本文整理汇总了Python中scipy._lib.six.xrange函数的典型用法代码示例。如果您正苦于以下问题:Python xrange函数的具体用法?Python xrange怎么用?Python xrange使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xrange函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, xi, yi, axis=0):
_Interpolator1DWithDerivatives.__init__(self, xi, yi, axis)
self.xi = np.asarray(xi)
self.yi = self._reshape_yi(yi)
self.n, self.r = self.yi.shape
c = np.zeros((self.n+1, self.r), dtype=self.dtype)
c[0] = self.yi[0]
Vk = np.zeros((self.n, self.r), dtype=self.dtype)
for k in xrange(1,self.n):
s = 0
while s <= k and xi[k-s] == xi[k]:
s += 1
s -= 1
Vk[0] = self.yi[k]/float(factorial(s))
for i in xrange(k-s):
if xi[i] == xi[k]:
raise ValueError("Elements if `xi` can't be equal.")
if s == 0:
Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
else:
Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
c[k] = Vk[k-s]
self.c = c
开发者ID:dyao-vu,项目名称:meta-core,代码行数:25,代码来源:polyint.py
示例2: _setdiag
def _setdiag(self, values, k):
M, N = self.shape
if k < 0:
if values.ndim == 0:
# broadcast
max_index = min(M+k, N)
for i in xrange(max_index):
self[i - k, i] = values
else:
max_index = min(M+k, N, len(values))
if max_index <= 0:
return
for i,v in enumerate(values[:max_index]):
self[i - k, i] = v
else:
if values.ndim == 0:
# broadcast
max_index = min(M, N-k)
for i in xrange(max_index):
self[i, i + k] = values
else:
max_index = min(M, N-k, len(values))
if max_index <= 0:
return
for i,v in enumerate(values[:max_index]):
self[i, i + k] = v
开发者ID:7924102,项目名称:scipy,代码行数:26,代码来源:base.py
示例3: __add__
def __add__(self, other):
# First check if argument is a scalar
if isscalarlike(other):
res_dtype = upcast_scalar(self.dtype, other)
new = dok_matrix(self.shape, dtype=res_dtype)
# Add this scalar to every element.
M, N = self.shape
for i in xrange(M):
for j in xrange(N):
aij = self.get((i, j), 0) + other
if aij != 0:
new[i, j] = aij
# new.dtype.char = self.dtype.char
elif isinstance(other, dok_matrix):
if other.shape != self.shape:
raise ValueError("matrix dimensions are not equal")
# We could alternatively set the dimensions to the largest of
# the two matrices to be summed. Would this be a good idea?
res_dtype = upcast(self.dtype, other.dtype)
new = dok_matrix(self.shape, dtype=res_dtype)
new.update(self)
for key in other.keys():
new[key] += other[key]
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = self.todense() + other
else:
return NotImplemented
return new
开发者ID:7924102,项目名称:scipy,代码行数:31,代码来源:dok.py
示例4: _evaluate_derivatives
def _evaluate_derivatives(self, x, der=None):
n = self.n
r = self.r
if der is None:
der = self.n
pi = np.zeros((n, len(x)))
w = np.zeros((n, len(x)))
pi[0] = 1
p = np.zeros((len(x), self.r))
p += self.c[0,np.newaxis,:]
for k in xrange(1,n):
w[k-1] = x - self.xi[k-1]
pi[k] = w[k-1]*pi[k-1]
p += pi[k,:,np.newaxis]*self.c[k]
cn = np.zeros((max(der,n+1), len(x), r), dtype=self.dtype)
cn[:n+1,:,:] += self.c[:n+1,np.newaxis,:]
cn[0] = p
for k in xrange(1,n):
for i in xrange(1,n-k+1):
pi[i] = w[k+i-1]*pi[i-1]+pi[i]
cn[k] = cn[k]+pi[i,:,np.newaxis]*cn[k+i]
cn[k] *= factorial(k)
cn[n,:,:] = 0
return cn[:der]
开发者ID:dyao-vu,项目名称:meta-core,代码行数:28,代码来源:polyint.py
示例5: __radd__
def __radd__(self, other):
# First check if argument is a scalar
if isscalarlike(other):
new = dok_matrix(self.shape, dtype=self.dtype)
# Add this scalar to every element.
M, N = self.shape
for i in xrange(M):
for j in xrange(N):
aij = self.get((i, j), 0) + other
if aij != 0:
new[i, j] = aij
elif isinstance(other, dok_matrix):
if other.shape != self.shape:
raise ValueError("matrix dimensions are not equal")
new = dok_matrix(self.shape, dtype=self.dtype)
new.update(self)
for key in other:
new[key] += other[key]
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = other + self.todense()
else:
return NotImplemented
return new
开发者ID:7924102,项目名称:scipy,代码行数:26,代码来源:dok.py
示例6: __add__
def __add__(self, other):
if isscalarlike(other):
res_dtype = upcast_scalar(self.dtype, other)
new = dok_matrix(self.shape, dtype=res_dtype)
# Add this scalar to every element.
M, N = self.shape
for key in itertools.product(xrange(M), xrange(N)):
aij = dict.get(self, (key), 0) + other
if aij:
new[key] = aij
# new.dtype.char = self.dtype.char
elif isspmatrix_dok(other):
if other.shape != self.shape:
raise ValueError("Matrix dimensions are not equal.")
# We could alternatively set the dimensions to the largest of
# the two matrices to be summed. Would this be a good idea?
res_dtype = upcast(self.dtype, other.dtype)
new = dok_matrix(self.shape, dtype=res_dtype)
dict.update(new, self)
with np.errstate(over='ignore'):
dict.update(new,
((k, new[k] + other[k]) for k in iterkeys(other)))
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = self.todense() + other
else:
return NotImplemented
return new
开发者ID:BranYang,项目名称:scipy,代码行数:30,代码来源:dok.py
示例7: extend
def extend(self, xi, yi, orders=None):
"""
Extend the PiecewisePolynomial by a list of points
Parameters
----------
xi : array_like
A sorted list of x-coordinates.
yi : list of lists of length N1
``yi[i]`` (if ``axis == 0``) is the list of derivatives known
at ``xi[i]``.
orders : int or list of ints, optional
A list of polynomial orders, or a single universal order.
"""
if self._y_axis == 0:
# allow yi to be a ragged list
for i in xrange(len(xi)):
if orders is None or _isscalar(orders):
self.append(xi[i],yi[i],orders)
else:
self.append(xi[i],yi[i],orders[i])
else:
preslice = (slice(None,None,None),) * self._y_axis
for i in xrange(len(xi)):
if orders is None or _isscalar(orders):
self.append(xi[i],yi[preslice + (i,)],orders)
else:
self.append(xi[i],yi[preslice + (i,)],orders[i])
开发者ID:JeongSeonGyo,项目名称:EnergyData,代码行数:29,代码来源:polyint.py
示例8: test_cascade
def test_cascade(self):
for J in xrange(1, 7):
for i in xrange(1, 5):
lpcoef = wavelets.daub(i)
k = len(lpcoef)
x, phi, psi = wavelets.cascade(lpcoef, J)
assert_(len(x) == len(phi) == len(psi))
assert_equal(len(x), (k - 1) * 2 ** J)
开发者ID:dyao-vu,项目名称:meta-core,代码行数:8,代码来源:test_wavelets.py
示例9: _get_arrayXarray
def _get_arrayXarray(self, row, col):
# inner indexing
i, j = map(np.atleast_2d, np.broadcast_arrays(row, col))
newdok = dok_matrix(i.shape, dtype=self.dtype)
for key in itertools.product(xrange(i.shape[0]), xrange(i.shape[1])):
v = dict.get(self, (i[key], j[key]), 0)
if v:
dict.__setitem__(newdok, key, v)
return newdok
开发者ID:Eric89GXL,项目名称:scipy,代码行数:10,代码来源:dok.py
示例10: test_correspond_2_and_up
def test_correspond_2_and_up(self):
# Tests correspond(Z, y) on linkage and CDMs over observation sets of
# different sizes.
for i in xrange(2, 4):
y = np.random.rand(i*(i-1)//2)
Z = linkage(y)
assert_(correspond(Z, y))
for i in xrange(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
Z = linkage(y)
assert_(correspond(Z, y))
开发者ID:alchemyst,项目名称:scipy,代码行数:11,代码来源:test_hierarchy.py
示例11: test_improvement
def test_improvement(self):
import time
start = time.time()
for i in xrange(100):
quad(self.lib.sin, 0, 100)
fast = time.time() - start
start = time.time()
for i in xrange(100):
quad(math.sin, 0, 100)
slow = time.time() - start
assert_(fast < 0.5*slow, (fast, slow))
开发者ID:dyao-vu,项目名称:meta-core,代码行数:11,代码来源:test_quadpack.py
示例12: piecefuncgen
def piecefuncgen(num):
Mk = order // 2 - num
if (Mk < 0):
return 0 # final function is 0
coeffs = [(1 - 2 * (k % 2)) * float(comb(order + 1, k, exact=1)) / fval
for k in xrange(Mk + 1)]
shifts = [-bound - k for k in xrange(Mk + 1)]
def thefunc(x):
res = 0.0
for k in range(Mk + 1):
res += coeffs[k] * (x + shifts[k]) ** order
return res
return thefunc
开发者ID:ElDeveloper,项目名称:scipy,代码行数:14,代码来源:bsplines.py
示例13: test_nd_simplex
def test_nd_simplex(self):
# simple smoke test: triangulate a n-dimensional simplex
for nd in xrange(2, 8):
points = np.zeros((nd+1, nd))
for j in xrange(nd):
points[j,j] = 1.0
points[-1,:] = 1.0
tri = qhull.Delaunay(points)
tri.vertices.sort()
assert_equal(tri.vertices, np.arange(nd+1, dtype=int)[None,:])
assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:])
开发者ID:1641731459,项目名称:scipy,代码行数:14,代码来源:test_qhull.py
示例14: _printresmat
def _printresmat(function, interval, resmat):
# Print the Romberg result matrix.
i = j = 0
print('Romberg integration of', repr(function), end=' ')
print('from', interval)
print('')
print('%6s %9s %9s' % ('Steps', 'StepSize', 'Results'))
for i in xrange(len(resmat)):
print('%6d %9f' % (2**i, (interval[1]-interval[0])/(2.**i)), end=' ')
for j in xrange(i+1):
print('%9f' % (resmat[i][j]), end=' ')
print('')
print('')
print('The final result is', resmat[i][j], end=' ')
print('after', 2**(len(resmat)-1)+1, 'function evaluations.')
开发者ID:ElDeveloper,项目名称:scipy,代码行数:15,代码来源:quadrature.py
示例15: test_vector
def test_vector(self):
xs = [0, 1, 2]
ys = np.array([[0, 1], [1, 0], [2, 1]])
P = BarycentricInterpolator(xs, ys)
Pi = [BarycentricInterpolator(xs, ys[:, i]) for i in xrange(ys.shape[1])]
test_xs = np.linspace(-1, 3, 100)
assert_almost_equal(P(test_xs), np.rollaxis(np.asarray([p(test_xs) for p in Pi]), -1))
开发者ID:BioSoundSystems,项目名称:scipy,代码行数:7,代码来源:test_polyint.py
示例16: test_is_valid_linkage_4_and_up
def test_is_valid_linkage_4_and_up(self):
# Tests is_valid_linkage(Z) on linkage on observation sets between
# sizes 4 and 15 (step size 3).
for i in xrange(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
Z = linkage(y)
assert_(is_valid_linkage(Z) == True)
开发者ID:alchemyst,项目名称:scipy,代码行数:7,代码来源:test_hierarchy.py
示例17: setUp
def setUp(self):
self.tck = splrep([0, 1, 2, 3, 4, 5], [0, 10, -1, 3, 7, 2], s=0)
self.test_xs = np.linspace(-1, 6, 100)
self.spline_ys = splev(self.test_xs, self.tck)
self.spline_yps = splev(self.test_xs, self.tck, der=1)
self.xi = np.unique(self.tck[0])
self.yi = [[splev(x, self.tck, der=j) for j in xrange(3)] for x in self.xi]
开发者ID:BioSoundSystems,项目名称:scipy,代码行数:7,代码来源:test_polyint.py
示例18: test_num_obs_linkage_4_and_up
def test_num_obs_linkage_4_and_up(self):
# Tests num_obs_linkage(Z) on linkage on observation sets between sizes
# 4 and 15 (step size 3).
for i in xrange(4, 15, 3):
y = np.random.rand(i*(i-1)//2)
Z = linkage(y)
assert_equal(num_obs_linkage(Z), i)
开发者ID:alchemyst,项目名称:scipy,代码行数:7,代码来源:test_hierarchy.py
示例19: test_exponential
def test_exponential(self):
degree = 5
p = approximate_taylor_polynomial(np.exp, 0, degree, 1, 15)
for i in xrange(degree + 1):
assert_almost_equal(p(0), 1)
p = p.deriv()
assert_almost_equal(p(0), 0)
开发者ID:BioSoundSystems,项目名称:scipy,代码行数:7,代码来源:test_polyint.py
示例20: test_call
def test_call(self):
poly = []
for n in xrange(5):
poly.extend([x.strip() for x in
("""
orth.jacobi(%(n)d,0.3,0.9)
orth.sh_jacobi(%(n)d,0.3,0.9)
orth.genlaguerre(%(n)d,0.3)
orth.laguerre(%(n)d)
orth.hermite(%(n)d)
orth.hermitenorm(%(n)d)
orth.gegenbauer(%(n)d,0.3)
orth.chebyt(%(n)d)
orth.chebyu(%(n)d)
orth.chebyc(%(n)d)
orth.chebys(%(n)d)
orth.sh_chebyt(%(n)d)
orth.sh_chebyu(%(n)d)
orth.legendre(%(n)d)
orth.sh_legendre(%(n)d)
""" % dict(n=n)).split()
])
olderr = np.seterr(all='ignore')
try:
for pstr in poly:
p = eval(pstr)
assert_almost_equal(p(0.315), np.poly1d(p)(0.315), err_msg=pstr)
finally:
np.seterr(**olderr)
开发者ID:alchemyst,项目名称:scipy,代码行数:29,代码来源:test_orthogonal.py
注:本文中的scipy._lib.six.xrange函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论