• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

Python interpolate.UnivariateSpline类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中scipy.interpolate.UnivariateSpline的典型用法代码示例。如果您正苦于以下问题:Python UnivariateSpline类的具体用法?Python UnivariateSpline怎么用?Python UnivariateSpline使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了UnivariateSpline类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: smoothfit

def smoothfit(x, y, smooth=0, res=1000):
    """
    Smooth data of the form f(x) = y with a spline
    """
    z = y.copy()
    w = isnan(z)
    z[w] = 0
    spl = UnivariateSpline(x, z, w=~w)
    spl.set_smoothing_factor(smooth)
    xs = linspace(min(x), max(x), res)
    ys = spl(xs)
    ys[ys < 0] = 0
    if w[0]:
        if len(where(~w)[0]):
            first = where(~w)[0][0]
            first = x[first]
            first = where(xs >= first)[0][0] - 1
            ys[:first] = nan
    if w[-1]:
        if len(where(~w)[0]):
            last = where(~w)[0][-1]
            last = x[last]
            last = where(xs >= last)[0][0] + 1
            ys[last:] = nan
    return xs, ys
开发者ID:speron,项目名称:sofroniew-vlasov-2015,代码行数:25,代码来源:plots.py


示例2: grad_dist

def grad_dist(curdata,ax):
    #gaussian kernel density estimation           
    x=np.linspace(0,90,91)
    kde=gaussian_kde(curdata)
    line,=ax.plot(x,kde(x), '-', label=hl[j][0:-2]+"0")
    curcolor=plt.getp(line,'color')

##    #plotting histogram
##    ax.hist(curdata,bins=int(max(curdata))+1,
##             normed=True, histtype='step',
##             color=curcolor, linewidth=0.5)

    #defining splines for kd function and corresponding 1st and seconde derivatives
    x=np.linspace(0,90,901)
    s=UnivariateSpline(x,kde(x),s=0,k=3)
    s1=UnivariateSpline(x,s(x,1),s=0,k=3)
    s2=UnivariateSpline(x,s1(x,1),s=0,k=3)

    #identifying local maxima (where s1=0, s2<0, and s>0.005)
    maxima=s1.roots()[np.where(s2(s1.roots())<0)[0]]
    maxima=maxima[np.where(s(maxima)>0.005)[0]]
    #s_max=maxima[-1]
    s_max=maxima[np.argmax(s(maxima))]
    ax.plot(s_max, s(s_max),'o', color=curcolor)

    #identifying steepest segment after maxima (where x>=maxima, s1<0)
    x2=x[np.where(x>=s_max)[0]]
    slope=s1(x2)
    s1_min=x2[np.argmin(slope)]
    ax.plot(s1_min,s(s1_min),'o', color=curcolor)

    print round(s_max,1),round(s1_min,1)

    return round(s_max,1),round(s1_min,1)
开发者ID:ricsatjr,项目名称:slope-stability,代码行数:34,代码来源:gradient_analysis.py


示例3: getCurvatureForPoints

def getCurvatureForPoints(arcLengthList, fx_s, fy_s, smoothing=None):
	x, x_, x__, y, y_, y__ = getFirstAndSecondDerivForTPoints(arcLengthList, fx_s, fy_s)
	curvature = abs(x_* y__ - y_* x__) / np.power(x_** 2 + y_** 2, 3 / 2)
	fCurvature = UnivariateSpline(arcLengthList, curvature, s=smoothing)
	dxcurvature = fCurvature.derivative(1)(arcLengthList)
	dx2curvature = fCurvature.derivative(2)(arcLengthList)
	return curvature, dxcurvature, dx2curvature
开发者ID:pippy360,项目名称:morePythonScaleStuff,代码行数:7,代码来源:keypoints.py


示例4: get_derivatives

def get_derivatives(xs, ys, fd=False):
    """
    return the derivatives of y(x) at the points x
    if scipy is available a spline is generated to calculate the derivatives
    if scipy is not available the left and right slopes are calculated, if both exist the average is returned
    putting fd to zero always returns the finite difference slopes
    """
    try:
        if fd:
            raise SplineInputError('no spline wanted')
        if len(xs) < 4:
            er = SplineInputError('too few data points')
            raise er
        from scipy.interpolate import UnivariateSpline
        spline = UnivariateSpline(xs, ys)
        d = spline.derivative(1)(xs)
    except (ImportError, SplineInputError):
        d = []
        m, left, right = 0, 0, 0
        for n in range(0, len(xs), 1):
            try:
                left = (ys[n] - ys[n-1]) / (xs[n] - xs[n-1])
                m += 1
            except IndexError:
                pass
            try:
                right = (ys[n+1] - ys[n]) / (xs[n+1] - xs[n])
                m += 1
            except IndexError:
                pass
            d.append(left + right / m)
    return d
开发者ID:albalu,项目名称:pymatgen,代码行数:32,代码来源:convergence.py


示例5: imageSlice

def imageSlice(image, xc, yc, width):
	ylen, xlen = image.shape

	xstart = max(0, xc - width / 2)
	xend = min(xlen, xc + width / 2)

	# I cannot get array slicing to work for the life of me
	slice = []
	for i in range(int(xstart), int(xend)):
		slice.append(image[yc, i])

	# https://stackoverflow.com/questions/10582795/finding-the-full-width-half-maximum-of-a-peak/10583774#10583774

	shiftedSlice = []

	halfMax = max(slice) / 2
	baseline = numpy.mean(image)

	for y in slice:
		shiftedSlice.append(y - halfMax - baseline)

	x = numpy.linspace(0, width, width)
	spline = UnivariateSpline(x, shiftedSlice, s=0)
	r1, r2 = spline.roots()
	#r1 = 0
	#r2 = 0

	return (slice, r2 - r1)
开发者ID:karmeleon,项目名称:AstroImageAnalysis,代码行数:28,代码来源:analyze.py


示例6: smoothing

def smoothing(x,y,err=None,k=5,s=None,newx=None,derivative_order=0):
  # remove NaNs
  idx = np.isfinite(x) & np.isfinite(y)
  if idx.sum() != len(x): x=x[idx]; y=y[idx]

  # if we don't need to interpolate, use same x as input
  if newx is None: newx=x

  if err is None:
    w=None
  elif err == "auto":
    n=len(x)
    imin = int(max(0,n/2-20))
    imax = imin + 20
    idx = range(imin,imax)
    p = np.polyfit(x[idx],y[idx],2)
    e = np.std( y[idx] - np.polyval(p,x[idx] ) )
    w = np.ones_like(x)/e
  else:
    w=np.ones_like(x)/err
  from scipy.interpolate import UnivariateSpline
  if (s is not None):
    s = len(x)*s
  s = UnivariateSpline(x, y,w=w, k=k,s=s)
  if (derivative_order==0):
    return s(newx)
  else:
    try:
      len(derivative_order)
      return np.asarray([s.derivative(d)(newx) for d in derivative_order])
    except:
      return s.derivative(derivative_order)(newx)
开发者ID:marcocamma,项目名称:x3py,代码行数:32,代码来源:toolsDetectors.py


示例7: fwhm

def fwhm(x, y, k=10, ret_roots=False):
    """
    Determine full-with-half-maximum of a peaked set of points, x and y.

    Assumes that there is only one peak present in the dataset.  The function
    uses a spline interpolation with smoothing parameter k ('s' in scipy.interpolate.UnivariateSpline).
    """

    class MultiplePeaks(Exception):
        pass

    class NoPeaksFound(Exception):
        pass

    half_max = np.max(y) / 2.0
    s = UnivariateSpline(x, y - half_max, s=k)
    roots = s.roots()

    if len(roots) > 2:
        # Multiple peaks. Use the two that straddle the maximum value
        maxvel = x[np.argmax(y)]
        left_idx = np.argmin(maxvel - roots)
        right_idx = np.argmin(roots - maxvel)
        roots = np.array((roots[left_idx], roots[right_idx]))
    elif len(roots) < 2:
        raise NoPeaksFound("No proper peaks were found in the data set; likely "
                           "the dataset is flat (e.g. all zeros).")
    if ret_roots:
        return roots[0], roots[1]

    return abs(roots[1] - roots[0])
开发者ID:kgullikson88,项目名称:General,代码行数:31,代码来源:HelperFunctions.py


示例8: xs_interp

def xs_interp (inp_ene, inp_xs, inp_ene_interp, plot_cs):

    inp_ene = inp_ene # energies from Talys
    inp_xs  = inp_xs  # xs from talys
    inp_ene_interps = inp_ene_interp # energies for interpolation
    out_xs_A = []
    out_xs = np.array([]) # iterpolated xs
    plot_fig = plot_cs
    
    x_ene = np.linspace (0,660,3301)
    
    spl = UnivariateSpline(inp_ene, inp_xs, s = 0.25)
    y_xs = spl(x_ene)

    for inp_ene_interp in inp_ene_interps:
        out_xs_A.append(spl.__call__(inp_ene_interp))
    
    out_xs = np.append(out_xs, out_xs_A)

    # optional_plot

    if plot_fig:
        plt.plot (inp_ene, inp_xs, 'ro', ms = 5)
        plt.plot (x_ene, y_xs, lw = 3, c = 'g', alpha = 0.6)
        plt.plot (inp_ene_interps, out_xs, 'o', ms = 3)
        plt.show()
    
    return out_xs
开发者ID:lukawr,项目名称:flux,代码行数:28,代码来源:flux.py


示例9: calc_conductance_curve

def calc_conductance_curve(V_list,T,R_T,C_sigma):
    #test_voltages = arange(-v_max,v_max,v_step)
    test_currents = []
    for V in V_list:
        test_currents.append(calc_current(V,T,R_T,C_sigma))
        #print "V: %g, current %g"%(V,test_currents[-1])

    ## calc conductances manually
    #test_conductances = []
    #for idx,V in enumerate (test_currents[1:-2]):
    #    if idx==0:
    #        print idx
    #    test_conductances.append((test_currents[idx+2]-test_currents[idx])/(2.0*v_step))
    #
    #test_voltages_G = test_voltages[1:-2]

    #
    # SPLINE
    #
    spline = UnivariateSpline(V_list,test_currents,s=0)
    #print "test_conductances"
    #indices = [x for x, y in enumerate(col1) if (y >0.7 or y<-0.7)]
    test_conductances = []
    for v_iter in V_list:
        test_conductances.append(spline.derivatives(v_iter)[1])
    return test_conductances
开发者ID:AivonOy,项目名称:pyCBT,代码行数:26,代码来源:CBT_lib.py


示例10: fwhm

def fwhm(x, y, bg=[0, 100, 150, 240]):
    """
    Evaluates the full width half maximum of y in units of x.
  
    Parameters
    ----------
    x : numpy.array
    y : numpy.array
    bg : list
      Background sampling limits
  
    Returns
    -------
    fwhm : number
      Full width half maximum
    """

    #  xnew = copy(x)
    #  ynew = copy(y)

    #  xc = x[(x>bg[0])&(x<bg[1]) | (x>bg[2])&(x<bg[3])]
    #  yc = y[(x>bg[0])&(x<bg[1]) | (x>bg[2])&(x<bg[3])]

    #  bgfit = polyfit(xc,yc,1)

    #  ynew = ynew-polyval(bgfit,xnew)

    xnew, ynew = rmbg(x, y, bg)

    f = UnivariateSpline(xnew, ynew / max(ynew) - 0.5, s=0)
    fwhm = f.roots()[1] - f.roots()[0]

    return fwhm
开发者ID:brunodall,项目名称:ifscube,代码行数:33,代码来源:spectools.py


示例11: integrated_rate_test

def integrated_rate_test(mx=100., annih_prod='BB'):
    # This currently doesn't work
    file_path = MAIN_PATH + "/Spectrum/"
    file_path += '{}'.format(int(mx)) + 'GeV_' + annih_prod + '_DMspectrum.dat'

    spectrum = np.loadtxt(file_path)
    imax = 0
    for i in range(len(spectrum)):
        if spectrum[i, 1] < 10 or i == (len(spectrum) - 1):
            imax = i
            break
    spectrum = spectrum[0:imax, :]
    Nevents = 10. ** 5.
    spectrum[:, 1] /= Nevents
    test = interp1d(np.log10(spectrum[:, 0] / mx), np.log10(mx * np.log(10.) * spectrum[:, 1]), kind='cubic', bounds_error=False, fill_value=0.)
    test2 = interp1d(spectrum[:, 0], spectrum[:, 0] * spectrum[:, 1], kind='cubic', bounds_error=False, fill_value=0.)
    e_gamma_tab = np.logspace(0., np.log10(spectrum[-1, 0]), 200)
    print np.column_stack((np.log10(spectrum[:, 0] / mx), np.log10(mx * np.log(10.) * spectrum[:, 1])))
    xtab = np.linspace(np.log10(1. / mx), 0., 200)
    ng2 = np.trapz(10.**test(xtab) / 10. ** xtab, xtab) / np.log(10.)
    mean_e2 = np.trapz(test2(e_gamma_tab), e_gamma_tab)
    rate_interp = UnivariateSpline(spectrum[:, 0], spectrum[:, 1])
    avg_e_interp = UnivariateSpline(spectrum[:, 0], spectrum[:, 0] * spectrum[:, 1])
    num_gamma = rate_interp.integral(1., spectrum[-1, 0])
    mean_e = avg_e_interp.integral(1., spectrum[-1, 0])


    print 'DM Mass: ', mx
    print 'Annihilation Products: ', annih_prod
    print 'Number of Gammas > 1 GeV: ', num_gamma, ng2
    print '<E> Gamma: ', mean_e, mean_e2

    return
开发者ID:SamWitte,项目名称:SubhaloDetection,代码行数:33,代码来源:helper.py


示例12: response

    def response(self, disturbance_vector):
        """ Returns the response of the sensor due to a disturbance

            The acceleration imposed to the sensor is estimatad with the following equations:
                acceleration(t) = d2stress(t)/t2 * material_depth/material_prop['modulus']
            And the sensor response takes into account the frequency response, estimated by a normal curve
                freq_response(f) = norm(scale = self.bandwidth/2, loc=self.resonant_freq).pdf(f_array)
                freq_response(f) /= max(freq_response)
                response(t) = ifft(fft(acceleration) * freq_response)


            Args:
                disturbance_vector (list): list with a temporal array, in the 0 index, and a 
                stress array, in the 1 index.

            Returns:
                list: with two arrays, the temporal array and the voltage response array.
        """
        const = self.material_depth / self.material_prop['modulus']
        t_vector = disturbance_vector[0]
        # using the scipy UnivariateSpline to compute the second derivative
        data_spl = UnivariateSpline(t_vector, disturbance_vector[1], s=0, k=3)
        acceleration = data_spl.derivative(n=2)(t_vector) * const
        # we need to take the frequency response of the acceleration stimuli
        N = len(disturbance_vector[1])
        T = t_vector[1] - t_vector[0]
        f_array = np.fft.fftfreq(N, T)
        freq_acc = np.fft.fft(acceleration)
        # we need to apply a filter factor related to the frequency response of the sensor
        freq_response = self.frequency_response(N, (0, max(f_array)), mirror=True)[1]
        voltage = np.fft.ifft(freq_acc * freq_response) * self.sensitivity
        return voltage
开发者ID:facdo,项目名称:PiezoMEMS,代码行数:32,代码来源:models.py


示例13: AlphaInterpolator

class AlphaInterpolator(object):
    def __init__(self, a, x, y):

        # Drop NaN values to avoid fitpack errors
        self._data = pd.DataFrame(np.array([a, x, y]).T, columns=["a", "x", "y"])
        self._data.dropna(inplace=True)

        self._create_interpolating_polynomials()
        self._find_path_length()

    def _create_interpolating_polynomials(self):
        self.x_interp = UnivariateSpline(self._data.a, self._data.x, s=0)
        self.y_interp = UnivariateSpline(self._data.a, self._data.y, s=0)

    def _find_path_length(self):
        dx_interp = self.x_interp.derivative()
        dy_interp = self.y_interp.derivative()

        ts = np.linspace(0, 1, 200)
        line_length = cumtrapz(np.sqrt(dx_interp(ts) ** 2 + dy_interp(ts) ** 2), x=ts, initial=0.0)

        line_length /= line_length.max()

        # Here we invert the line_length (ts) function, in order to evenly
        # sample the pareto front
        self.l_interp = UnivariateSpline(line_length, ts, s=0)

    def sample(self, num):
        """ Return estimates of alpha values that evenly sample the pareto
        front """

        out = self.l_interp(np.linspace(0, 1, num))
        out[0] = 0.0
        out[-1] = 1.0
        return out
开发者ID:pstjohn,项目名称:doa_fba,代码行数:35,代码来源:ParetoCollocation.py


示例14: kde_minmode

def kde_minmode(data,x,max_num_mode,min_mode_pdf):
    kde=gaussian_kde(data)
    f=kde.factor
    f_list=np.linspace(f,(data.max()-data.min()),100)
    s=UnivariateSpline(x,kde(x),s=0)
    s1=UnivariateSpline(x,s(x,1),s=0)
    s2=UnivariateSpline(x,s1(x,1),s=0)
    extrema=s1.roots()
    
    maxima=extrema[np.where((s2(extrema)<0)*(s(extrema)>=min_mode_pdf))]
    
    if len(maxima)>max_num_mode:
        for q in range(1,len(f_list)):
            f=f_list[q]
            kde2=gaussian_kde(data,bw_method=f)
            s=UnivariateSpline(x,kde2(x),s=0)
            s1=UnivariateSpline(x,s(x,1),s=0)
            s2=UnivariateSpline(x,s1(x,1),s=0)
            extrema=s1.roots()
            maxima=extrema[np.where((s2(extrema)<0)*(s(extrema)>=min_mode_pdf))]
            if len(maxima)<=max_num_mode:
##                print 'modes: ',maxima
                break
        kde=gaussian_kde(data,bw_method=f)
##    else:
##        print maxima

    return kde,maxima
开发者ID:ricsatjr,项目名称:slope-stability,代码行数:28,代码来源:Slope_limits_2.py


示例15: smooth

    def smooth(self, genome, which_x, which_y):
        interpolationPointsQty = SMOOTHING_WINDOW
        which_y_InterpolationNeighborhood = interpolationPointsQty / 2
        minimunInterpolationNeighborhoodSize = interpolationPointsQty / 4

        if which_y - interpolationPointsQty / 2 < 0:
            interpolationPointsQty -= abs(which_y - which_y_InterpolationNeighborhood) * 2
            which_y_InterpolationNeighborhood = interpolationPointsQty / 2

        elif which_y + interpolationPointsQty / 2 > genome.getHeight() - 1:
            interpolationPointsQty -= (which_y + which_y_InterpolationNeighborhood - (genome.getHeight() - 1)) * 2
            which_y_InterpolationNeighborhood = interpolationPointsQty / 2

        if which_y_InterpolationNeighborhood >= minimunInterpolationNeighborhoodSize:
            x = np.ndarray(interpolationPointsQty)
            y = np.ndarray(interpolationPointsQty)

            for k in xrange(interpolationPointsQty):
                poseToSmooth = which_y - which_y_InterpolationNeighborhood + k
                x[k] = poseToSmooth
                y[k] = genome[poseToSmooth][which_x]

            spl = UnivariateSpline(x, y)
            spl.set_smoothing_factor(SPLINE_SMOOTHING_FACTOR_SPLINE/10)

            for k in xrange(interpolationPointsQty):
                if y[k] != sysConstants.JOINT_SENTINEL:
                    newValue = spl(int(x[k]))
                    genome.setItem(int(x[k]), which_x, newValue)
开发者ID:aguirrea,项目名称:lucy,代码行数:29,代码来源:DTGenomeFunctions.py


示例16: halbwertsbreite

def halbwertsbreite(x, y):
    spline = UnivariateSpline(x, y-np.max(y)/2, s=0)
    r1, r2 = spline.roots() # find the roots

    lambda1 = 2*d*np.sin(np.deg2rad(r1))
    lambda2 = 2*d*np.sin(np.deg2rad(r2))
    E1 = h*c/lambda1
    E2 = h*c/lambda2
    DE = E1 - E2
    print ('Halbwertswinkel: {0:.5e} deg, {1:.5e} deg'.format(r1, r2))
    print ('Halbwertsbreite: {0:.5e}'.format(np.abs(r1-r2)))
    print (u'Energieaufloesung: {0:.5e} eV'.format(DE))

    xnew = np.linspace(min(x), max(x))
    ynew = spline(xnew)

    plt.plot(x, y, 'rx', label='Messdaten')
    plt.plot(xnew, ynew+np.max(y)/2,'b-', label='Interpolation')
    plt.axvline(r1)
    plt.axvline(r2)

    plt.grid()
    plt.legend()
    plt.xlabel("doppelter Kristallwinkel in Grad")
    plt.ylabel(u"Zählrate")
开发者ID:DerKleineGauss,项目名称:AP_MaMa,代码行数:25,代码来源:PythonSkript.py


示例17: __init__

	def __init__(self, yp, workdir, scale, sm=200):
		'''
		Constructor
		'''
		yp = np.array(yp)
		self.l = len(yp)/2
		self.xPos = (self.l-2)/2 #fPos = (self.l-2)/2 + 2
		tnsc = 2/scale
		print tnsc
		plt.rcParams['font.size'] = 24
		plt.rcParams['lines.linewidth'] = 2.4
		self.workdir = workdir
		
		avProfilePoints = yp[:self.l]
		self.avx = np.append(np.append([0], np.sort(np.tanh(tnsc*avProfilePoints[:self.xPos]))),[1])
		self.av = avProfilePoints[self.xPos:]
		
		sigmaProfilePoints = yp[self.l:]
		self.sigmax = np.append(np.append([0], np.sort(np.tanh(tnsc*sigmaProfilePoints[:self.xPos]))),[1])
		self.sigma = sigmaProfilePoints[self.xPos:]
		
		self.m = UnivariateSpline(self.avx, self.av)
		print "Created spline with " + str(len(self.m.get_knots())) + " knots"

		self.s = UnivariateSpline(self.sigmax, self.sigma)
		print "Created spline with " + str(len(self.s.get_knots())) + " knots"
开发者ID:tmramalho,项目名称:inferProfiles,代码行数:26,代码来源:DualSplineSmoother.py


示例18: get_t_for_vols

    def get_t_for_vols(self, vols, t_max=1000):
        """
        Find the temperatures corresponding to a specific volume.
        The search is performed interpolating the V(T) dependence with a spline and
        finding the roots with of V(t) - v.
        It may return more than one temperature for a volume in case of non monotonic behavior.

        Args:
            vols: list of volumes
            t_max: maximum temperature considered for the fit

        Returns:
            A list of lists of temperatures. For each volume more than one temperature can
            be identified.
        """

        if not isinstance(vols, (list, tuple, np.ndarray)):
            vols = [vols]


        f = self.fit_energies(0, t_max, t_max+1)

        temps = []
        for v in vols:
            spline = UnivariateSpline(f.temp, f.min_vol - v, s=0)
            temps.append(spline.roots())

        return temps
开发者ID:gmatteo,项目名称:abipy,代码行数:28,代码来源:qha.py


示例19: find_extrema_spline

def find_extrema_spline(x,y,k=4,s=0,**kwargs):
    """
    find local extrema of y(x) by taking derivative of spline

    Parameters
    ----------

    x,y : array-like
      find extrema of y(x)

    k : int
      order of spline interpolation [must be >3]

    s : number
      s parameter sent to scipy spline interpolation (used for smoothing)

    **kwargs : extra arguments to UnivariateSpline


    Returns
    -------
    sp : UnivariateSpline object

    x_max,y_max : array
      value of x and y at extrema(s)
    """


    sp = UVSpline(x,y,k=k,s=s,**kwargs)

    x_max = sp.derivative().roots()

    y_max = sp(x_max)

    return sp,x_max,y_max
开发者ID:wpk-nist-gov,项目名称:my_utilities,代码行数:35,代码来源:utilities.py


示例20: getspline_Sold

	def getspline_Sold(self):
		"""Cubic spline interpolation of entropy and convective velocity.
		"""
		want = self.mass < max(self.mass)*self.mass_cut
		S_old = UnivariateSpline(self.mass[want], self.Sgas[want], k=self.spline_k, s=self.spline_s, ext=self.spline_ext)
		dS_old = S_old.derivative()
		vconv_Sold = UnivariateSpline(self.mass[want], self.vconv[want], k=self.spline_k, s=self.spline_s, ext=self.spline_ext)
		return [S_old, dS_old, vconv_Sold] 
开发者ID:cczhu,项目名称:czerny_wd,代码行数:8,代码来源:Sprofile_mass.py



注:本文中的scipy.interpolate.UnivariateSpline类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python fitpack.bisplev函数代码示例发布时间:2022-05-27
下一篇:
Python interpolate.RectBivariateSpline类代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap