• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python hierarchy.dendrogram函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.cluster.hierarchy.dendrogram函数的典型用法代码示例。如果您正苦于以下问题:Python dendrogram函数的具体用法?Python dendrogram怎么用?Python dendrogram使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dendrogram函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: save_mat

def save_mat(c2map, filepath):
	mat = c2map['mat']
	fig = pylab.figure(figsize=(8,8))
	
	# Compute and plot first dendrogram.
	ax1 = fig.add_axes([0.09,0.1,0.2,0.6])
	Y = sch.linkage(mat, method='centroid')
	Z1 = sch.dendrogram(Y, orientation='right')
	ax1.set_xticks([])
	ax1.set_yticks([])

	# Compute and plot second dendrogram.
	ax2 = fig.add_axes([0.3,0.71,0.6,0.2])
	Y = sch.linkage(mat, method='single')
	Z2 = sch.dendrogram(Y)
	ax2.set_xticks([])
	ax2.set_yticks([])

	# Plot distance matrix.
	axmatrix = fig.add_axes([0.3,0.1,0.6,0.6])
	idx1 = Z1['leaves']
	idx2 = Z2['leaves']
	mat = mat[idx1,:]
	mat = mat[:,idx2]
	im = axmatrix.matshow(mat, aspect='auto', origin='lower', cmap=pylab.cm.YlGnBu)
	axmatrix.set_xticks([])
	axmatrix.set_yticks([])

	# Plot colorbar.
	axcolor = fig.add_axes([0.91,0.1,0.02,0.6])
	pylab.colorbar(im, cax=axcolor)

	fig.savefig(filepath)
开发者ID:andpromobile,项目名称:csipb-jamu-prj,代码行数:33,代码来源:c2map.py


示例2: plot_corr_dendrogram

def plot_corr_dendrogram(
    corr, cluster_method='weighted', **dendrogram_kwargs):
    """
    Plot a correlation matrix as a dendrogram (on the current axes).

    Parameters
    ----------
    corr : numpy ndarray or pandas DataFrame
    cluster_method : String
        Method to use to amalgomate clusters.
        Either 'single', 'complete', 'average', or 'weighted'.
        See scipy.cluster.hierarchy.linkage for details.
    dendrogram_kwargs : Additional kwargs
        Pass to the call of scipy.cluster.hierarchy.dendrogram()
    """
    # Convert to a DataFrame in all cases.
    if not isinstance(corr, pd.DataFrame):
        names = range(len(corr))
    else:
        names = corr.index.tolist()
        corr = corr.values

    dist = (1 - corr) / 2.
    Z = linkage(squareform(dist), method=cluster_method)

    dendrogram(Z, labels=names, **dendrogram_kwargs)
开发者ID:ycstone,项目名称:rosetta,代码行数:26,代码来源:eda.py


示例3: make_dendrogram_w

def make_dendrogram_w(LinkageMatrix, GraphFolder, 
                    Method, Metric, CorrCoeff, Labels, Colors,
                    DisplayLevels):
    import matplotlib
    if not os.path.exists(GraphFolder):
        os.makedirs(GraphFolder)
    plt.figure(figsize=(12,24))
    plt.title("Plays clustered by topic probabilities", fontsize=14)
    #plt.ylabel("Parameters: "+Method+" method, "+Metric+" metric. CorrCoeff: "+str(CorrCoeff)+".")
    plt.xlabel("Distance\n(Parameters: "+Method+" / "+Metric+")", fontsize=12)
    matplotlib.rcParams['lines.linewidth'] = 1.2
    dendrogram(
        LinkageMatrix,
        p = DisplayLevels,
        truncate_mode="level",
        color_threshold = 30,
        show_leaf_counts = True,
        no_labels = False,
        orientation="left",
        labels = Labels, 
        leaf_rotation = 0,  # rotates the x axis labels
        leaf_font_size = 4,  # font size for the x axis labels
        )
    #plt.show()
    plt.savefig(GraphFolder+"dendrogram_"+Method+"-"+Metric+"-"+str(DisplayLevels)+".png", dpi=300, figsize=(12,18), bbox_inches="tight")
    plt.close()
开发者ID:cligs,项目名称:projects,代码行数:26,代码来源:cluster.py


示例4: cengci

def cengci(data):
    X = data
    distMatrix = pdist(X)
    Z = linkage(X, 'ward')
    c, coph_dists = cophenet(Z, pdist(X))
    print c
    dendrogram(Z)
开发者ID:chenhang,项目名称:chenhang.github.io,代码行数:7,代码来源:sklearn_kmeans.py


示例5: HierarchicalCluster

def HierarchicalCluster(A):
    #see http://stackoverflow.com/questions/2982929/plotting-results-of-hierarchical-clustering-ontop-of-a-matrix-of-data-in-python
    Corr = np.corrcoef(A.T)
    fig = plt.figure(figsize=(8,8))
    ax1 = fig.add_axes([0.09,0.1,0.2,0.6])
    Y = hrc.linkage(Corr, method='centroid')
    Z1 = hrc.dendrogram(Y, orientation='right')
    ax1.set_xticks([])
    ax1.set_yticks([])

    ax2 = fig.add_axes([0.3,0.71,0.6,0.2])
    Y = hrc.linkage(Corr, method='centroid')
    Z2 = hrc.dendrogram(Y)
    ax2.set_xticks([])
    ax2.set_yticks([])

    axmatrix = fig.add_axes([0.3,0.1,0.6,0.6])
    idx1 = Z1['leaves']
    idx2 = Z2['leaves']
    Corr = Corr[idx1, :]
    Corr = Corr[:, idx2]
    im = axmatrix.matshow(Corr, aspect='auto', origin='lower')

    axcolor = fig.add_axes([0.91,0.1,0.02,0.6])
    pylab.colorbar(im, cax=axcolor)
    fig.show()
    fig.savefig('dendrogram.png')
开发者ID:izkula,项目名称:matrix-viz,代码行数:27,代码来源:npz_to_csv.py


示例6: dendrogram_pdf

def dendrogram_pdf(args, dm, leafLabels):
        from scipy.cluster.hierarchy import linkage, dendrogram
        #from hcluster import squareform, linkage, dendrogram
        #from numpy import array
        #import pylab
        import matplotlib
        matplotlib.use('PDF')   # pdf
        import matplotlib.pyplot as plt
        #condensed_dm = distance.squareform( dm )
        #plt.figure(figsize=(100,10))
        leafNodes = len(leafLabels)
        fig = plt.figure(figsize=(14,(leafNodes*0.25)), dpi=100)
        #fig = plt.figure(figsize=(14,100), dpi=10)
        #fig.set_size_inches(14,(leafNodes*0.2))
        #ax = fig.add_subplot(111)
        #plt.tight_layout()
        #ax.set_title('Dendrogram: '+args.metric.capitalize())
        # padding:
        #plt.subplots_adjust(bottom=0.25)
        #plt.subplots_adjust(top=0.05)
        plt.subplots_adjust(left=0.01)
        plt.subplots_adjust(right=0.65)
        plt.subplots_adjust(top=0.7)
        plt.subplots_adjust(bottom=0.25)
        #leafLabels = [ '\n'.join(l.split('--')) for l in leafLabels ]


        linkage_matrix = linkage(dm,  method="average" )
        dendrogram(linkage_matrix,  color_threshold=1,  leaf_font_size=6,  orientation='right', labels=leafLabels)
        image_file = os.path.join(args.basedir, 'tmp',args.prefix+'_dendrogram.pdf')

        plt.savefig(image_file)
开发者ID:avoorhis,项目名称:vamps-node.js,代码行数:32,代码来源:distance_and_ordination.py


示例7: plot_dendrogram

 def plot_dendrogram(self, method = 'complete', metric = 'euclidean'):
     import scipy.cluster.hierarchy as sch
     """ Plot dendogram
     Parameters
     ------------
     method: str
         method to use for scipy.cluster.hierarachy.linkage.  Default
         is 'complete'
     
     metric: str
         metric to use for scipy.cluster.hierarachy.linkage.  Default
         is 'euclidean'
         
     Returns
     ------------
         Dendrogram
     """
     # Get par names
     pars = self.df.index.values
     
     D = np.abs(self.array)
     Y = sch.linkage(D, method=method, metric = metric)
     plt.figure()
     sch.dendrogram(Y, labels = pars)
     plt.tight_layout()
开发者ID:aleaf,项目名称:pest_tools,代码行数:25,代码来源:cor.py


示例8: ben_gen

def ben_gen():

    for num_data, hier_num, grey_option in itertools.product(
        np.arange(len(data)), np.arange(len(desired_hier)), [0, 1]
    ):

        hierarchy_structure = all_clustering_data[num_data][grey_option][hier_num]
        plt.figure()
        dendrogram(hierarchy_structure, color_threshold=1.6)
        # plt.ylim(0,5)
        plt.title(data_names[num_data] + grey_output + names_distances[hier_num + 1])

        yield "okay"
        plt.close()

        plt.figure()
        dendrogram(hierarchy_structure, color_threshold=1.6)
        plt.ylim(0, ylimit)
        plt.title(data_names[num_data] + grey_output + names_distances[hier_num + 1])

        yield "okay"
        plt.close()
        # predict_average = fcluster(hierarchy_structure,1.6,criterion='distance')

    raise StopIteration
开发者ID:benjaminleroy,项目名称:lbnl_project,代码行数:25,代码来源:cluster_hierarchy.py


示例9: plot_corr_dendrogram

def plot_corr_dendrogram(
    corr, cluster_method='weighted', **dendrogram_kwargs):
    """
    Plot a correlation matrix as a dendrogram (on the current axes).
    Uses scipy.cluster.hierarchy.linkage
    to compute clusters based on distance between samples.  
    
    Since correlation is passed in, this correlation must be converted to a
    distance (using distance_fun).  The default distance_fun makes highly
    correlated points have low distance, and vice versa.

    Parameters
    ----------
    corr : numpy ndarray or pandas DataFrame
        corr[i, j] is the correlation (should be between -1 and 1) of samples
        i and j.
    cluster_method : String
        Method to use to amalgomate clusters.
        Either 'single', 'complete', 'average', or 'weighted'.
        See scipy.cluster.hierarchy.linkage for details.
    dendrogram_kwargs : Additional kwargs
        Pass to the call of scipy.cluster.hierarchy.dendrogram()
    """
    # Convert to a DataFrame in all cases.
    if not isinstance(corr, pd.DataFrame):
        names = range(len(corr))
    else:
        names = corr.index.tolist()
        corr = corr.values

    dist = (1 - corr) / 2.
    Z = linkage(squareform(dist), method=cluster_method)

    dendrogram(Z, labels=names, **dendrogram_kwargs)
开发者ID:ANB2,项目名称:rosetta,代码行数:34,代码来源:eda.py


示例10: hierarchical_clustering

 def hierarchical_clustering(self, data = 'open_shut'):
     '''
     Cluster the clusters in the cluster list based on the method.
     '''
     feature_list = []
     
     for cluster in self.cluster_list:
         if data == 'open_shut':
             feature_list.append([np.log(cluster._get_mean_open()), 
                                  np.log(cluster._get_mean_shut())])
         elif data == 'popen':
             feature_list.append([cluster.popen,])
         elif data == 'amp':
             feature_list.append([cluster.mean_amp,])
     
     Z = linkage(feature_list, 'ward')
     plt.figure(figsize=(25, 10))
     plt.title('Hierarchical Clustering Dendrogram')
     plt.xlabel('sample index')
     plt.ylabel('distance')
     dendrogram(
         Z,
         leaf_rotation=90.,  # rotates the x axis labels
         leaf_font_size=8.,  # font size for the x axis labels
     )
     plt.show()
开发者ID:xiki-tempula,项目名称:sc_py,代码行数:26,代码来源:batch_analysis.py


示例11: plot_dendrogram

def plot_dendrogram(model, **kwargs):
    '''
    taken from online example in sklearn fork
    turns hierarchical model into dendrogram
    '''
    from scipy.cluster.hierarchy import dendrogram
    from sklearn.datasets import load_iris
    from sklearn.cluster import AgglomerativeClustering
    from sklearn.metrics import pairwise_distances
    from matplotlib import pyplot as plt
    # Children of hierarchical clustering
    children = model.children_

    # Distances between each pair of children
    # Since we don't have this information, we can use a uniform one for plotting
    distance = np.arange(children.shape[0])

    # The number of observations contained in each cluster level
    no_of_observations = np.arange(2, children.shape[0]+2)

    # Create linkage matrix and then plot the dendrogram
    linkage_matrix = np.column_stack([children, distance, no_of_observations]).astype(float)

    # Plot the corresponding dendrogram
    dendrogram(linkage_matrix, **kwargs)
开发者ID:andrewdjones,项目名称:YJaMP_Analysis,代码行数:25,代码来源:yjampClus.py


示例12: create_dendrogram

def create_dendrogram(cds, clusters=None, filename=None):    
    
    
    num_subj = cds.shape[0]
    num_voxels = cds.shape[1]
    
    if clusters == None:
        clusters = cds.a.event_bounds
        
    num_scenes = len(clusters)
    ds_list = np.zeros((num_subj, num_voxels, num_scenes-1))
    prev_cutoff = 0
    ds_tup = ()
    
    # average correlations for each scene
    for i in range(num_scenes - 1):
        ds_list[:,:,i] = np.mean(cds.samples[:,:,clusters[i]:clusters[i+1]], axis=2)
       
    Z = hierarchy.linkage(np.mean(ds_list, axis=0).T, metric='correlation')
        
    fig = plt.figure(figsize=(14,8))
    hierarchy.dendrogram(Z)
    plt.show()
    if filename is not None:
        fig.savefig(filename)
开发者ID:Zpeugh,项目名称:WagnerLab,代码行数:25,代码来源:dataset_utilities.py


示例13: cal_idf_overlap

def cal_idf_overlap():
    list_subj = utils.list_subject

    ls_distance_final = []
    ls_distance_row = []
    #print len(list_att)
    stop_words = get_stop_words('en')
    tmp_corpus = []
    for i in range(len(list_subj)):
        item = str(list_subj[i]).split(" ")
        for token in item:
            if token in stop_words:
                pass
            else:
                tmp_corpus.append(token)
    #print "corpus", corpus

    length = len(list_subj)
    for i in range(0, length):
        if i == 500 or i == 1000 or i == 1500:
            print i
        for j in range(0, length):
            print i, j
            idf_instance = IDF.IDF(str(list_subj[i]),str(list_subj[j]), tmp_corpus)
            distance = idf_instance.cal_overlap()
            ls_distance_row.append(distance)
        ls_distance_final.append(ls_distance_row)
        ls_distance_row = []

    myarray = np.asarray(ls_distance_final)
    print myarray
    Z = linkage(myarray, "ward")
    thefile = open('/Users/Aaron/test.txt', 'w')
    for item in Z:
        thefile.write("%s\n" % item)

    plt.figure(figsize=(25, 10))
    plt.title('Hierarchical Clustering Dendrogram')
    plt.xlabel('sample index')
    plt.ylabel('distance')
    dendrogram(
         Z,
         leaf_rotation=90.,  # rotates the x axis labels
         leaf_font_size=8.,  # font size for the x axis labels
     )
    plt.show()

    plt.title('Hierarchical Clustering Dendrogram (truncated)')
    plt.xlabel('sample index')
    plt.ylabel('distance')
    dendrogram(
        Z,
        truncate_mode='lastp',  # show only the last p merged clusters
        p=30,  # show only the last p merged clusters
        show_leaf_counts=True,  # otherwise numbers in brackets are counts
        leaf_rotation=90.,
        leaf_font_size=12.,
        show_contracted=True,  # to get a distribution impression in truncated branches
    )
    plt.show()
开发者ID:ycraaron,项目名称:CanonicalizationOKB,代码行数:60,代码来源:hac_idf_overlap.py


示例14: computeLinkage

    def computeLinkage( self, printDendogram = False ):
        # generate two clusters: a with 100 points, b with 50:
        #np.random.seed(4711)  # for repeatability of this tutorial
        #a = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[100,])
        #b = np.random.multivariate_normal([0, 20], [[3, 1], [1, 4]], size=[50,])
        #X = np.concatenate((a, b),)
        self.X = array( self.buildingAverages.values() )
        #print X  # 150 samples with 2 dimensions
        #plt.scatter(X[:,0], X[:,1])
        #plt.show()

        # generate the linkage matrix
        self.Z = linkage(self.X, 'ward')

        c, coph_dists = cophenet(self.Z, pdist(self.X))

        if (printDendogram):
            # calculate full dendrogram
            plt.figure(figsize=(25, 10))

            plt.title('Hierarchical Clustering Dendrogram (truncated)')
            plt.xlabel('Dendogram of Dartmouth campus buildings clusters')
            plt.ylabel('distance')
            dendrogram(
                self.Z,
                #truncate_mode='lastp',  # show only the last p merged clusters
                #p=20,  # show only the last p merged clusters
                show_leaf_counts=True,  # otherwise numbers in brackets are counts
                leaf_rotation=90.,
                leaf_font_size=12.,
                show_contracted=True,  # to get a distribution impression in truncated branches
            )
            plt.show()

        return self.Z
开发者ID:nbizja,项目名称:master_thesis,代码行数:35,代码来源:TopologyGenerator.py


示例15: dendrogram

def dendrogram(data, vectorizer, method="ward", color_threshold=1, size=10, filename=None):
    '"median","centroid","weighted","single","ward","complete","average"'
    if hasattr(data, '__iter__'):
        iterable = data
    else:
        raise Exception('ERROR: Input must be iterable')
    import itertools
    iterable_1, iterable_2 = itertools.tee(iterable)
    # get labels
    labels = []
    for graph in iterable_2:
        label = graph.graph.get('id', None)
        if label:
            labels.append(label)
    # transform input into sparse vectors
    X = vectorizer.transform(iterable_1)

    # labels
    if not labels:
        labels = [str(i) for i in range(X.shape[0])]

    # embed high dimensional sparse vectors in 2D
    from sklearn import metrics
    from scipy.cluster.hierarchy import linkage, dendrogram
    D = metrics.pairwise.pairwise_distances(X)
    Z = linkage(D, method=method)
    plt.figure(figsize=(size, size))
    dendrogram(Z, color_threshold=color_threshold, labels=labels, orientation='right')
    if filename is not None:
        plt.savefig(filename)
    else:
        plt.show()
开发者ID:bgruening,项目名称:EDeN,代码行数:32,代码来源:display.py


示例16: hier_cluster_and_display

def hier_cluster_and_display(dist_matrix, leaf_labels, colorthresh, to_cluster = 'all', m = 'complete', 
			imgsize = 25, fontsize=16):
	'''
		clusters domains using hierarchical clustering and displays dendrogram.
		arguments:
			dist_matrix : distance matrix between domains
			leaf_labels: list of domain names
			colorthresh: threshold to color dendrogram nodes
			to_cluster (list of ints, optional, default='all'):
				if 'all', clusters all domains
				else clusters only domains corresponding to indices in list
			m (default='complete'): method used in hierarchical clustering.
				'single' and 'average' also work; as in scipy.
			imgsize (default=25): size of image (imgsize,imgsize) of dendrogram to produce.
			fontsize (default=16): font size of dendrogram leaf labels.
		returns:
			result as outputted by scipy's hierarchical clustering.
	'''
	if to_cluster == 'all':
		cluster_indices = range(dist_matrix.shape[0])
	else:
		cluster_indices = to_cluster
	plt.figure(figsize=(imgsize,imgsize))
	result = hier_cluster(dist_matrix,cluster_indices,m)
	dendrogram(result,orientation='left',
		labels=leaf_labels[cluster_indices], color_threshold=colorthresh, leaf_font_size=fontsize)

	return result
开发者ID:tisjune,项目名称:presidential-addresses,代码行数:28,代码来源:cluster_utils.py


示例17: labeledDendrogram

def labeledDendrogram(dmat, labels, method='complete', cmap=None):
    """Perform hierarchical clustering on df columns and plot square heatmap of pairwise distances"""
    """TODO: add tick labels, with sparsity option"""

    Z = sch.linkage(dmat, method=method)
    den = sch.dendrogram(Z, color_threshold=np.inf, no_plot=True)

    figh = plt.gcf()
    figh.clf()

    denAX = figh.add_axes([0.32, 0.05, 0.6, 0.9])
    cbAX =  figh.add_axes([0.25, 0.05, 0.05, 0.9])

    plt.sca(denAX)
    denD = sch.dendrogram(Z, color_threshold=np.inf, orientation='left')
    ind = denD['leaves']
    clean_axis(denAX)
    
    cbSE, lookup = mapColors2Labels(labels, cmap=cmap, returnLookup=True)
    axi = cbAX.imshow([[x] for x in cbSE.iloc[ind].values],
                      interpolation='nearest',
                      aspect='auto',
                      origin='lower')
    clean_axis(cbAX)

    colorLegend(list(lookup.values()), list(lookup.keys()), axh=denAX)
开发者ID:agartland,项目名称:utils,代码行数:26,代码来源:hclusterplot.py


示例18: show

    def show(self,
             distance_metric='euclidean',
             linkage_method='ward'):
        '''階層的クラスタリング表示関数
        '''

        #: 指定の手法で階層的クラスタリング
        cluster = hierarchy.linkage(self.hofstede_data,
                                    method=linkage_method,
                                    metric=distance_metric)

        #: 樹形図作成
        hierarchy.dendrogram(cluster,
                             orientation='left',
                             color_threshold=150,
                             labels=numpy.array(self.data_name),
                             leaf_font_size=18)
        
        #: 日本を赤くするためのおまじない
        ax = plt.gca()
        xlbls = ax.get_ymajorticklabels()
        for lbl in xlbls:
            if lbl.get_text() == self.JAPAN_NAME:
                lbl.set_color("r")

        self.cluster = cluster
        plt.show()
开发者ID:anaguma2261,项目名称:Hofstede_analysis,代码行数:27,代码来源:hierarchical_clustering.py


示例19: clustering

def clustering(X, labels, algo='hcluster', n_clusters=5, figname='cluster_result.png'):
    """ Clustering data.
        Params:
            X: ndarray of n x d size (n samples, d features)
            labels: labels of samples, for visualizing result.
            algo: specify clustering algorithms, e.g., "hcluster", "kmeans"
            n_clusters: #.of.cluster in case of kmeans
            figname: file name to save figure
    """
    assert algo in ['hcluster', 'kmeans'], "Invalid algorithm!"
    
    if algo == 'hcluster':
        linkage_mat = hcluster(X, metric='correlation', method='average')
        fig = plt.figure(figsize=(30,20), dpi=100)
        fig.clf()
        hier.dendrogram(linkage_mat, labels=labels, leaf_rotation=90, leaf_font_size=20)
        plt.savefig(figname)
    else:
        labels = np.asarray(labels)
        result = kmeans(X, n_clusters=n_clusters)
        for cid in xrange(n_clusters):
            print 'Cluster %d:' %(cid+1)
            for a in labels[result == cid]:
                print a.encode('utf-8')
            print '-'*30
开发者ID:ntduong,项目名称:data-science-newbie,代码行数:25,代码来源:cluster_articles.py


示例20: _draw_dendrogram

def _draw_dendrogram(axes, Z, labels=None):
    """Draw the given linkage information as a dendrogram on the given Axes
    object. Change the drawing parameters so that the dendrogram will blend
    nicely into the figure showing multiple dendrograms.
    
    Arguments:
    axes -- matplotlib.axes.Axes object where to draw the plot
    Z -- numpy.ndarray in the format as specified in the
        scipy.cluster.hierarchy.linkage's docstring
    
    Keyword arguments:
    labels --  list or tuple (optional) where i-th value is the text to put
        under the i-th leaf node
    
    """
    # set current axes instance
    plt.sca(axes)
    # draw the dendrogram
    dendrogram(Z, labels=labels, orientation="left")
    # remove x-axis labels
    axes.set_xticks(())
    # remove the black border around axes
    for spine in axes.spines.itervalues():
        spine.set_visible(False)
    # decrease the font size of y tick labels
    for ytl in axes.get_yticklabels():
        ytl.set_fontsize("small")
开发者ID:adgress,项目名称:PythonFramework,代码行数:27,代码来源:plotting.py



注:本文中的scipy.cluster.hierarchy.dendrogram函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python hierarchy.fcluster函数代码示例发布时间:2022-05-27
下一篇:
Python hierarchy.cophenet函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap