.image,代码行数:22,代码来源:test_tv_denoise.py


示例10: range

import numpy as np
import scipy
import matplotlib.pyplot as plt

lena = scipy.lena()
lena[10:13, 20:23]
lena[100:120] = 255

lx, ly = lena.shape
X, Y = np.ogrid[0:lx, 0:ly]
mask = (X - lx/2)**2 + (Y - ly/2)**2 > lx*ly/4
lena[mask] = 0
lena[range(400), range(400)] = 255

plt.figure(figsize=(3,3))
plt.axes([0, 0, 1, 1])
plt.imshow(lena, cmap=plt.cm.gray)
plt.axis('off')

plt.show()
开发者ID:VirgileFritsch,项目名称:scipy-lecture-notes,代码行数:20,代码来源:plot_numpy_array.py


示例11: assert

                  #type_converters = converters.blitz
                 )
           
      assert(not context.has_key("__inlineargs__"))
      context["__inlineargs__"]=args
      context["__inlinekwargs__"]=kwargs
      r= eval("inline(*__inlineargs__,**__inlinekwargs__)",globals(),context)
      context["__inlineargs__"]=None
      return r
    return fct
    

if __name__=="__main__":
  import time
  st=time.clock()
  lena=scipy.lena().reshape(512,512,1).repeat(3,axis=2).astype(numpy.uint8).swapaxes(0,1).copy('F')
  cimg_code("do_test( a_array );",
"""
#include <CImg.h>
using namespace cimg_library;

int do_test(PyArrayObject * npimg ) {
   assert(npimg->nd==3);
   printf("%p %d x %d x %d\\n",npimg->data,npimg->dimensions[1],npimg->dimensions[0],npimg->dimensions[2]);
    CImg<unsigned char> image(npimg->data,npimg->dimensions[1],npimg->dimensions[0],1,npimg->dimensions[2]), visu(500,400,1,3,0);
    image=image.blur(2.5);
    return 0;
}
""",True)(a=lena)
  print "done in ",time.clock()-st, "seconds";
开发者ID:matthiascy,项目名称:pycvf,代码行数:30,代码来源:cimg.py


示例12:

import numpy as np
import scipy as sp

import harris

im = sp.lena()
harrisim = harris.compute_harris_response(im)
filtered_coords = harris.get_harris_points(harrisim, 6)
harris.plot_harris_points(im, filtered_coords)

开发者ID:NelleV,项目名称:ROVAR,代码行数:9,代码来源:test_lena.py


示例13: lena

                   0 0 x x x 0 0
                   0 0 0 x 0 0 0 
                   0 0 0 0 0 0 0
    
    Once you have a numpy expression that works correctly, time it
    using time.time (or time.clock on windows).
    
    Use scipy.weave.blitz to run the same expression.  Again time it.
    
    Compare the speeds of the two function and calculate the speed-up 
    (numpy_time/weave_time).
    
    Plot two images that result from the two approaches and compare them.
"""

import time
from numpy import empty, float64
from scipy import lena
from scipy import weave
from matplotlib.pylab import subplot, imshow, title, show, gray, figure

img = lena()

expr = """avg_img =(  img[1:-1 ,1:-1]  # center
                    + img[ :-2 ,1:-1]  # left
                    + img[2:   ,1:-1]  # right
                    + img[1:-1 , :-2]  # top
                    + img[1:-1 ,2:  ]  # bottom
                    ) / 5.0"""

开发者ID:DivyaShanmugam,项目名称:pydanny-event-notes,代码行数:29,代码来源:blitz_inline_compare.py


示例14: test_write_frame_image

def test_write_frame_image():
    img = Image.fromarray(lena()).convert("RGB")
    b = TheoraEncoder(VIDEO_DIR+"/b.ogv", img.size[0], img.size[1])
    b.write_frame_image(img)
开发者ID:certik,项目名称:python-theora,代码行数:4,代码来源:test_encoder.py


示例15:

import scipy as sp
import numpy as np
import pylab as pl

l = sp.lena()
l_ = l[235:235+153, 205:162+205]

t = pl.imread('tarek.jpg')
t = t[::-1, ...]
t_ = t.sum(axis=-1)

################################################################################
pl.figure(0, figsize=(12, 4.5))
pl.gray()
pl.clf()
pl.axes([0, 0, 0.3, 1])
pl.imshow(t_.copy())
pl.axis('off')
pl.axes([0.33, 0, 0.3, 1])
pl.imshow(l_.copy())
pl.axis('off')

t_ = t_.astype(np.float)
t_ /= t_.max()

l_ = l_.astype(np.float)
l_ /= l_.max()

pl.axes([0.66, 0, 0.3, 1])
pl.imshow(t_ + l_)
pl.axis('off')
开发者ID:GaelVaroquaux,项目名称:scipy-tutorials,代码行数:31,代码来源:interlude.py


示例16: time

print __doc__

from time import time

import pylab as pl
import scipy as sp
import numpy as np

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d

###############################################################################
# Load Lena image and extract patches

lena = sp.lena() / 256.0

# downsample for higher speed
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
lena /= 4.0
height, width = lena.shape

# Distort the right half of the image
print 'Distorting image...'
distorted = lena.copy()
distorted[:, height / 2:] += 0.075 * np.random.randn(width, height / 2)

# Extract all clean patches from the left half of the image
print 'Extracting clean patches...'
t0 = time()
patch_size = (7, 7)
开发者ID:Yangqing,项目名称:scikit-learn,代码行数:31,代码来源:plot_image_denoising.py


示例17: min

                shift = numpy.zeros(2)
                count = min(paths[key]["count"])
                for npa in paths[key]["shift"]:
                    shift += npa
                d.append({"path": key, "shift": shift, "count": count})
            d.sort(mysort)
        return d


if __name__ == "__main__":
    # lena1 = numpy.zeros((512, 512))
    # scipy.lena()
    # lena1[100:150, 160:200] = 1
    ao1, ao2 = 5, 3
    print ("Absolute offset is %s,%s" % (ao1, ao2))
    lena1 = scipy.lena()
    lena2 = numpy.zeros_like(lena1)
    lena2[ao1:, ao2:] = lena1[:-ao1, :-ao2]
    #    out = Visual_SURF(lena1, lena2)
    """
    out = feature.surf2(lena1, lena2, verbose=1)
    print "clacShift", calcShift(out)

#    raw_input("Enter to continue")
    out2 = feature.reduce_orsa(out)
#    print "SURF: %s keypoint; ORSA -> %s" % (out.shape[0], out2.shape[0])
#    out = out2
    print "*" * 80
#    out = feature.sift2(lena1, lena2, verbose=1)
    out = Visual_SIFT(lena1, lena2)
    print "clacShift", calcShift(out)
开发者ID:srrcboy,项目名称:imageAlignment,代码行数:31,代码来源:test.py


示例18:

import numpy as np
import scipy as sp
import pylab as pl
from scipy import ndimage, signal
l = sp.lena()[200:-140, 190:-150]
l = l/float(l.max())
pl.figure(figsize=(12, 4.5))
pl.axes([0.15, 0, 0.3, 1])
pl.gray()
pl.imshow(l, vmin=0, vmax=1)
pl.title('Ground truth')
pl.axis('off')
pl.axes([0.5, 0, 0.3, 1])
g = l + .13*np.random.normal(size=l.shape)
pl.imshow(g, vmin=0, vmax=1)
pl.title('Noisy observation')
pl.axis('off')

开发者ID:GaelVaroquaux,项目名称:scipy-tutorials,代码行数:17,代码来源:demo_filtering1.py


示例19: __init__

#CV_FOURCC('U', '2', '6', '3') = H263 codec
#CV_FOURCC('I', '2', '6', '3') = H263I codec
#CV_FOURCC('F', 'L', 'V', '1') = FLV1 codec


class CvVideoWriter:
   def __init__(self,fname,fps = 25,frameW = 320,frameH  = 200, codec="MJPG", isColor=1):
       self.writer=cvCreateVideoWriter(fname,
                                       CV_FOURCC(codec[0],codec[1],codec[2],codec[3]),
                                       fps,
                                       cvSize(frameW,frameH),
                                       isColor)
   def push(self,img):
        cvWriteFrame(self.writer,img.copy('C')) 
   def __del__(self):
       pass
        #cvReleaseVideoWriter(self.writer)

# import pycvf.lib.video.cvvideowriter as cvw; cvw.CvVideoWriter("/tmp/out1.avi")
if __name__ == "__main__":
  import numpy,scipy
  from pycvf.lib.graphics.rescale import Rescaler2d
  rsc=Rescaler2d((320,200))
  c=CvVideoWriter("/tmp/test.mpg")
  ib=scipy.lena().reshape((512,512,1)).repeat(3,axis=2)
  for i in range(100):
    print "Frame ",i
    ib[:,:,0]=i*3
    c.push(rsc.process(ib).astype(numpy.uint8))
  
  
开发者ID:matthiascy,项目名称:pycvf,代码行数:29,代码来源:videowriter_opencv.py


示例20: _downsampled_lena

def _downsampled_lena():
    lena = sp.lena()
    lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
    lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
    lena /= 16.0
    return lena
开发者ID:vincentschut,项目名称:scikit-learn,代码行数:6,代码来源:test_image.py



注:本文中的scipy.lena函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python scipy.linspace函数代码示例发布时间:2022-05-27
下一篇:
Python scipy.kron函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap