本文整理汇总了Python中scipy.io.matlab.loadmat函数的典型用法代码示例。如果您正苦于以下问题:Python loadmat函数的具体用法?Python loadmat怎么用?Python loadmat使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了loadmat函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_FindWavKurt
def test_FindWavKurt(self):
from scipy.io.matlab import loadmat
N = 16
fcut = 0.4
level_index = 11
freq_index = 24
lev = self.level_w[level_index]
base_path = os.getenv("WAVELOC_PATH")
matlab_file = os.path.join(base_path, "test_data", "c.mat")
c_dict = loadmat(matlab_file)
c_exp = c_dict["c"]
matlab_file = os.path.join(base_path, "test_data", "S.mat")
S_dict = loadmat(matlab_file)
S_exp = S_dict["S"]
# get bw and frequency (Hz)
bw_hz, fc_hz, fi, l1 = getBandwidthAndFrequency(
self.nlevel, self.Fs, self.level_w, self.freq_w, level_index, freq_index
)
# get basic filter parameters
h, g, h1, h2, h3 = get_h_parameters(N, fcut)
c, s, threshold, Bw, fc = Find_wav_kurt(self.x, h, g, h1, h2, h3, self.nlevel, lev, fi, Fs=self.Fs)
S = getFTSquaredEnvelope(c)
# do tests
self.assertAlmostEqual(Bw * self.Fs, bw_hz)
self.assertAlmostEqual(fc * self.Fs, fc_hz)
np.testing.assert_allclose(c.flatten(), c_exp.flatten(), atol=1e-3)
np.testing.assert_allclose(S.flatten(), S_exp.flatten(), atol=1e-6)
开发者ID:nlanget,项目名称:waveloc,代码行数:33,代码来源:test_kurtogram.py
示例2: test_FindWavKurt
def test_FindWavKurt(self):
N=16
fcut=0.4
level_index=11
freq_index=24
lev=self.level_w[level_index]
c_dict=loadmat("test_data/c.mat")
c_exp = c_dict['c']
S_dict=loadmat("test_data/S.mat")
S_exp = S_dict['S']
# get bw and frequency (Hz)
bw_hz, fc_hz, fi = getBandwidthAndFrequency(self.nlevel, self.Fs,
self.level_w, self.freq_w, level_index, freq_index)
# get basic filter parameters
h, g, h1, h2, h3 = get_h_parameters(N, fcut)
c,s,threshold,Bw,fc = Find_wav_kurt(self.x, h, g, h1, h2, h3,
self.nlevel,lev, fi, self.Fs)
S=getFTSquaredEnvelope(c)
# do tests
self.assertAlmostEqual(Bw*self.Fs,bw_hz)
self.assertAlmostEqual(fc*self.Fs,fc_hz)
np.testing.assert_allclose(c.flatten(),c_exp.flatten(),atol=1e-3)
np.testing.assert_allclose(S.flatten(),S_exp.flatten(),atol=1e-6)
开发者ID:amaggi,项目名称:seismokurt,代码行数:30,代码来源:test_kurtogram.py
示例3: __get_excit_wfm
def __get_excit_wfm(filepath):
"""
Returns the excitation BE waveform present in the more parms.mat file
Parameters
------------
filepath : String / unicode
Absolute filepath of the .mat parameter file
Returns
-----------
ex_wfm : 1D numpy float array
Band Excitation waveform
"""
if not path.exists(filepath):
warn('BEPSndfTranslator - NO more_parms.mat file found')
return np.zeros(1000, dtype=np.float32)
if 'more_parms' in filepath:
matread = loadmat(filepath, variable_names=['FFT_BE_wave'])
fft_full = np.complex64(np.squeeze(matread['FFT_BE_wave']))
bin_inds = None
fft_full_rev = None
else:
matread = loadmat(filepath, variable_names=['FFT_BE_wave', 'FFT_BE_rev_wave', 'BE_bin_ind'])
bin_inds = np.uint(np.squeeze(matread['BE_bin_ind'])) - 1
fft_full = np.complex64(np.squeeze(matread['FFT_BE_wave']))
fft_full_rev = np.complex64(np.squeeze(matread['FFT_BE_rev_wave']))
return fft_full, fft_full_rev, bin_inds
开发者ID:pycroscopy,项目名称:pycroscopy,代码行数:31,代码来源:beps_ndf.py
示例4: test_srmr_norm
def test_srmr_norm():
fs = 16000
s = loadmat("test/test.mat")["s"][:,0]
correct_ratios = loadmat("test/correct_ratios.mat")['correct_ratios'][0]
srmr = SRMR(fs, fast=False, norm=True, max_cf=30)
out = srmr.predict(s, s, s)
ratio_norm, avg_energy_norm = out['p']['srmr'], out['avg_energy']
assert np.allclose(ratio_norm, correct_ratios[3], rtol=1e-6, atol=1e-12)
开发者ID:achabotl,项目名称:SRMRpy,代码行数:9,代码来源:test_srmr.py
示例5: test_srmr_slow
def test_srmr_slow():
fs = 16000
s = loadmat("test/test.mat")["s"][:,0]
correct_ratios = loadmat("test/correct_ratios.mat")['correct_ratios'][0]
srmr = SRMR(fs, fast=False)
out = srmr.predict(s, s, s)
ratio_slow, avg_energy_slow = out['p']['srmr'], out['avg_energy']
assert np.allclose(ratio_slow, correct_ratios[0], rtol=1e-6, atol=1e-12)
开发者ID:achabotl,项目名称:SRMRpy,代码行数:9,代码来源:test_srmr.py
示例6: timeseries_design
def timeseries_design(subject_id,whatParadigm,onsets_dir):
import scipy.signal
import scipy.special as sp
import numpy as np
import math
from nipype.interfaces.base import Bunch
from copy import deepcopy
from scipy.io.matlab import loadmat
import glob
import os
#from Facematch import onsets_dir
print "Entered timeseries_design once with arguments SUBID = "+subject_id+", paradigm = "+whatParadigm+", and onsets dir = "+onsets_dir+"."
output = []
regressor_names = None
regressors = None
onsets_temp = os.path.join(onsets_dir, subject_id+'*onsets.mat')
onsets_files = sorted(glob.glob(onsets_temp))
testmat = loadmat(onsets_files[0], struct_as_record=False)
testnames = testmat['names'][0]
names_count_vec = np.zeros(len(testnames))
for r in range(len(onsets_files)):
mat = loadmat(onsets_files[r], struct_as_record=False)
ons = mat['onsets'][0]
nam = mat['names'][0]
dur = mat['durations'][0]
names = []
durations = []
run_onsets = []
for condition in range(len(nam)):
for onset in range(len(ons[condition][0])):
names_count_vec[condition] += 1
names.append(str(nam[condition][0])+'_%d'%(names_count_vec[condition]))
run_onsets.append([ons[condition][0][onset]])
durations.append(dur[condition][0])
print run_onsets
print names
print durations
output.insert(r,
Bunch(conditions=deepcopy(names),
onsets=deepcopy(run_onsets),
durations=deepcopy(durations),
amplitudes=None,
tmod=None,
pmod=None,
regressor_names=None,
regressors=regressors)) #here is where we can do linear, quad, etc detrending
return output
开发者ID:jsalva,项目名称:gates_analysis,代码行数:54,代码来源:beta_series_analysis.py
示例7: main
def main(argv):
dim = 64
imidx = 7
# load unnormalized log-likelihood
results = loadmat('results/vanhateren/poe/AIS_GibbsTrain_white_studentt_L=064_M=256_B=0100000_learner=PMPFdH1_20120523T112539.mat')
loglik = -mean(results['E'][:, :10000]) - results['logZ']
# load importance weights for partition function
ais_weights = loadmat('results/vanhateren/poe/matlab_up=022150_T=10000000_ais.mat')['logweights']
ais_weights.shape
# number of samples to probe
num_samples = 2**arange(0, ceil(log2(ais_weights.shape[0])) + 1, dtype='int32')
num_samples[-1] = max([num_samples[-1], ais_weights.shape[0]])
num_repetitions = ceil(2.**16 / num_samples)
estimates = []
print loadmat('results/vanhateren/poe/matlab_up=022150_T=10000000_ais.mat')['t_range'][:, imidx], 'intermediate distributions'
logZ = logmeanexp(ais_weights[:, -1])
for k in arange(len(num_samples)):
estimates_ = []
for _ in arange(num_repetitions[k]):
# pick samples at random
idx = permutation(ais_weights.shape[0])[:num_samples[k]]
# estimate log-partf. using num_samples[k] samples
loglik_ = loglik + (logZ - logmeanexp(ais_weights[idx, imidx]))
# store estimate of log-likelihood
estimates_.append(loglik_)
estimates.append(mean(estimates_))
gca().width = 5
gca().height = 5
# gca().ymin = 0.85
# gca().ymax = 1.55
# ytick([0.9, 1.1, 1.3, 1.5])
semilogx(num_samples, estimates / log(2.) / dim, '.-')
xlabel('number of AIS samples')
ylabel('estimated log-likelihood')
savefig('results/vanhateren/convergence_poe.tex')
draw()
return 0
开发者ID:lucastheis,项目名称:isa,代码行数:49,代码来源:convergence_poe.py
示例8: load_dataset
def load_dataset(dataset):
if dataset == 'umls':
mat = loadmat('../data/%s/uml.mat' % (dataset))
T = np.array(mat['Rs'], np.float32)
elif dataset == 'nation':
mat = loadmat('../data/%s/dnations.mat' % (dataset))
T = np.array(mat['R'], np.float32)
elif dataset == 'kinship':
mat = loadmat('../data/%s/alyawarradata.mat' % (dataset))
T = np.array(mat['Rs'], np.float32)
elif dataset == 'wordnet':
T = pickle.load(open('../data/%s/reduced_wordnet.pkl' % (dataset), 'rb'))
T[np.isnan(T)] = 0
return T
开发者ID:arongdari,项目名称:almc,代码行数:15,代码来源:amdc_runner.py
示例9: get_top_scores
def get_top_scores(self, i=100, force_num=True):
fn_scores = os.path.join(self.ds.path, "cpmc", "MySegmentsMat", self.name, "scores.mat")
sc = ml.loadmat(fn_scores)["scores"]
scores = list(np.sort(sc.ravel())[-1 : (-1 - i) : -1])
if len(scores) < i and force_num:
scores = (list(scores) * 100)[:100]
return scores
开发者ID:amiltonwong,项目名称:pottics,代码行数:7,代码来源:dataset.py
示例10: ReadDatasetFile
def ReadDatasetFile(dataset_file_path):
"""Reads dataset file in Revisited Oxford/Paris ".mat" format.
Args:
dataset_file_path: Path to dataset file, in .mat format.
Returns:
query_list: List of query image names.
index_list: List of index image names.
ground_truth: List containing ground-truth information for dataset. Each
entry is a dict corresponding to the ground-truth information for a query.
The dict may have keys 'easy', 'hard', 'junk' or 'ok', mapping to a list
of integers; additionally, it has a key 'bbx' mapping to a list of floats
with bounding box coordinates.
"""
with tf.gfile.GFile(dataset_file_path, 'r') as f:
cfg = matlab.loadmat(f)
# Parse outputs according to the specificities of the dataset file.
query_list = [str(im_array[0]) for im_array in np.squeeze(cfg['qimlist'])]
index_list = [str(im_array[0]) for im_array in np.squeeze(cfg['imlist'])]
ground_truth_raw = np.squeeze(cfg['gnd'])
ground_truth = []
for query_ground_truth_raw in ground_truth_raw:
query_ground_truth = {}
for ground_truth_key in _GROUND_TRUTH_KEYS:
if ground_truth_key in query_ground_truth_raw.dtype.names:
adjusted_labels = query_ground_truth_raw[ground_truth_key] - 1
query_ground_truth[ground_truth_key] = adjusted_labels.flatten()
query_ground_truth['bbx'] = np.squeeze(query_ground_truth_raw['bbx'])
ground_truth.append(query_ground_truth)
return query_list, index_list, ground_truth
开发者ID:rder96,项目名称:models,代码行数:34,代码来源:dataset.py
示例11: show_predictions
def show_predictions(alpha="alpha", symbol="GE", xtn=".PNG"):
if type(alpha) == str:
print ("Loading file named " + alpha + ".mat")
a = mat.loadmat(
alpha + ".mat", mat_dtype=False
) # load a matlab style set of matrices from the file named by the string alpha
if a.has_key(alpha):
alpha = a.get(alpha).reshape(-1) # get the variable with the name of the string in alpha
else:
alpha = a.get(a.keys()[2]).reshape(-1) # get the first non-hidden key and reshape into a 1-D array
print ("Loading financial data for stock symbol", symbol)
r = np.recfromcsv("/home/hobs/Desktop/References/quant/lyle/data/" + symbol + "_yahoo.csv", skiprows=1)
r.sort()
r.high = r.high * r.adj_close / r.close # adjust the high and low prices for stock splits
r.low = r.low * r.adj_close / r.close # adjust the high and low prices for stock splits
daily_returns = r.adj_close[1:] / r.adj_close[0:-1] - 1
predictions = lfilt(alpha, daily_returns)
print (
"Plotting a scatter plot of",
len(daily_returns),
"returns vs",
len(predictions),
"predictions using a filter of length",
len(alpha),
)
(ax, fig) = plot(predictions, daily_returns[len(alpha) :], s="bo", xtn=".PNG")
ax.set_xlabel("Predicted Returns")
ax.set_ylabel("Actual Returns")
big_mask = np.abs(predictions) > np.std(predictions) * 1.2
bigs = predictions[big_mask]
true_bigs = daily_returns[big_mask]
(ax, fig) = plot(bigs, true_bigs, s="r.", xtn=".PNG")
fig.show()
return (predictions, daily_returns, bigs, true_bigs, big_mask)
开发者ID:hobson,项目名称:tagim,代码行数:34,代码来源:finance.py
示例12: subtract_background_from_stacks
def subtract_background_from_stacks(scanfile, indir, outdir, scannumber=-1):
"""Subtract background from SAXS data in MAT-file stacks.
"""
scans = read_yaml(scanfile)
if scannumber > 0:
scannos = [ scannumber ]
else:
scannos = scans.keys()
scannos.sort()
for scanno in scannos:
print("Scan #%03d" % scanno)
try:
bufscan = scans[scanno][0]
except TypeError:
print("Scan #%03d is a buffer" % scanno)
continue
try:
conc = scans[scanno][1]
except TypeError:
print("No concentration for scan #02d." % scanno)
conc = 1.0
print("Using concentration %g g/l." % conc)
stackname = "s%03d" % scanno
stack = loadmat(indir+'/'+stackname+'.mat')[stackname]
subs = np.zeros_like(stack)
(npos, nrep, _, _) = stack.shape
for pos in range(npos):
print(pos)
buf = get_bg(indir, bufscan, pos)
for rep in range(nrep):
subs[pos,rep,...] = errsubtract(stack[pos,rep,...], buf)
subs[pos,rep,1:3,:] = subs[pos,rep,1:3,:] / conc
outname = "subs%03d" % scanno
savemat(outdir+'/'+outname + ".mat", {outname: subs}, do_compression=1,
oned_as='row')
开发者ID:tpikonen,项目名称:solution,代码行数:35,代码来源:subtraction.py
示例13: preprocess_dataset
def preprocess_dataset(self, dataset, n_jobs=-1, verbosity=2):
"""
:param dataset:
:param n_jobs:
:return:
"""
if self.skip:
return
if verbosity > 1: print(" Loading masks from .mat file")
data = loadmat(self.path)
masks = data[self.var_name][0]
if not self.invert:
masks_probe = masks.take(range(0, masks.size, 2))
masks_gallery = masks.take(range(1, masks.size, 2))
else:
masks_gallery = masks.take(range(1, masks.size, 2))
masks_probe = masks.take(range(0, masks.size, 2))
dataset.probe.masks_train = list(masks_probe[dataset.train_indexes])
dataset.probe.masks_test = list(masks_probe[dataset.test_indexes])
dataset.gallery.masks_train = list(masks_gallery[dataset.train_indexes])
dataset.gallery.masks_test = list(masks_gallery[dataset.test_indexes])
开发者ID:AShedko,项目名称:PyReID,代码行数:25,代码来源:preprocessing.py
示例14: test
def test():
"""
Test with Kinship dataset
Use all positive triples and negative triples as a training set
See how the reconstruction error is reduced during training
"""
from scipy.io.matlab import loadmat
mat = loadmat('../data/kinship/alyawarradata.mat')
T = np.array(mat['Rs'], np.float32)
T[T == 0] = -1 # set negative value to -1
E, K = T.shape[0], T.shape[2]
max_iter = E * E * K * 10
n_dim = 10
# p_idx = np.ravel_multi_index((T == 1).nonzero(), T.shape) # raveled positive index
# n_idx = np.ravel_multi_index((T == -1).nonzero(), T.shape) # raveled negative index
# model.fit(T, p_idx, n_idx, max_iter, e_gap=10000)
training = np.random.binomial(1., 0.01, T.shape)
testing = np.random.binomial(1., 0.5, T.shape)
testing[training == 1] = 0
model = AMDC(n_dim)
model.population = True
model.do_active_learning(T, training, 15000, testing)
开发者ID:arongdari,项目名称:almc,代码行数:26,代码来源:amdc.py
示例15: read_mat_profile_files
def read_mat_profile_files(
path,
loc,
var,
dataSetName='test',
dataSetType='ms'):
"""Reads generic time series from matlab file and converts data
to python format"""
varToChar = {'salt': 's', 'elev': 'e', 'temp': 't', 'u': 'u', 'v': 'v'}
pattern = os.path.join(
path,
dataSetName +
'.' +
dataSetType +
'.' +
varToChar[var] +
'.' +
loc +
'.mat')
fList = sorted(glob.glob(pattern))
if not fList:
raise Exception('File not found: ' + pattern)
f = fList[0]
print 'Reading', f
d = loadmat(f)
t = d['t'].flatten() # (1,nTime)
z = d['z'] # (nVert,nTime)
data = d['data'] # (nVert,nTime)
# convert time from Matlab datenum (in PST) to epoch (UTC)
time = datenumPSTToEpoch(t)
# round to nearest minute
time = np.round(time / 60.) * 60.
print ' Loaded data range: ', str(timeArray.epochToDatetime(time[0])), ' -> ', str(timeArray.epochToDatetime(time[-1]))
return time, z, data
开发者ID:tkarna,项目名称:crane,代码行数:34,代码来源:convSurrogateOutputToNC.py
示例16: test_srmr
def test_srmr():
fs = 16000
s = loadmat("test/test.mat")["s"][:,0]
correct_ratios = loadmat("test/correct_ratios.mat")['correct_ratios'][0]
ratio, avg_energy = srmr(s, fs)
assert np.allclose(ratio, correct_ratios[1], rtol=1e-6, atol=1e-12)
ratio_norm_fast, avg_energy_norm_fast = srmr(s, fs, fast=True, norm=True, max_cf=30)
assert np.allclose(ratio_norm_fast, correct_ratios[2], rtol=1e-6, atol=1e-12)
ratio_slow, avg_energy_slow = srmr(s, fs, fast=False)
assert np.allclose(ratio_slow, correct_ratios[0], rtol=1e-6, atol=1e-12)
ratio_norm, avg_energy_norm = srmr(s, fs, fast=False, norm=True, max_cf=30)
assert np.allclose(ratio_norm, correct_ratios[3], rtol=1e-6, atol=1e-12)
开发者ID:kastnerkyle,项目名称:SRMRpy,代码行数:16,代码来源:test_srmr.py
示例17: convert
def convert(in_filename, out_filename=None, spacings=None):
A = loadmat(in_filename, struct_as_record=False)
# struct
S = A['Save_data'][0,0]
# volume
V = S.P
# output filename
if out_filename == None:
out_filename = os.path.splitext(in_filename)[0] + '.nrrd'
logger.debug('Output filename: %s', out_filename)
logger.debug('Writing NRRD file.')
# NRRD options
options = {}
if spacings == None:
xs = float((S.xmax - S.xmin) / V.shape[0])
ys = float((S.ymax - S.ymin) / V.shape[1])
zs = float((S.zmax - S.zmin) / V.shape[2])
options['spacings'] = [xs, ys, zs]
else:
options['spacings'] = eval(spacings)
logger.debug('Setting spacings to: %s', options['spacings'])
nrrd.write(out_filename, V, options)
开发者ID:davepeake,项目名称:oscar2nrrd,代码行数:28,代码来源:oscar2nrrd.py
示例18: __readOldMatBEvecs
def __readOldMatBEvecs(file_path):
"""
Returns information about the excitation BE waveform present in the .mat file
Inputs:
filepath -- Absolute filepath of the .mat parameter file
Outputs:
Tuple -- (bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full)\n
bin_inds -- Bin indices\n
bin_w -- Excitation bin Frequencies\n
bin_FFT -- FFT of the BE waveform for the excited bins\n
BE_wave -- Band Excitation waveform\n
dc_amp_vec_full -- spectroscopic waveform.
This information will be necessary for fixing the UDVS for AC modulation for example
"""
matread = loadmat(file_path, squeeze_me=True)
BE_wave = matread['BE_wave_1']
bin_inds = matread['bin_ind_s'] - 1 # Python base 0. note also _s, for this case
bin_w = matread['bin_w']
dc_amp_vec_full = matread['dc_amp_vec_full']
FFT_full = np.fft.fftshift(np.fft.fft(BE_wave))
bin_FFT = np.conjugate(FFT_full[bin_inds])
return bin_inds, bin_w, bin_FFT, BE_wave, dc_amp_vec_full
开发者ID:pycroscopy,项目名称:pycroscopy,代码行数:26,代码来源:be_odf_relaxation.py
示例19: read_training_data
def read_training_data():
"""
Returns a dictionary of features for the training data
"""
filename=os.path.join('..','data/Piton','TrainingSet_2.mat')
data_orig=loadmat(filename)
# create a clean dictionnary of data
# taking logarithms of the features for which
# the test set also has logarithms (thanks Clement!)
# for now only deal with the two features that are ok in the two datasets
data={}
data['KurtoEB']=log(np.array(data_orig['KurtoEB'].flat))
data['KurtoVT']=log(np.array(data_orig['KurtoVT'].flat))
data['AsDecVT']=log(np.array(data_orig['AsDecVT'].flat))
data['AsDecEB']=log(np.array(data_orig['AsDecEB'].flat))
data['RappMaxMeanEB']=log(np.array(data_orig['RappMaxMeanEB'].flat))
data['RappMaxMeanVT']=log(np.array(data_orig['RappMaxMeanVT'].flat))
data['DurVT']=np.abs(np.array(data_orig['DurVT'].flat))
data['DurEB']=np.abs(np.array(data_orig['DurEB'].flat))
data['EneEB']=log(np.array(data_orig['EneFFTeB'].flat))
data['EneVT']=log(np.array(data_orig['EneFFTvT'].flat))
return data
开发者ID:amaggi,项目名称:discrimination,代码行数:25,代码来源:PdF_io.py
示例20: test_rdop4_zero_rowscutoff
def test_rdop4_zero_rowscutoff(self):
matfile = 'nastran_op4_data/r_c_rc.mat'
filenames = glob('nastran_op4_data/*.op4')
o4 = op4.OP4()
o4._rowsCutoff = 0
m = matlab.loadmat(matfile)
for filename in filenames:
if filename.find('badname') > -1:
with assert_warns(RuntimeWarning) as cm:
dct = o4.dctload(filename)
the_warning = str(cm.warning)
assert 0 == the_warning.find('Output4 file has matrix '
'name: 1mat')
with assert_warns(RuntimeWarning) as cm:
names, mats, forms, mtypes = o4.listload(filename)
the_warning = str(cm.warning)
assert 0 == the_warning.find('Output4 file has matrix '
'name: 1mat')
with assert_warns(RuntimeWarning) as cm:
names2, sizes, forms2, mtypes2 = o4.dir(filename,
verbose=False)
the_warning = str(cm.warning)
assert 0 == the_warning.find('Output4 file has matrix '
'name: 1mat')
else:
dct = o4.dctload(filename)
names, mats, forms, mtypes = o4.listload(filename)
names2, sizes, forms2, mtypes2 = o4.dir(filename,
verbose=False)
assert sorted(dct.keys()) == sorted(names)
assert names == names2
assert forms == forms2
assert mtypes == mtypes2
for mat, sz in zip(mats, sizes):
assert mat.shape == sz
for nm in dct:
if nm[-1] == 's':
matnm = nm[:-1]
elif nm == '_1mat':
matnm = 'rmat'
else:
matnm = nm
assert np.allclose(m[matnm], dct[nm][0])
pos = names.index(nm)
assert np.allclose(m[matnm], mats[pos])
assert dct[nm][1] == forms[pos]
assert dct[nm][2] == mtypes[pos]
nm2 = nm = 'rcmat'
if filename.find('single') > -1:
nm2 = 'rcmats'
if filename.find('badname') > -1:
with assert_warns(RuntimeWarning) as cm:
dct = o4.dctload(filename, nm2)
name, mat, *_ = o4.listload(filename, [nm2])
else:
dct = o4.dctload(filename, [nm2])
name, mat, *_ = o4.listload(filename, nm2)
assert np.allclose(m[nm], dct[nm2][0])
assert np.allclose(m[nm], mat[0])
开发者ID:EmanueleCannizzaro,项目名称:pyNastran,代码行数:60,代码来源:test_op4_nose.py
注:本文中的scipy.io.matlab.loadmat函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论