• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python interpolate.griddata函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.interpolate.griddata函数的典型用法代码示例。如果您正苦于以下问题:Python griddata函数的具体用法?Python griddata怎么用?Python griddata使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了griddata函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: undistort_image

    def undistort_image(self, img, Kundistortion=None):
        """
        Transform grayscale image such that radial distortion is removed.

        :param img: input image
        :type img: np.ndarray, shape=(n, m) or (n, m, 3)
        :param Kundistortion: camera matrix for undistorted view, None for self.K
        :type Kundistortion: array-like, shape=(3, 3)
        :return: transformed image
        :rtype: np.ndarray, shape=(n, m) or (n, m, 3)
        """
        if Kundistortion is None:
            Kundistortion = self.K
        if self.calibration_type == 'opencv':
            return cv2.undistort(img, self.K, self.opencv_dist_coeff, newCameraMatrix=Kundistortion)
        elif self.calibration_type == 'opencv_fisheye':
                return cv2.fisheye.undistortImage(img, self.K, self.opencv_dist_coeff, Knew=Kundistortion)
        else:
            xx, yy = np.meshgrid(np.arange(img.shape[1]), np.arange(img.shape[0]))
            img_coords = np.array([xx.ravel(), yy.ravel()])
            y_l = self.undistort(img_coords, Kundistortion)
            if img.ndim == 2:
                return griddata(y_l.T, img.ravel(), (xx, yy), fill_value=0, method='linear')
            else:
                channels = [griddata(y_l.T, img[:, :, i].ravel(), (xx, yy), fill_value=0, method='linear')
                            for i in xrange(img.shape[2])]
                return np.dstack(channels)
开发者ID:smidm,项目名称:camera.py,代码行数:27,代码来源:camera.py


示例2: rasterize

def rasterize(geometry, points):
    """ Create array. """
    envelope = geometry.GetEnvelope()
    # px, py, pz = points.transpose()
    x1 = 4 * math.floor(envelope[0] / 4)
    y1 = 4 * math.floor(envelope[2] / 4)
    x2 = 4 * math.ceil(envelope[1] / 4)
    y2 = 4 * math.ceil(envelope[3] / 4)

    geo_transform = x1, A, 0, y2, 0, D
    array = np.full((4 * (y2 - y1), 4 * (x2 - x1)), NO_DATA_VALUE, 'f4')
    grid = tuple(np.mgrid[y2 + D / 2:y1 + D / 2:D,
                          x1 + A / 2:x2 + A / 2:A][::-1])

    # interpolate
    args = points[:, :2], points[:, 2], grid
    linear = interpolate.griddata(*args, method='linear')
    nearest = interpolate.griddata(*args, method='nearest')
    array = np.where(np.isnan(linear), nearest, linear).astype('f4')

    # clip and return
    kwargs = {
        'array': array[np.newaxis],
        'projection': PROJECTION,
        'no_data_value': NO_DATA_VALUE,
        'geo_transform': geo_transform,
    }
    clip(kwargs=kwargs, geometry=geometry)
    return kwargs
开发者ID:nens,项目名称:raster-tools,代码行数:29,代码来源:roof.py


示例3: get_GridFSim

def get_GridFSim(x1, y1, x2, y2, img1):
    ''' Calculate estimated ice drift on first image based on feature tracking vectors'''
    
    # # initial drift inter-/extrapolation
    # linear triangulation
    x1Grid, y1Grid = np.meshgrid(range(img1.shape[1]), range(img1.shape[0]))
    x2GridFSim = griddata(np.array([y1, x1]).T, x2, np.array([y1Grid, x1Grid]).T, method='linear').T
    y2GridFSim = griddata(np.array([y1, x1]).T, y2, np.array([y1Grid, x1Grid]).T, method='linear').T
    # linear fit for entire grid
    A = np.vstack([np.ones(len(x1)), x1, y1 ]).T
    # find B in x2 = B * [x1, y1]
    Bx = np.linalg.lstsq(A, x2)[0]
    By = np.linalg.lstsq(A, y2)[0]
    # calculate simulated x2sim = B * [x1, y1]
    x1GridF = x1Grid.flatten()
    y1GridF = y1Grid.flatten()
    A = np.vstack([np.ones(len(x1GridF)), x1GridF, y1GridF]).T
    x2GridFSim_lf = np.dot(A, Bx).reshape(img1.shape)
    y2GridFSim_lf = np.dot(A, By).reshape(img1.shape)
    # fill NaN with lf
    gpi = np.isnan(x2GridFSim)
    x2GridFSim[gpi] = x2GridFSim_lf[gpi]
    y2GridFSim[gpi] = y2GridFSim_lf[gpi]

    return x2GridFSim, y2GridFSim
开发者ID:nansencenter,项目名称:sea_ice_drift,代码行数:25,代码来源:ft_mcc_functions.py


示例4: bin_confint_lookup

def bin_confint_lookup(pc, nsamp, ci = .05):
  """Return the confidence interval from the lookup table.
  Inputs:
    pc - array (get back several cis) or single value (get back one ci) of percent corrects
    nsamp - number of trials used to obtain each pc
    ci - confidence level (e.g. 0.01, 0.05)
    bootstraps - number of bootstraps to use
    use_table - if true then use a precomputed table instead of doing the bootstraps

  Output:
    3xN array - first row is pc
                last two rows are lower and upper ci as expected by pylab.errorbar
  """
  points = ci_table['points']
  values_lo = ci_table['values_lo']
  values_high = ci_table['values_high']

  from scipy.interpolate import griddata
  if pylab.isscalar(pc):
    pc = pylab.array([pc])
    nsamp = pylab.array([nsamp])
  ci_a = pylab.ones(pc.size)*ci
  xi = pylab.array((pc,nsamp,ci_a)).T

  low_ci = griddata(points, values_lo, xi, method='linear')
  high_ci = griddata(points, values_high, xi, method='linear')

  return pylab.array((pc,low_ci,high_ci))
开发者ID:kghose,项目名称:neurapy,代码行数:28,代码来源:stats.py


示例5: make_grid

def make_grid(points, values, grid, method=None):
    """Abstraction of two different versions of griddata

    points: Nx2 array of points where data is known
    values: corresponding values
    grid: Tuple of X, Y - Regular grid (e.g. obtained from meshgrid)
    """


    if griddata_version == 'scipy':
        if method is None:
            m = 'cubic'
        else:
            m = method

        return griddata(points, values, grid, method=m)
    elif griddata_version == 'pylab':
        if method is None:
            m = 'nn'
        else:
            m = method

        x = points[:,0]
        y = points[:,0]
        z = values
        X, Y = grid
        return griddata(x, y, z, X, Y, interp=m)
开发者ID:jj0hns0n,项目名称:impactmap,代码行数:27,代码来源:utilities.py


示例6: plot_QU_gd

def plot_QU_gd(x, y, Q, U, irad, Req):
    """ using griddata 
    """
    fig = _plt.figure()
    lins, cols = (1, 2)
    gs = _gridspec.GridSpec(lins, cols)

    axq = _plt.subplot(gs[0, 0])  
    axu = _plt.subplot(gs[0, 1])  

    xmin = _np.min(x)/Req
    xmax = _np.max(x)/Req
    ymin = _np.min(y)/Req
    ymax = _np.max(y)/Req
    xx, yy = _np.meshgrid(_np.linspace(xmin, xmax, 32), 
        _np.linspace(ymin, ymax, 32)[::-1])
    yo = y*_np.cos(irad)
    q = _interpolate.griddata( _np.array([x, yo]).T/Req, Q, 
        _np.array([xx.flatten(), yy.flatten()]).T )
    u = _interpolate.griddata( _np.array([x, yo]).T/Req, U, 
        _np.array([xx.flatten(), yy.flatten()]).T )

    axq.imshow(q.reshape(32, 32), origin='lower', extent=[xmin, xmax, 
        ymin, ymax])
    axu.imshow(u.reshape(32, 32), origin='lower', extent=[xmin, xmax, 
        ymin, ymax])
    return fig, [axq, axu]
开发者ID:danmoser,项目名称:pyhdust,代码行数:27,代码来源:singscat.py


示例7: mesh2grid

def mesh2grid(v, mesh):
    """ Interpolates from an unstructured coordinates (mesh) to a structured 
        coordinates (grid)
    """
    x = mesh[:,0]
    z = mesh[:,1]
    lx = x.max() - x.min()
    lz = z.max() - z.min()
    nn = v.size

    nx = np.around(np.sqrt(nn*lx/lz))
    nz = np.around(np.sqrt(nn*lz/lx))
    dx = lx/nx
    dz = lz/nz

    # construct structured grid
    x = np.linspace(x.min(), x.max(), nx)
    z = np.linspace(z.min(), z.max(), nz)
    X, Z = np.meshgrid(x, z)
    grid = stack(X.flatten(), Z.flatten())

    # interpolate to structured grid
    V = _interp.griddata(mesh, v, grid, 'linear')

    # workaround edge issues
    if np.any(np.isnan(V)):
        W = _interp.griddata(mesh, v, grid, 'nearest')
        for i in np.where(np.isnan(V)):
            V[i] = W[i]

    V = np.reshape(V, (nz, nx))
    return V, grid
开发者ID:HongjianFang,项目名称:seisflows,代码行数:32,代码来源:array.py


示例8: test_imshow_heatmap

def test_imshow_heatmap():
    from scipy.interpolate import griddata
    from matplotlib import pyplot as plt

    mesh3D = mesh(200)
    mesh2D = proj_to_2D(mesh3D)

    data = np.zeros((3,3))
    data[0,1] += 2

    vals = np.exp(log_dirichlet_density(mesh3D,2.,data=data.sum(0)))
    temp = log_censored_dirichlet_density(mesh3D,2.,data=data)
    censored_vals = np.exp(temp - temp.max())

    xi = np.linspace(-1,1,1000)
    yi = np.linspace(-0.5,1,1000)

    plt.figure()
    plt.imshow(griddata((mesh2D[:,0],mesh2D[:,1]),vals,(xi[None,:],yi[:,None]),method='cubic'))
    plt.axis('off')
    plt.title('uncensored likelihood')

    plt.figure()
    plt.imshow(griddata((mesh2D[:,0],mesh2D[:,1]),censored_vals,(xi[None,:],yi[:,None]),method='cubic'))
    plt.axis('off')
    plt.title('censored likelihood')
开发者ID:HIPS,项目名称:pgmult,代码行数:26,代码来源:dirichlet.py


示例9: plot

 def plot(x,y,field,filename,c=200):
     plt.figure()
     # define grid.
     xi = np.linspace(min(x),max(x),100)
     yi = np.linspace(min(y),max(y),100)
     # grid the data.
     si_lin = griddata((x, y), field, (xi[None,:], yi[:,None]), method='linear')
     si_cub = griddata((x, y), field, (xi[None,:], yi[:,None]), method='linear')
     print np.min(field)
     print np.max(field)
     plt.subplot(211)
     # contour the gridded data, plotting dots at the randomly spaced data points.
     CS = plt.contour(xi,yi,si_lin,c,linewidths=0.5,colors='k')
     CS = plt.contourf(xi,yi,si_lin,c,cmap=plt.cm.jet)
     plt.colorbar() # draw colorbar
     # plot data points.
     #    plt.scatter(x,y,marker='o',c='b',s=5)
     plt.xlim(min(x),max(x))
     plt.ylim(min(y),max(y))
     plt.title('Lineaarinen interpolointi')
     #plt.tight_layout()
     plt.subplot(212)
     # contour the gridded data, plotting dots at the randomly spaced data points.
     CS = plt.contour(xi,yi,si_cub,c,linewidths=0.5,colors='k')
     CS = plt.contourf(xi,yi,si_cub,c,cmap=plt.cm.jet)
     plt.colorbar() # draw colorbar
     # plot data points.
     #    plt.scatter(x,y,marker='o',c='b',s=5)
     plt.xlim(min(x),max(x))
     plt.ylim(min(y),max(y))
     plt.title('Kuubinen interpolointi')
     plt.savefig(filename)
开发者ID:adesam01,项目名称:FEMTools,代码行数:32,代码来源:h6.py


示例10: interpolateData

def interpolateData(binaryDataFile):
    file = open(binaryDataFile, 'rb')
    if os.name == 'nt':
        rawTimeHistory = numpy.array(pickle.load(file, encoding='latin1')).transpose()
        rawStressHistory = numpy.array(pickle.load(file, encoding='latin1')).transpose()
        rawStrainHistory = numpy.array(pickle.load(file, encoding='latin1')).transpose()
    elif os.name == 'posix':
        rawTimeHistory = numpy.array(pickle.load(file)).transpose()
        rawStressHistory = numpy.array(pickle.load(file)).transpose()
        rawStrainHistory = numpy.array(pickle.load(file)).transpose()
    
    timeHistory = numpy.linspace(0, simulationTime, numberOfSteps+1)
    stressHistory = numpy.empty([3, numberOfSteps+1]);
    strainHistory = numpy.empty([3, numberOfSteps+1]);
    for i in range(3):
        stressHistory[i, :] = griddata(rawTimeHistory, rawStressHistory[i], timeHistory)
        strainHistory[i, :] = griddata(rawTimeHistory, rawStrainHistory[i], timeHistory)
    stressHistory = stressHistory.transpose()
    strainHistory = strainHistory.transpose()
    
    with open('output.dat', 'w') as f:
        f.write('time S11 S22 S12 LE11 LE22 LE12\n')
        for i in range(len(timeHistory)):
            f.write(str(timeHistory[i])+' ')
            for j in range(len(stressHistory[i])):
                f.write(str(stressHistory[i][j])+' ')
            for j in range(len(strainHistory[i])):
                f.write(str(strainHistory[i][j])+' ')
            f.write('\n')
开发者ID:yetisir,项目名称:Up-Frac,代码行数:29,代码来源:interpolateData.py


示例11: __init__

    def __init__(self, vmec_file, ntheta=None, nzeta=None, nr=32, nz=32):
        # Only needed here
        from scipy.interpolate import griddata, RegularGridInterpolator

        self.read_vmec_file(vmec_file, ntheta, nzeta)

        self.nr = nr
        self.nz = nz

        # Make a new rectangular grid in (R,Z)
        self.r_1D = np.linspace(self.r_stz.min(), self.r_stz.max(), nr)
        self.z_1D = np.linspace(self.z_stz.min(), self.z_stz.max(), nz)
        self.R_2D, self.Z_2D = np.meshgrid(self.r_1D, self.z_1D, indexing='ij')

        # First, interpolate the magnetic field components onto (R,Z)
        self.br_rz = np.zeros( (nr, nz, self.nzeta) )
        self.bz_rz = np.zeros( (nr, nz, self.nzeta) )
        self.bphi_rz = np.zeros( (nr, nz, self.nzeta) )
        # No need to interpolate in zeta, so do this one slice at a time
        for k, (br, bz, bphi, r, z) in enumerate(zip(self.br.T, self.bz.T, self.bphi.T, self.r_stz.T, self.z_stz.T)):
            points = np.column_stack( (r.flatten(), z.flatten()) )
            self.br_rz[...,k] = griddata(points, br.flatten(), (self.R_2D, self.Z_2D),
                                         method='linear', fill_value=0.0)
            self.bz_rz[...,k] = griddata(points, bz.flatten(), (self.R_2D, self.Z_2D),
                                         method='linear', fill_value=0.0)
            self.bphi_rz[...,k] = griddata(points, bphi.flatten(), (self.R_2D, self.Z_2D),
                                           method='linear', fill_value=1.0)

        # Now we have a regular grid in (R,Z,phi) (as zeta==phi), so
        # we can get an interpolation function in 3D
        points = ( self.r_1D, self.z_1D, self.zeta )

        self.br_interp = RegularGridInterpolator(points, self.br_rz, bounds_error=False, fill_value=0.0)
        self.bz_interp = RegularGridInterpolator(points, self.bz_rz, bounds_error=False, fill_value=0.0)
        self.bphi_interp = RegularGridInterpolator(points, self.bphi_rz, bounds_error=False, fill_value=1.0)
开发者ID:boutproject,项目名称:BOUT-dev,代码行数:35,代码来源:field.py


示例12: get_apriori

    def get_apriori(self, latres=0.25, lonres=0.3125):
        '''
        Read GC HCHO sigma shape factor and regrid to lat/lon res.
        temporal resolution is one month
        inputs:
            latres, lonres for resolution of GC 2x2.5 hcho columns to be regridded onto
        '''
        assert False, "Method is old and wrong currently"
        # new latitude longitude we interpolate to.
        newlats= np.arange(-90,90, latres) + latres/2.0
        newlons= np.arange(-180,180, lonres) + lonres/2.0

        # Mesh[lat,lon]
        mlons,mlats = np.meshgrid(self.lons,self.lats)
        mnewlons,mnewlats = np.meshgrid(newlons,newlats)

        ## Get sigma apriori and regrid it
        #
        newS_s = np.zeros([72,len(newlats),len(newlons)])
        newSigma = np.zeros([72,len(newlats),len(newlons)])

        # interpolate at each pressure level...
        for ii in range(72):
            newS_s[ii,:,:] = griddata( (mlats.ravel(), mlons.ravel()),
                                       self.Shape_s[ii,:,:].ravel(),
                                       (mnewlats, mnewlons),
                                       method='nearest')
            newSigma[ii,:,:]=griddata( (mlats.ravel(), mlons.ravel()),
                                     self.sigmas[ii,:,:].ravel(),
                                     (mnewlats, mnewlons),
                                     method='nearest')

        # return the normalised sigma apriori used to recalculate AMF
        return newS_s, newlats, newlons, newSigma
开发者ID:jibbals,项目名称:OMI_regridding,代码行数:34,代码来源:classes.old.gchcho.py


示例13: autocorr

def autocorr(
    A, B, pointsA, pointsB, nregrid, rrange=[0.0, 1.5e18], phirange=[0.0, 6.283185307179586], zrange=[-1.5e18, 1.5e18]
):
    """Calculates the angular average of <a(t)b(t+s)>"""

    print "=== Obtaining correlation ==="
    # create r_i, phi_j and z_k arrays:
    ri = np.linspace(rrange[0], rrange[1], nregrid[0])
    phij = np.linspace(phirange[0], phirange[1], nregrid[1])
    zk = np.linspace(zrange[0], zrange[1], nregrid[2])

    (xijk, yijk, zijk) = cylKernel(ri, phij, zk, np.array(nregrid, dtype=np.int32))
    # griddata to points:
    dataA = griddata(
        (pointsA[:, 0], pointsA[:, 1], pointsA[:, 2]),
        np.array(A, dtype=np.float64),
        (xijk, yijk, zijk),
        method="nearest",
    )
    dataB = griddata(
        (pointsB[:, 0], pointsB[:, 1], pointsB[:, 2]),
        np.array(B, dtype=np.float64),
        (xijk, yijk, zijk),
        method="nearest",
    )

    correlation = autocorrKernel(dataA, dataB, np.array(nregrid, dtype=np.int32))

    print "=== Done with correlation ==="
    return np.ma.masked_array(correlation, np.isnan(correlation))
开发者ID:yangyha,项目名称:mpi-AMRVAC,代码行数:30,代码来源:aniso.py


示例14: velovect

def velovect(u1,u2,d,minvel=1e-40,nvect=None,scalevar=None,scale=100,color='k',fig=None):
    '''Plots normalized velocity vectors'''


    if fig==None:
        ax=plt.gca()
    else:
        ax=fig.ax

    CC=d.getCenterPoints()
    n=np.sqrt(u1**2+u2**2)
    # remove zero velocity:
    m=n<minvel
    vr=np.ma.filled(np.ma.masked_array(u1/n,m),0.)
    vz=np.ma.filled(np.ma.masked_array(u2/n,m),0.)
    if scalevar != None:
        vr = vr*scalevar
        vz = vz*scalevar
    if nvect==None:
        Q=ax.quiver(CC[:,0],CC[:,1],vr,vz,pivot='middle',width=1e-3,minlength=0.,scale=scale,
                    headwidth=6)
    else:
        # regrid the data:
        tmp0=np.complex(0,nvect[0])
        tmp1=np.complex(0,nvect[1])
        grid_r, grid_z = np.mgrid[ax.get_xlim()[0]:ax.get_xlim()[1]:tmp0, ax.get_ylim()[0]:ax.get_ylim()[1]:tmp1]
        grid_vr = griddata(CC, vr, (grid_r, grid_z), method='nearest')
        grid_vz = griddata(CC, vz, (grid_r, grid_z), method='nearest')
        Q=ax.quiver(grid_r,grid_z,grid_vr,grid_vz,pivot='middle',width=2e-3,minlength=minvel,scale=scale,
                    headwidth=10,headlength=10,color=color,edgecolor=color,rasterized=True)

    plt.draw()
    return Q     
开发者ID:yangyha,项目名称:mpi-AMRVAC,代码行数:33,代码来源:amrplot.py


示例15: interpolate_data_2d

def interpolate_data_2d(all_points, data, param1_space_int=None, param2_space_int=None, interpolation_numpoints=200, interpolation_method='linear', mask_when_nearest=True, show_scatter=True, show_colorbar=True, mask_x_condition=None, mask_y_condition=None):

    # Construct the interpolation
    if param1_space_int is None:
        param1_space_int = np.linspace(all_points[:, 0].min(), all_points[:, 0].max(), interpolation_numpoints)
    if param2_space_int is None:
        param2_space_int = np.linspace(all_points[:, 1].min(), all_points[:, 1].max(), interpolation_numpoints)

    data_interpol = spint.griddata(all_points, data, (param1_space_int[None, :], param2_space_int[:, None]), method=interpolation_method)

    if interpolation_method == 'nearest' and mask_when_nearest:
        # Let's mask the points outside of the convex hull

        # The linear interpolation will have nan's on points outside of the convex hull of the all_points
        data_interpol_lin = spint.griddata(all_points, data, (param1_space_int[None, :], param2_space_int[:, None]), method='linear')

        # Mask
        data_interpol[np.isnan(data_interpol_lin)] = np.nan

    # Mask it based on some conditions
    if mask_x_condition is not None:
        data_interpol[mask_x_condition(param1_space_int), :] = 0.0
    if mask_y_condition is not None:
        data_interpol[:, mask_y_condition(param2_space_int)] = 0.0

    return data_interpol
开发者ID:Azhag,项目名称:Bayesian-visual-working-memory,代码行数:26,代码来源:utils_math.py


示例16: match_planting_harvest

    def match_planting_harvest(self, planting_filename, harvest_filename):
        # Load both planting and harvest files
        self.planting_dataframe = pandas.read_csv(planting_filename, delimiter=',')
        self.harvest_dataframe = pandas.read_csv(harvest_filename, delimiter=',')

        # Interpolate planting data for the harvest lat/longs
        # Since we have a 2D grid and continuous values, perform bilinear interpolation,
        # which will look smoother than nearest neighbor interpolation
        # However, the "variety" is categorical and thus can't be bilinearly interpolated,
        # so instead we can use nearest neighbor
        # Interpolation turns out to be a common enough function that scipy provides it
        gd_linear = interpolate.griddata(self.planting_dataframe.values[:,:2],
                                         self.planting_dataframe.values[:,3:],
                                         self.harvest_dataframe.values[:,:2])
        gd_nearest = interpolate.griddata(self.planting_dataframe.values[:,:2],
                                          self.planting_dataframe.values[:,2:3],
                                          self.harvest_dataframe.values[:,:2],
                                          method='nearest')
        interpolated_columns = self.harvest_dataframe.columns.append(self.planting_dataframe.columns[2:])
        interpolated_array = numpy.hstack((self.harvest_dataframe.values, gd_nearest, gd_linear))
        self.interpolated_dataframe = pandas.DataFrame(interpolated_array, columns=interpolated_columns).dropna(how='any')
        # If we just want to interpolate all columns as nearest neighbor, uncomment:
        # gd = interpolate.griddata(self.planting_dataframe.values[:,:2], self.planting_dataframe.values[:,2:], self.harvest_dataframe.values[:,:2], method='nearest')
        # interpolated_array = numpy.hstack((self.harvest_dataframe.values, gd))
        # self.interpolated_dataframe = pandas.DataFrame(interpolated_array, columns=interpolated_columns)

        # Create test and validation sets
        self.train_ylabel, self.test_ylabel, self.train_Xdata, self.test_Xdata = cross_validation.train_test_split(self.interpolated_dataframe.values[:,2:3], self.interpolated_dataframe.values[:,4:-1])
        return self.interpolated_dataframe
开发者ID:jessieburger,项目名称:codesamples,代码行数:29,代码来源:fbn.py


示例17: get_reference_bim

def get_reference_bim(a, t0=0, x_c=0, x0=15, verbose=True):
    if type(t0) == list:
        return np.array([r for r in imap(getReferenceBIM, repeat(a), t0, repeat(x_c))])
    
    if verbose: 
        print 'Getting a reference solution for a={} from BIM data'.format(a)
   
    numRefDir = os.path.join(os.environ['HOME'], 'work/soliton/fullPotentialSolution')
    if not(os.path.exists(numRefDir)):
        sys.exit('Numerical reference directory does not exist: '+numRefDir)

    x_c = x_c - solitonVelBIM[a]*t0 - x0
    N=200
    line = (np.ones(N)*x_c, np.linspace(-1, a, N))
    
    u, ext = postprocess.readGphov(os.path.join(numRefDir, str(a), 'u'))
    v, ext = postprocess.readGphov(os.path.join(numRefDir, str(a), 'v'))
    grid_x, grid_y = np.mgrid[ext[0]:ext[1]:u.shape[1]*1j, ext[2]:ext[3]:u.shape[0]*1j]
    
    u = u.transpose()
    v = v.transpose()
    
    ux_sampled = griddata((grid_x.flatten(), grid_y.flatten()), u.flatten(), line, method='linear', fill_value=0)
    uy_sampled = griddata((grid_x.flatten(), grid_y.flatten()), v.flatten(), line, method='linear', fill_value=0)

    return np.array(line).transpose(), np.array([ux_sampled, uy_sampled]).transpose()
开发者ID:pawelaw,项目名称:phd,代码行数:26,代码来源:cross_sections.py


示例18: interpolateData

def interpolateData(binaryDataFile, sName):
    file = open(binaryDataFile, 'rb')
    if os.name == 'nt':
        rawTimeHistory = numpy.array(pickle.load(file, encoding='latin1')).transpose()
        rawStressHistory = numpy.array(pickle.load(file, encoding='latin1')).transpose()
        rawStrainHistory = numpy.array(pickle.load(file, encoding='latin1')).transpose()
    elif os.name == 'posix':
        rawTimeHistory = numpy.array(pickle.load(file)).transpose()
        rawStressHistory = numpy.array(pickle.load(file)).transpose()
        rawStrainHistory = numpy.array(pickle.load(file)).transpose()
    
    timeHistory = numpy.linspace(0, simulationTime, numberOfSteps+1)
    stressHistory = numpy.empty([3, numberOfSteps+1]);
    strainHistory = numpy.empty([3, numberOfSteps+1]);
    for i in range(3):
        stressHistory[i, :] = griddata(rawTimeHistory, rawStressHistory[i], timeHistory)
        strainHistory[i, :] = griddata(rawTimeHistory, rawStrainHistory[i], timeHistory)
    stressHistory = stressHistory.transpose()
    strainHistory = strainHistory.transpose()
            
    bundle = [timeHistory, stressHistory, strainHistory]
    bundleFileName = os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, 'fittedHistory', sName+'_'+abaqusMaterial+'_fittedHistory.pkl')
    with open(bundleFileName, 'ab') as fittedFile:
        pickle.dump(bundle, fittedFile)           
       
    return bundle
开发者ID:yetisir,项目名称:UpFrac2,代码行数:26,代码来源:interpolateData.py


示例19: interp_exp_f

def interp_exp_f(fname, out_dir):
    """ Used to interpolate data from experiment F. """
    print("  Beginning interpolation of " + fname)
    # The variables from the data
    print("    Reading data....")
    x, y, z_s, v_x, v_y, v_z = np.loadtxt(fname, unpack=True)

    #v_norm = np.sqrt(v_x**2 + v_y**2)
    res = 40 #int(fname.split(os.sep)[-1][5:8])
    
    # The given points
    x_pts = np.asarray(sorted(set(x)))
    y_pts = np.asarray(sorted(set(y)))
    points = (x,y)

    # The points we want
    x_out = np.arange(-50,50.0001,100.0/res)
    y_out = np.arange(-50,50.0001,100.0/res)
    out_points = [[i,j] for i in x_out for j in y_out]
    x_out = np.transpose(out_points)[0]
    y_out = np.transpose(out_points)[1]

    # Interpolate each list separately
    print("    Interpolating data....")
    z_s_i = interpolate.griddata(points, z_s, out_points)
    v_x_i = interpolate.griddata(points, v_x, out_points)
    v_y_i = interpolate.griddata(points, v_y, out_points)
    v_z_i = interpolate.griddata(points, v_z, out_points)
 
    out_file = os.path.join(out_dir, os.path.basename(fname).replace('.txt','_interp.txt'))
    print("    Writing data....")
    np.savetxt(out_file,np.transpose([x_out,y_out,z_s_i,v_x_i,v_y_i,v_z_i]))
开发者ID:arbennett,项目名称:ismip_data_interpolation,代码行数:32,代码来源:interpolate_ismip.py


示例20: scipy_stuff

def scipy_stuff():
  from scipy.interpolate import griddata
  from matplotlib import pylab
  import cPickle as pickle
  print "loading points"
  points, x_diff, y_diff = pickle.load(open("temp_data.pickle", "rb"))

  y_pts, x_pts = zip(*points)

  print "Creating grid points"
  grid_points = []
  for j in range(2500):
    for i in range(2500):
      grid_points.append((j, i))

  print "Gridding data"
  x_grid = griddata(points, x_diff, grid_points)
  y_grid = griddata(points, y_diff, grid_points)
  x_grid.shape = (2500, 2500)
  y_grid.shape = (2500, 2500)

  print "Plotting"
  pylab.subplot(3, 1, 1)
  pylab.imshow(x_grid)
  pylab.subplot(3, 1, 2)
  pylab.imshow(y_grid)
  pylab.subplot(3, 1, 3)
  pylab.scatter(x_pts, y_pts)
  pylab.show()
开发者ID:dials,项目名称:dials_scratch,代码行数:29,代码来源:centroid_difference.py



注:本文中的scipy.interpolate.griddata函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python interpolate.interp1d函数代码示例发布时间:2022-05-27
下一篇:
Python interpolate.bisplrep函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap