本文整理汇总了Python中scipy.fftpack.rfft函数的典型用法代码示例。如果您正苦于以下问题:Python rfft函数的具体用法?Python rfft怎么用?Python rfft使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了rfft函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: iff_filter
def iff_filter(sig, scale, plot_show = 0):
order = max(sig.size*scale,90)
#order = 80
# Extend signal on both sides for removing boundary effect in convolution
sig_extend = np.ones(sig.size+int(order/2)*2)
sig_extend[int(order/2):(sig.size+int(order/2))] = sig
sig_extend[0:int(order/2)] = sig[(sig.size-int(order/2)):sig.size]
sig_extend[(sig.size+int(order/2)):sig_extend.size] = sig[0:int(order/2)]
# convolve with hamming window and normalize
smooth_sig = np.convolve(sig_extend,np.hamming(order),'same')
smooth_sig = smooth_sig[int(order/2):(sig.size+int(order/2))]
smooth_sig = np.amax(sig)/np.amax(smooth_sig)*smooth_sig
# Plot signal for debug
if(plot_show == 1):
fig, ax = plt.subplots(ncols=2)
ax[0].plot(sig)
ax[0].plot(smooth_sig,'-r')
ax[0].plot(med_sig,'black')
ax[1].loglog(rfft(sig))
ax[1].loglog(rfft(smooth_sig),'-r')
ax[1].loglog(rfft(med_sig),'black')
plt.show()
return smooth_sig
开发者ID:liuyifly06,项目名称:bubblecount,代码行数:27,代码来源:curvature.py
示例2: subtract_original_signal_from_picked_signal
def subtract_original_signal_from_picked_signal(self, original_signal, picked_signal):
# Note this function assumes that the signals are aligned for the starting point!
fft_length = max(len(original_signal), len(picked_signal))
original_f_domain = rfft(original_signal, n= fft_length)
picked_f_domain = rfft(picked_signal, n= fft_length)
assert len(original_f_domain) == len(picked_f_domain)
difference_signal = picked_f_domain - original_f_domain
return irfft(difference_signal)
开发者ID:asafazaria,项目名称:AudioIdentificatoin,代码行数:8,代码来源:AudioFilesPreprocessor.py
示例3: test_definition
def test_definition(self):
x = [1,2,3,4,1,2,3,4]
y = rfft(x)
y1 = direct_rdft(x)
assert_array_almost_equal(y,y1)
x = [1,2,3,4,1,2,3,4,5]
y = rfft(x)
y1 = direct_rdft(x)
assert_array_almost_equal(y,y1)
开发者ID:mullens,项目名称:khk-lights,代码行数:9,代码来源:test_basic.py
示例4: test_random_real
def test_random_real(self):
for size in [1, 51, 111, 100, 200, 64, 128, 256, 1024]:
x = random([size]).astype(self.rdt)
y1 = irfft(rfft(x))
y2 = rfft(irfft(x))
assert_equal(y1.dtype, self.rdt)
assert_equal(y2.dtype, self.rdt)
assert_array_almost_equal(y1, x, decimal=self.ndec, err_msg="size=%d" % size)
assert_array_almost_equal(y2, x, decimal=self.ndec, err_msg="size=%d" % size)
开发者ID:shantanusharma,项目名称:scipy,代码行数:9,代码来源:test_basic.py
示例5: test_random_real
def test_random_real(self):
for size in [1,51,111,100,200,64,128,256,1024]:
x = random([size]).astype(self.rdt)
y1 = irfft(rfft(x))
y2 = rfft(irfft(x))
self.failUnless(y1.dtype == self.rdt,
"Output dtype is %s, expected %s" % (y1.dtype, self.rdt))
self.failUnless(y2.dtype == self.rdt,
"Output dtype is %s, expected %s" % (y2.dtype, self.rdt))
assert_array_almost_equal (y1, x, decimal=self.ndec)
assert_array_almost_equal (y2, x, decimal=self.ndec)
开发者ID:donaldson-lab,项目名称:Gene-Designer,代码行数:11,代码来源:test_basic.py
示例6: test_size_accuracy
def test_size_accuracy(self):
# Sanity check for the accuracy for prime and non-prime sized inputs
if self.rdt == np.float32:
rtol = 1e-5
elif self.rdt == np.float64:
rtol = 1e-10
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size).astype(self.rdt)
y = irfft(rfft(x))
_assert_close_in_norm(x, y, rtol, size, self.rdt)
y = rfft(irfft(x))
_assert_close_in_norm(x, y, rtol, size, self.rdt)
开发者ID:shantanusharma,项目名称:scipy,代码行数:14,代码来源:test_basic.py
示例7: sineFit
def sineFit(self,xReal,yReal):
N=len(xReal)
OFFSET = (yReal.max()+yReal.min())/2.
yhat = fftpack.rfft(yReal-OFFSET)
idx = (yhat**2).argmax()
freqs = fftpack.rfftfreq(N, d = (xReal[1]-xReal[0])/(2*np.pi))
frequency = freqs[idx]/(2*np.pi) #Convert angular velocity to freq
amplitude = (yReal.max()-yReal.min())/2.0
phase=0#.5*np.pi*((yReal[0]-offset)/amplitude)
guess = [amplitude, frequency, phase,0]
try:
(amplitude, frequency, phase,offset), pcov = optimize.curve_fit(self.sineFunc, xReal, yReal-OFFSET, guess)
offset+=OFFSET
ph = ((phase)*180/(np.pi))
if(frequency<0):
#print 'negative frq'
return False
if(amplitude<0):
ph-=180
if(ph<0):ph = (ph+720)%360
freq=1e6*abs(frequency)
amp=abs(amplitude)
pcov[0]*=1e6
#print pcov
if(abs(pcov[-1][0])>1e-6):
False
return [amp, freq, offset,ph]
except:
return False
开发者ID:jithinbp,项目名称:vLabtool-v0,代码行数:32,代码来源:analyticsClass.py
示例8: do_gen_random
def do_gen_random(peakAmpl, durationInMSec, samplingRate, fHigh, stereo=True):
samples = durationInMSec * samplingRate / 1000
result = np.zeros(samples * 2 if stereo else samples, dtype=np.int16)
randomSignal = np.random.normal(scale = peakAmpl * 2 / 3, size=samples)
fftData = fft.rfft(randomSignal)
freqSamples = samples/2
iHigh = freqSamples * fHigh * 2 / samplingRate + 1
#print len(randomSignal), len(fftData), fLow, fHigh, iHigh
if iHigh > freqSamples - 1:
iHigh = freqSamples - 1
fftData[0] = 0 # DC
for i in range(iHigh, freqSamples - 1):
fftData[ 2 * i + 1 ] = 0
fftData[ 2 * i + 2 ] = 0
if (samples - 2 *freqSamples) != 0:
fftData[samples - 1] = 0
filteredData = fft.irfft(fftData)
#freq = np.linspace(0.0, samplingRate, num=len(fftData), endpoint=False)
#plt.plot(freq, abs(fft.fft(filteredData)))
#plt.plot(filteredData)
#plt.show()
if stereo:
for i in range(len(filteredData)):
result[2 * i] = filteredData[i]
result[2 * i + 1] = filteredData[i]
else:
for i in range(len(filteredData)):
result[i] = filteredData[i]
return result
开发者ID:10114395,项目名称:android-5.0.0_r5,代码行数:30,代码来源:gen_random.py
示例9: show_magnitued
def show_magnitued(file_name):
# read audio samples
input_data = read(file_name)
audio = input_data[1]
print(audio)
# apply a Hanning window
window = hann(1024)
audio = audio[0:1024] * window
# fft
mags = abs(rfft(audio))
# convert to dB
mags = 20 * scipy.log10(mags)
# normalise to 0 dB max
# mags -= max(mags)
file = open('tmp.txt', 'w')
for i in mags:
file.write(str(i) + '\n')
file.close()
# plot
plt.plot(mags)
# label the axes
plt.ylabel("Magnitude (dB)")
plt.xlabel("Frequency Bin")
# set the title
plt.title(file_name + " Spectrum")
plt.show()
开发者ID:sookool99,项目名称:MIREX_2015,代码行数:26,代码来源:audoPlotting.py
示例10: bandpass
def bandpass(x, sampling_rate, f_min, f_max, verbose=0):
"""
xf = bandpass(x, sampling_rate, f_min, f_max)
Description
--------------
Phasen-treue mit der rueckwaerts-vorwaerts methode!
Function bandpass-filters a signal without roleoff. The cutoff frequencies,
f_min and f_max, are sharp.
Arguements
--------------
x: input timeseries
sampling_rate: equidistant sampling with sampling frequency sampling_rate
f_min, f_max: filter constants for lower and higher frequency
Returns
--------------
xf: the filtered signal
"""
x, N = np.asarray(x, dtype=float), len(x)
t = np.arange(N)/np.float(sampling_rate)
xn = detrend_linear(x)
del t
yn = np.concatenate((xn[::-1], xn)) # backwards forwards array
f = np.float(sampling_rate)*np.asarray(np.arange(2*N)/2, dtype=int)/float(2*N)
s = rfft(yn)*(f>f_min)*(f<f_max) # filtering
yf = irfft(s) # backtransformation
xf = (yf[:N][::-1]+yf[N:])/2. # phase average
return xf
开发者ID:jusjusjus,项目名称:KHT_PRL2016,代码行数:34,代码来源:kht.py
示例11: rfft_freq
def rfft_freq(data, window_func=signal.hanning):
w = window_func(data.size)
sig_fft = fftpack.rfft(data * w)
freq = fftpack.rfftfreq(sig_fft.size, d=SAMPLING_INTERVAL)
freq = freq[range(data.size / 2)]
sig_fft = sig_fft[range(data.size / 2)]
return sig_fft, freq
开发者ID:bsuper,项目名称:veloplot,代码行数:7,代码来源:featurizer.py
示例12: fft
def fft(self):
t_plot = np.arange(0,self.T,self.dt)
print len(t_plot)
amplitude_record = []
for i in range(int(self.T/self.dt)):
amplitude_record.append(self.string[i][20])
print len(amplitude_record)
'''
plt.subplot(121)
plt.title('String signal versus time')
plt.ylabel('Signal (arbitrary units)')
plt.xlabel('Time (s)')
plt.plot(t_plot,amplitude_record)
'''
freq = fftfreq(len(amplitude_record), d=self.dt)
freq = np.array(abs(freq))
f_signal = rfft(amplitude_record)
f_signal = np.array(f_signal**2)
#plt.subplot(122)
plt.title('Power spectra')
plt.ylabel('Power (arbitrary units)')
plt.xlabel('Frequency (Hz)')
plt.xlim(2000,8000)
plt.plot(freq,f_signal,label = 'epsilon = '+str(self.e))
return 0
开发者ID:chenfeng2013301020145,项目名称:computational-physics_N2013301020145,代码行数:25,代码来源:chapter6_6.16.py
示例13: select_events
def select_events(nevents,nfeatures):
global groups
fftbins = 8192
featurewidth = 16
print "Selecting %d random spectral features.." % nfeatures
feature_bins = np.random.randint(featurewidth/2,(fftbins/8),nfeatures)
print "Selecting %d random audio events.." % nevents
events = np.random.randint(0,len(faudio)-grain_mid,nevents)
# Initialise features array with the first variable as index
features = np.zeros((nfeatures+1,nevents))
features[0] = np.arange(0,nevents)
print "Computing audio event spectrograms.."
# For each event..
for i in range(0,nevents):
# Calculate spectrogram for the event
_fftevent = faudio[events[i]:min(events[i]+grain_mid,len(faudio))]*sig.hann(grain_mid)
mags = abs(rfft(_fftevent,fftbins))
mags = 20*log10(mags) # dB
mags -= max(mags) # normalise to 0dB max
# Calculate each feature for this event
for j in range(0,nfeatures):
features[j+1][i] = abs(np.mean(abs(mags[(feature_bins[j]-featurewidth/2):(feature_bins[j]+featurewidth/2)])))
print "Clustering events with K-Means algorithm.."
groups = kmeans(np.transpose(features[1:,:]),tracks,minit='points',iter=30)[1]
return [events,groups]
开发者ID:alexobviously,项目名称:Dismantler,代码行数:25,代码来源:main.py
示例14: compute_fft
def compute_fft(fs, ir):
import scipy.signal, numpy
from scipy import fftpack
# creating asymmetric bartlett window for spectral analysis
window_bart = scipy.signal.bartlett(len(ir), sym=False)
# windowing the impulse response
ir_wind = ir * window_bart
# computing fft
sig_fft = fftpack.rfft(ir_wind)
# setting length of fft
n = sig_fft.size
timestep = 1 / float(fs)
# generating frequencies according to fft points
freq = fftpack.rfftfreq(n, d=timestep)
# normalizing fft
sys_fft = abs(sig_fft) / n
# TODO FFT computing
return sys_fft, freq
开发者ID:b-k-schneider,项目名称:AMG-2025-Software,代码行数:26,代码来源:meas_calls.py
示例15: calculate_attributes
def calculate_attributes(self):
source = self.source
freq = self.frequency
sampling_rate = float(source.sampling_rate)
fft_sampling_rate = sampling_rate/float(source.fft_step_size)
window_length = float(source.fft_window_size)/sampling_rate
# FIXME real time should be passed in as an extra field
self.start = window_length
if self.first_frame > 0:
self.start += (self.first_frame - 1)/fft_sampling_rate
self.length = window_length
if len(freq) > 1:
# if 'length' not in self.__dict__:
# print self.__dict__
# print self.__dict__['length']
self.length += (len(freq) - 1)/fft_sampling_rate
# print self.length
self.end = self.start + self.length
for k in ('frequency','amplitude'):
a = getattr(self,k)
setattr(self, k+'_min', min(a))
setattr(self, k+'_max', max(a))
setattr(self, k+'_mean', sum(a)/len(a))
freq_window = 2 # seconds
freq_fft_size = 128
resampled_freq = resample(freq, freq_window*freq_fft_size/fft_sampling_rate, 'sinc_fastest') # FIXME truncate array?
self.freq_fft = abs(rfft(resampled_freq,n=freq_fft_size,overwrite_x=True))[1:]
开发者ID:andrew-taylor,项目名称:Bowerbird,代码行数:27,代码来源:database.py
示例16: fft_filter
def fft_filter(x, fs, band=(9, 14)):
w = fftfreq(x.shape[0], d=1. / fs * 2)
f_signal = rfft(x)
cut_f_signal = f_signal.copy()
cut_f_signal[(w < band[0]) | (w > band[1])] = 0
cut_signal = irfft(cut_f_signal)
return cut_signal
开发者ID:nikolaims,项目名称:nfb,代码行数:7,代码来源:mu_5days.py
示例17: test_size_accuracy
def test_size_accuracy(self):
# Sanity check for the accuracy for prime and non-prime sized inputs
if self.rdt == np.float32:
rtol = 1e-5
elif self.rdt == np.float64:
rtol = 1e-10
for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
np.random.seed(1234)
x = np.random.rand(size).astype(self.rdt)
y = irfft(rfft(x))
self.failUnless(np.linalg.norm(x - y) < rtol*np.linalg.norm(x),
(size, self.rdt))
y = rfft(irfft(x))
self.failUnless(np.linalg.norm(x - y) < rtol*np.linalg.norm(x),
(size, self.rdt))
开发者ID:wrbrooks,项目名称:VB3,代码行数:16,代码来源:test_basic.py
示例18: fftresample
def fftresample(S, npoints, reflect=False, axis=0):
"""
Resample a signal using discrete fourier transform. The signal
is transformed in the fourier domain and then padded or truncated
to the correct sampling frequency. This should be equivalent to
a sinc resampling.
"""
from scipy.fftpack import rfft, irfft
from dlab.datautils import flipaxis
# this may be considerably faster if we do the memory operations in C
# reflect at the boundaries
if reflect:
S = nx.concatenate([flipaxis(S,axis), S, flipaxis(S,axis)],
axis=axis)
npoints *= 3
newshape = list(S.shape)
newshape[axis] = int(npoints)
Sf = rfft(S, axis=axis)
Sr = (1. * npoints / S.shape[axis]) * irfft(Sf, npoints, axis=axis, overwrite_x=1)
if reflect:
return nx.split(Sr,3)[1]
else:
return Sr
开发者ID:melizalab,项目名称:dlab,代码行数:26,代码来源:dlab-attic.py
示例19: fft_filter
def fft_filter(x, fs, band=(9, 14)):
w = fftpack.rfftfreq(x.shape[0], d=1. / fs)
f_signal = fftpack.rfft(x, axis=0)
cut_f_signal = f_signal.copy()
cut_f_signal[(w < band[0]) | (w > band[1])] = 0
cut_signal = fftpack.irfft(cut_f_signal, axis=0)
return cut_signal
开发者ID:nikolaims,项目名称:nfb,代码行数:7,代码来源:__init__.py
示例20: get_power2
def get_power2(x, fs, band, n_sec=5):
n_steps = int(n_sec * fs)
w = fftpack.fftfreq(n_steps, d=1. / fs * 2)
print(len(range(0, x.shape[0] - n_steps, n_steps)))
pows = [2*np.sum(fftpack.rfft(x[k:k+n_steps])[(w > band[0]) & (w < band[1])]**2)/n_steps
for k in range(0, x.shape[0] - n_steps, n_steps)]
return np.array(pows)
开发者ID:nikolaims,项目名称:nfb,代码行数:7,代码来源:__init__.py
注:本文中的scipy.fftpack.rfft函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论